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ABSTRACT: The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) provides the main archive for surface
marine observations for the past approximately 150 years. ICOADS ship identifier (ID) information is often missing or
unusable, preventing the linking of reports to an individual ship. A method for the reconstruction of ship voyages in ICOADS
is presented, by which groups of reports can be associated with an individual ship or ship track. The method defines a function
representing the probability density function (pdf ) of any particular report being associated with a group of reports. The
parameters of the pdf are calculated from the ship data themselves, giving the likely variation of a ship report perpendicular
to its overall direction of travel. For groups of reports with ID information, the PDF is used to associate reports without ID
information with the known-ID track. Reports without ID information are then clustered together to form the most probable
track. Results are shown for the period 1855–1969. Both the percentage of reports associated with tracks and the length of
those tracks increase substantially following tracking. Initial validation of the results was performed by visual inspection: the
model implementation was then refined to improve the results. Confidence in the tracking is increased by a demonstration
that the method clusters together reports with similar sea surface temperature characteristics. Issues in the data were found to
be one of the main challenges in implementing the tracking technique. Particular problems encountered included the coarse
resolution of some position information; reports that were mispositioned in either space or time; unidentified duplicate reports;
and the fragmentation of voyages between different ICOADS acquisition sources. Some of these effects could be ameliorated
by pre-processing of ICOADS reports, however a full reprocessing of the historical input sources to ICOADS would be required
to make further improvements.
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1. Introduction

The International Comprehensive Ocean-Atmosphere
Data Set (ICOADS, e.g. Woodruff et al., 2011) provides
an archive of in situ surface marine observations presently
starting in 1662, but sparse before about 1850. These
observations come from a variety of sources, including
ships, buoys and coastal data, and are used to construct
gridded analyses that document changes in surface marine
conditions. Examples include gridded analyses for sea
surface temperature (SST, Smith and Reynolds, 2004;
Kennedy et al., 2011b; Hirahara et al., 2014; Huang et al.,
2015), air temperature (Kent et al., 2013), wind (Kalnay
et al., 1996), pressure (Allan and Ansell, 2006), humidity
(Willett et al., 2008) and air–sea fluxes (Berry and Kent,
2009; Berry and Kent, 2011). These gridded analyses are
used in climate assessments (IPCC, 2013; Blunden and
Arndt, 2014). Of these variables, SST is the focus of most
attention and forms the marine component of the global
surface temperature record, a primary metric of climate
change (IPCC, 2013). In situ SST observations are used
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for monitoring the present climate and for comparison
between the present and past climatic variations over
the oceans (Stott et al., 2010), as well as for validation
of climate models (Sutton et al., 2007; Boer, 2011) and
to provide boundary conditions for atmospheric models
(Compo et al., 2011; Stickler et al., 2014).

COADS Release 1 (Woodruff et al., 1987) was based on
data collections in the form of punched card decks (here-
after decks) that had been obtained by the United States
from major maritime nations from the 1940s onwards.
Reports were available in a variety of different formats, and
not all contained metadata identifying the observing plat-
form or methods. COADS combined archives of marine
data from several countries, and it was known that there
was substantial duplication of observations between some
of the sources. A complicated process of identification,
exclusion and compositing of duplicate reports (known as
duplicate elimination: dupelim) was developed to address
this (Slutz et al., 1985). Dupelim was later extended as the
number of ICOADS data sources expanded. A substantial
proportion of observations in the current ICOADS Release
2.5 (R2.5) are from these historical archives. More recent
observations may contain ship identifiers (hereafter IDs,
Kent et al., 2007), and recent data digitisation activities
have been careful to retain ship and observational metadata
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(García-Herrera et al., 2005; Allan et al., 2011; Wilkinson
et al., 2011). However, missing (Figure 1) or incorrect plat-
form identifiers are recurrent, particularly for ship obser-
vations, throughout ICOADS.

This article addresses the problem of reconstructing ship
voyages in the ICOADS archive by associating groups of
reports to an individual vessel (hereafter ‘ship tracking’).
The aim of this article is to explain the method and to show
the results for the period 1855–1969. Section 2 details the
motivations for this work and explains how ship tracking
will enable improved SST bias adjustment, uncertainty
estimation, quality control and data assimilation. Section
3 describes the data association technique developed to
group observations to give plausible tracks; Section 4
shows the results and Section 5 discusses the conclusions
and describes the potential for future improvements.

2. Motivations

2.1. SST bias adjustment

Quantification of biases in historical SSTs is important for
estimating global temperature trends (Jones and Wigley,
2010). SST observations from ships form one of the
longest instrumental records of surface marine tempera-
ture change. However, over the years, several different
methods of measuring SST have been used, each with
different bias characteristics (James and Fox, 1972; Kent
et al., 1993, 2010; Kent and Taylor, 2006; Kennedy et al.,
2011b). For historic observations, the measurement prac-
tice is almost never known in detail (Folland and Parker,
1995), and therefore integral to the SST bias adjustment is
the assignment of measurement methods, ideally to indi-
vidual ships or reports. Although there has been progress
towards understanding the characteristics of historical SST
observations (e.g. as reviewed by Kennedy, 2014), we do
not yet have a full quantification of their bias and uncer-
tainty. The estimation of systematic biases is critical for
climatic decadal predictions (Kennedy et al., 2011b), and
uncertainties in long-term trends are expected to be con-
trolled by uncertainties in biases introduced by changes
of instrumentation and measurement practices (Jones and
Wigley, 2010).

Currently, SST data sets use bias models represent-
ing large-scale effects, either based on 5∘ area average
monthly climatological environmental conditions (Folland
and Parker, 1995) or on large-scale variations in air–sea
temperature difference (Smith and Reynolds, 2002), which
is also uncertain (Kent et al., 2013). There are differences
between the bias adjustment fields used to date, which
limits our confidence, particularly in regional estimates of
historical SST (Kennedy et al., 2011a). It is known that
changes in observational practice can be rapid and undoc-
umented (Thompson et al., 2008), such changes cannot be
captured by large-scale approaches to bias adjustment.

There are two main barriers to finer-scale adjustment
of SST. Firstly, there is usually not enough information
about how the observations were made; for example, we
may know that a bucket was used, but not the type of

bucket, or the conditions of its exposure. The second
barrier is that many ICOADS reports cannot be confidently
assigned to a particular vessel and hence, cautiously, to
the same measurement methodology. It is this latter point
that we address here, noting that similar arguments can be
made for other ICOADS variables such as wind speed or
humidity.

2.2. Improved estimation of measurement uncertainty

Recent studies (Kent and Berry, 2008; Kennedy et al.,
2011a; Kent et al., 2013) have partitioned measurement
uncertainties into random and systematic parts, where the
systematic uncertainty represents mean biases for individ-
ual platforms (typically a ship or buoy). It is therefore
important to know which platforms took measurements
in each grid box and how many observations each plat-
form made. However, the present lack of comprehensive
ID information hampers the application of such an error
model (Kennedy, 2014). Linking observations from the
same vessel together, through ship tracking, will aid in
applying such an error model and lead to improved esti-
mates of the uncertainty in gridded analysis through better
treatment of the uncertainty arising from correlated errors.

2.3. ICOADS quality assurance

There are two main aspects of quality assurance (QA) that
will benefit from ship tracking. The first is identifying mis-
positioned and misassigned data. It is well known that
ICOADS contains mispositioned data, particularly in deck
732 (Minobe and Maeda, 2005; Kennedy et al., 2011b).
Mispositioned data have also been identified post-1970 for
ships with valid ID information, often as a duplicate, or
partial duplicate, of a report in the correct location (Kent
and Challenor, 2006). Some data are mispositioned in time,
possibly as a result of report corruption of the observation
or by conversion from local time to GMT with incorrect
longitude. For reports with valid ID information, track-
ing can identify mispositioned reports and perhaps relocate
them in position or time. For reports with no valid ID infor-
mation, any reports that could not be associated with other
reports in the tracking process might be down-weighted or
excluded from analyses.

The second benefit of grouping reports by observing
platform is the identification of platforms that consistently
report biased observations as a result of, for example, poor
observation practice, miscalibrated instruments or persis-
tent miscoding. This permits the exclusion, or in some
cases correction, of observations on a vessel-by-vessel
basis.

2.4. Data assimilation

Finally, ship tracking constitutes an important step in the
data assimilation process of atmospheric reanalyses. For
example, the European Centre for Medium-Range Weather
Forecasts (ECMWF) pilot reanalysis of the 20th-century
(ERA-20C) uses a platform level adaptive bias correction
systems that updates the bias parameters during the assim-
ilation simultaneously with the meteorological variables
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Figure 1. (a) For all the decks in ICOADS, the number of observations with platform type field values of 0–5 (ship data) or missing. The observations
have been grouped according to three different deck categories (tracked decks, complete decks, deck 732) and to two different ID categories
(known-ID, NAs). Note that in the complete decks category, the figure shows the number of known-IDs only (no NAs are present) while for deck 732
it shows the number of NAs only (no known-IDs are present). (b) For the tracked decks category, the percentage of observations in each of the three
different ID categories (known-ID, NAs, QC IDs) the data were grouped into. Both plots show monthly data filtered with a 12-month running mean.

[Colour figure can be viewed at wileyonlinelibrary.com].

(Poli et al., 2013). To address the problem of missing
platform IDs in ICOADS, a simple tracking algorithm
was implemented that split ICOADS observations into
plausible subsets based on ship speed constraints com-
bined with any available ID information (Hersbach et al.,
2015). Improvements to platform identification, com-
bined with the QA improvements described in Section
2.3, will have clear benefits for atmospheric reanalysis
activities.

3. Method

3.1. Data selection, pre-processing and QA applied to
ICOADS

We have used observations from ICOADS Release 2.5,
using only those reports with platform type (PT) field
values of 0–5 (various types of ship data) or missing
(unknown PT, which inspection suggests are mostly
reports from ships). Data known to originate in decks con-
taining only observations from buoys, fixed platforms or
coastal stations (buoy-only decks, see Appendix for details)
have been excluded. Based on preliminary tracking results,

decks that contained complete and reliable ID information
with no overlap with observations from other decks
(complete decks) were not tracked. These decks are typ-
ically from modern digitisation efforts or are collections
of data from research cruises. The final exclusions were
reports from decks 732 and 874 known to have suffered
problems with format conversion. Finally, decks that were
thought to be unique but with incomplete ID information
were tracked within the deck only, while decks that were
thought to have common data were tracked together. More
information is given in the Appendix.

The observations selected have been divided into two
categories based on the availability of ID information,
those with an empty ID field (hereafter NAs) and those
with extant ID information (hereafter known-IDs). The
known-IDs are grouped together and each unique ID
assumed to represent a single ship, whilst the NAs remain
unassigned. Additionally, a number of the known-IDs
are not assigned to a group, either due to a corrupted
ID or the use of a generic callsign (e.g. SHIP, PLAT,
etc.). Figure 1(a) illustrates the data, separated into the
two categories (NAs and known-IDs), for both the decks
requiring tracking and those excluded. The two groups of
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observations, those with known-IDs and NAs, have been
treated differently in the tracking analysis (Section 3.2).

Prior to tracking, it has been necessary to pre-process
the data. Firstly, the ICOADS IDs have been quality con-
trolled. Within a deck, the IDs conform to a limited number
of patterns in terms of combinations of digits and/or char-
acters (see Table A2). Those reports where the ID does not
confirm to an expected pattern for the deck were reallo-
cated to the NAs. This helps to prevent the use of invalid
ID information in the initial construction of the tracks.
For example, without this step, reports with truncated ID
information from several different ships would be erro-
neously assigned to a single ship. In some cases, ID infor-
mation from different decks contained common sequences
of characters or digits and had clearly been derived from
the same original information (e.g. logbook number), but
one of the decks had appended additional characters or dig-
its to the start or end of the common sequence. Where the
link was clear, the common sequence only was retained
using rules for particular decks (Appendix A3). Further,
ID modification reduced sequences of numeric IDs each
representing a single report to their common root. Any
IDs modified in these ways will be referred to as QC IDs.
Figure 1(b) shows that the ID modification was particu-
larly important for reports from the 1880s. Moreover, for
IDs associated with less than four observations per month
(QC IDs if appropriate), the report was tracked in the NA
category.

Secondly, in addition to QC of the IDs, a duplicate elim-
ination process has been applied. For all pairs of reports
at a given time and with similar locations, the available
parameters were checked for matching data. Those found
to contain matching data, excluding missing elements and
location information, were flagged as potential duplicates.
The duplicate containing the most complete report or
from the deck expected to be of highest quality was then
selected. This relaxes the dupelim restrictions applied
by ICOADS, which considers only potential duplicates
within the same 1∘ grid box. The largest monthly pro-
portion of reports removed was 3%, but substantially less
than 1% was much more typical. Although percentages of
identified duplicates were small, the process was judged to
be worthwhile as ship tracking inevitably works best when
there are fewer choices of nearby reports to consider.

Finally, we considered mispositioned data, which rep-
resent a significant obstacle to ship tracking. Generally,
mispositioned data are characterized by a wrongly reported
position or time. Firstly, for some reports, we identified
and corrected potential errors in the reported time variable
(see Appendix A3 for details). However, these adjustments
have been decided on a qualitative basis only; a full identi-
fication of time-shifted reports should use the archive prior
to dupelim processing and be performed both within decks
and between decks. Similarly, spatially mispositioned data
were processed only partially. Speed checks were used
to spot isolated mispositioned reports as well as to split
known-ID tracks resulting from the aggregation of dif-
ferent ships using the same identifier. Tracks were only
split where more than 10% of reports were inconsistent to

x
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f

Figure 2. Example of different possible trajectories between (time) con-
secutive observed positions (i and f ) in a known-ID ship track. [Colour

figure can be viewed at wileyonlinelibrary.com].

avoid splitting long tracks containing a few mispositioned
reports.

3.2. Model formulation

The tracking model consists of three steps. Firstly, each
NA report is tested to see whether it is associated with a gap
in a track with known-ID and can therefore be associated
with that ID. The second step is the clustering of the
residual NAs to give new tracks and the final step is the
joining of original and new tracks.

3.2.1. Assignment of reports to existing tracks

Known-ID tracks may be subset into smaller fragments,
each defined by the two points closest in time (i and
f ) and the probability of assigning a N observation to
each of these fragments may be modelled as a function
of the distance from both i and f . The variance of the
expected probability density function (pdf) must increase
with the distance from the extremes of each fragment,
being maximum in the middle and minimum at i and
f . In fact, as shown in Figure 2, from i to f , the ship
can move along any of the infinite number of trajecto-
ries between the two points, and it is possible to recon-
struct its trajectory only within a margin of uncertainty
which increases with the distance from the observed posi-
tions. The problem then reduces to determine how the pdf
variance changes between the two extremes of each track
fragment.

A simple model for the evolution of the ship trajectory
assumes that the ship moves with a constant speed (the
whole trajectory can be always divided in short time inter-
vals to make this a reasonable assumption) and is subject
to white noise variations. These variations represent many
different processes that might include the effects of the
wind, currents and random movements of the ship and will
also include a contribution from any inaccuracies in the
reported positions perpendicular to the overall direction of
travel. For each coordinate, the combined effect of these
processes may be modelled as a one-dimensional random
walk process. Let x and y be the ship longitude and lati-
tude, respectively, and let the spatial reference system be
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the one where the ship velocity is parallel to the y-axis.
We neglected noise variations in the direction of travel
and considered only the component of noise perpendicu-
lar to the direction of the ship velocity (y). Hence, if v is
the mean speed of the known-ID ship along the i-f seg-
ment, the probability for a ship with initial position (xi, yi)
to be at position (xk, yk), after time 𝛿t≡ |yk − yi|/ v, is a
Gaussian

P
(

xk, yk
|| xi, yi

)
= 1√

4𝜋D 𝛿t
e
−
(
(xk−xi)2

4D 𝛿t

)
(1)

where D can be considered to be a diffusion coefficient,
linked to the average ship perpendicular displacement
from the line connecting i and f (Ibe, 2013). Equation
(1) represents the probability of the ship being at position
(xk, yk) given its (known-ID) track and can therefore also
be used to calculate the probability of an NA report, in
this location, being associated with that known-ID track
(we call this the assignment pdf). The diffusion coefficient
D can then be calculated for every known-ID ship as the
variance of the assignment pdf written as a function of the
new variable zk =

(
xk − xi

)
∕
√

2𝛿t

D ≡ 𝜎2 = 1
n − 1

n∑
k=1

z2
k (2)

D is in fact a measure of how well the ship trajectory,
for small intervals of time, can be approximated by uni-
form motion: ships with lower D will tend to move in a
straighter line than ships with larger D. Knowing D we
can write the assignment pdf for an NA report at position
k≡(xk, yk) as

Pk =

⎧⎪⎪⎨⎪⎪⎩
1√

4𝜋D|yk−yi|∕ v
e
−
(

(xk−xi)2
4D|yk−yi|∕ v

)
if yk ≤ ym

1√
4𝜋D|yf −yk|∕ v

e
−

(
(xk−xf )2

4D|yf −yk|∕ v

)
if yk > ym

(3)
the equation being symmetric around the intermediate
point of the i-f segment ym (see Figure 3(a)).

Equation (3) is used to select the best NA candidate
(i.e. the one with highest probability) in the assignment
process. For cases of reports with some ID information but
that were classified as NAs (as described in Section 3.1),
the similarity of the available ID information was taken
into account (see Section 3.2.3). To eventually accept or
reject an NA assignment, some additional basic temporal
and spatial constraints are also applied: no ship can record
twice at the same time and, for a given known-ID, 𝛿t
must be no smaller than the observed minimum time gap
between two subsequent observations. Moreover, at any
time, the ship speed cannot exceed a maximum threshold:
this is typically set at 160 km h− 1. A large threshold for
the ship speed is required as many ICOADS positions
have 1∘ resolution and often tracks are characterized by
several reports at the same position followed by one degree
‘jumps’.

3.2.2. Clustering of reports not already assigned to a
track

NA reports not assigned to any known-ID track are then
clustered together. Starting from an NA report, represent-
ing the initial point of a track, the clustering pdf is mod-
elled similarly to that of the assignment model, the only
difference being that, as the final point of each track is
unknown, the pdf variance will increase as the distance
from the initial NA point increases (see Figure 3(b)). More-
over, when successively clustering observations together,
the ship course and speed at the starting point of each track
are typically unknown, while in the assignment of NA
reports to known-ID tracks the ship velocity was derived
for each i-f segment. A few ICOADS reports contain infor-
mation on the ship course and speed, but more usually this
information is missing. As a first approximation, a typical
ship speed can be computed from the known-ID tracks for
each different month. The best guess for the ship course
must be instead determined for each individual case. The
adopted method is illustrated in Figure 4: the clustering
technique relies on the idea that the best guess for the ship
course is the direction of the track formed by the combina-
tion of n observations, in an appropriate neighbourhood of
the starting NA report, which forms the straightest line out
of all possible n-point tracks. For a given period of time,
the neighbourhood radius is calculated as the mean ship
speed derived from all the ships with known-IDs times the
length of the chosen period. In particular, recalling that the
chosen minimum number of observations per track is four,
the clustering procedure is implemented firstly over 4 days
and then repeated over 6 days in order not to exclude ships
reporting daily and with incomplete reporting sequences.

From the ICOADS speed-course information, when
available, or from their computed values, the clustering
pdf is calculated for every competing (i.e. taken at the
same time) NA observation in the neighbourhood. Keep-
ing track of the assignments, this process is then repeated
for each NA observation. As before, the acceptance of a
track is then subjected to additional constraints: observa-
tions belonging to each track must be temporally ordered,
the direction of the track must be unambiguously defined
(no tracks with reversals, i.e. changes of direction in both
coordinates, are accepted) and the previously defined max-
imum threshold for the ship speed is adopted.

3.2.3. Joining of new and existing tracks

The last step of the model consists of joining tracks. In
fact, for tracks obtained via clustering (Section 3.2.2), so
far, only observations within a fixed interval of time have
been grouped and the maximum temporal coverage for
these tracks is either 4 or 6 days. However, the joining step
must be also applied to known-ID tracks: in fact, often two
tracks with different IDs belong to the same ship and need
to be joined. An example is where the ID is derived from
a logbook page number and sequential pages need to be
joined. The approach to joining tracks is similar to that
taken to assign and cluster the observations. There are two
cases, the first where there is a long gap in the track of a
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Figure 3. (a) The assignment pdf is shown as a function of the distance from the extreme points (i and f ) of the fragment of a known-ID track,
defined by two of the points in the track which are closest in time. (b) The clustering pdf is shown as a function of the distance from the starting NA

observation (i). Note that in both plots the chosen spatial reference system is the one where the ship velocity is parallel to the y-axis.

R 1

R 2i

 Selected neighbourhood   

x

y

Figure 4. Selection method for the determination of the ship course in
the clustering step. Among all the possible competitive tracks starting
from an initial NA observation (i), the one selected (R1) is the one
characterized by the straightest line out of all possible n-point tracks.

[Colour figure can be viewed at wileyonlinelibrary.com].

known-ID ship, and the second where we try to join tracks
constructed from NA reports or from ships with different
IDs. The first case uses the assignment pdf with speed
and direction determined from the pair of observations
spanning the gap. In the second case, we refer to the first
(in time) track as the target track and all subsequent tracks
as candidates for joining. The clustering pdf is calculated
from the speed and direction determined from the target
track from the last day of reports or, for ships observing
daily, from the last four days. The assignment or clustering
pdf is then derived for each point of all the tracks that are
potential candidates for joining to the target track. To join
whole tracks together, it is necessary to calculate a joint
probability for all the points in a candidate track. In order
to discriminate between competitive tracks, we introduced
the variable

L⊥ =

∑
k

Pk · L⊥ k∑
k

Pk

(4)

where L⊥ k
is the perpendicular distance of the k-th obser-

vation of a candidate track from the direction line of the
target ship. The best guess is then the candidate track that
minimizes the distance from the target ship direction line

averaged over the single point probabilities: observations
with higher Pk are down-weighted, giving more weight to
those reports closer in time to the end of the target track.
For the case of known-ID candidate tracks, this approach
has also the advantage of down-weighting any observation
at a large distance away from the main line of the (candi-
date) track which may be mispositioned.

Some of the additional temporal and spatial constraints
used before also apply to this step. No tracks with reversals
are accepted and the ship speed cannot exceed 160 km h− 1

(for reports with coarse resolution positions) or a calcu-
lated maximum speed based on the mean and standard
deviation of the reports (for reports with higher precision
positions). Moreover, the joining operation must be transi-
tive, i.e. if ship A= ship B and ship B= ship C then ship
C= ship A: this problem is solved using the union-find
algorithm (e.g. Cormen et al., 2001). Additional checks
on the similarity of the recorded variable types are also
implemented. Specifically, the joining is accepted only for
tracks reporting at least three of the same variable types
between selected ICOADS variables (country code, sea
surface temperature, sea level pressure, air temperature,
total cloud cover, wind speed, wind speed indicator, wave
direction, visibility, present weather, past weather). As a
further constraint, for each potential candidate, the dif-
ferences between the ID strings were computed (Dam-
erau, 1964; Levenshtein, 1966) and, where competitive
candidates were found, the one with more similar ID was
chosen.

3.2.4. Estimating the quality of the derived ship tracks

One of the best methods to check the results of the track-
ing analysis is visual inspection. However, the amount
of data precludes this except for a few examples. The
quantification of the track uncertainty may be used for
model validation purposes. To estimate the uncertainty
associated with each track, we adopted an ensemble
approach. Each possible ‘candidate’ in the assignment,
clustering and joining step can be considered as one of the
possible N outcomes of a probabilistic process: the track
uncertainty must then be an increasing function of the
number of possible outcomes (i.e. of possible competitive
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observations in the assignment, clustering and joining
processes).

It is well known that entropy and information can be
considered as measures of uncertainty. In conventional
information theory (Shannon, 1948), entropy measures the
amount of uncertainty of a random variable with a certain
number of outcomes, each with probabilities Pi, as

ui = −
∑

i

Pi log
(
Pi

)
(5)

The logarithmic base remains arbitrary, but it is natural
to choose base 2 and to measure the amount of uncer-
tainty in bits (Robinson, 2008). The ensemble maximum
uncertainty is obtained assuming that all the outcomes are
equally probable, Pi = 1 /N: for a track of m points, the total
uncertainty can then be estimated as

utrack =
m∑

i=1

ui assignment
+ ui clustering

+ ui joining
(6)

While the first two terms in the sum are determined
separately for each observation, the last one is calculated
from the number of competitive tracks in the joining step
and the resulting value applied to all the observations in the
track. We refer to utrack as the ‘track quality indicator’ (TQI
hereafter). The TQI is zero when the track is unambiguous
and increases with the number of choices made during the
track construction. The TQI is particularly useful when
comparing tracks, and a smaller value (especially zero)
means that the track is likely to be more reliable. However,
a track with a large TQI may indeed be correct, if the
appropriate decision is made at every step, and equally
a track with TQI of 1 may be wrong if the single choice
taken during its construction was not made correctly. This
is because the TQI records only the number of choices
and does not contain information about how clear-cut any
particular choice might have been.

4. Results

The effectiveness of the tracking model presented in this
article varies over time, but overall the method works
well both in terms of increasing the proportion of reports
associated with known-IDs and of increasing the overall
length of the tracks.

Generally, the impact of single NA assignments is
small: the largest monthly proportion of reports assigned
was 2%, but substantially less than 1% was much more
typical. Although these percentages were small, this
step is important as the remaining NAs are subsequently
assumed to form independent tracks and not missing
observations from known-ID tracks. In particular, the
percentage of assignments increases significantly after
the 1950s, when the number of NA reports increases
significantly (Figure 1(a)). On the other hand, as shown in
Figure 5, the total fraction of observations with known-IDs
is greatly increased after tracking (Figure 5(b)), compared
to the ICOADS original record (Figure 5(a)). In particular,
the impact of the tracking is particularly clear during

the 1860s, when the percentage of observations in
ICOADS with known-ID is less than 10%, rising to
more than 75% after tracking. Note that in Figure 5, we
included both the observations from the tracked decks
and the complete decks categories, in order to show all
the final ‘usable’ tracks. Figure 5(a) and (b) also show the
breakdown of the fraction of observations according to the
length of the track (i.e. the number of points per track).
Overall, not only observations are assigned or clustered
together, increasing the percentage of tracked observations
up to almost 90% for most of the record, but also there
is an increase in the number of reports associated with
long (more than 50 observations per month) and medium
(between 50 and 10 observations per month) tracks.
Moreover, observations with unusable ID information, i.e.
tracks with invalid or generic IDs, are processed and the
final identified IDs are all unique and characterized by a
minimum of four reports per track per month.

Generally, visual inspection of multiple cases proved
to be very useful to test the model results as well as to
improve the method and to refine its details. Figure 6
shows some selected examples illustrating the results of
the various model steps on the data. Figure 6(a) and
(b) illustrates examples of the adopted pre-processing
criteria. In particular, Figure 6(a) shows the case of a
known-ID track (104906), which, during pre-processing,
was merged with another known-ID (04906) from a dif-
ferent deck. Figure 6(b) shows an example of tracks orig-
inally formed by individual reports with sequences of
unique numeric IDs, identified and clustered prior to track-
ing. The remaining panels of Figure 6 show examples
of the typical results of applying the assignment, cluster-
ing and joining steps. Specifically, Figure 6(c) shows the
case of NA observations assigned to a known-ID track
(13560) which is then joined to another known-ID track
(31313560) containing a common sequence not identi-
fied during the pre-processing. Figure 6(d) illustrates the
case of NA observations clustered together to create a
new track. Finally, Figure 6(e) and (f) shows examples of
tracks formed by joining different IDs: the match may arise
not only between tracks with formerly known-IDs, as in
Figure 6(f), but also between new and known-ID tracks
(Figure 6(e)).

Overall, from the analysis of individual cases much can
be learned about ICOADS reports and their sources. For
instance, tracks belonging to different decks and originally
classified by different IDs may be joined together: the
tracks in Figure 6(a) belong, respectively, to deck 201 and
194, while in Figure 6(e) the track made by formerly NA
reports belonging to deck 155 is joined to known-ID tracks
originating from deck 720. Figure 6(e) also provides an
example of a case where observations from decks with
different rounding of position information are clustered
in the same track: in deck 155 latitude and longitude are
approximated to 0.5∘ whilst the position reports in deck
720 are rounded to whole degrees.

In addition to specific cases, the comparison between
the original ICOADS record and that resulting from the
tracking analysis also demonstrates the effectiveness of
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Figure 5. Percentage of observations with known-IDs before (a) and after (b) the tracking analysis. In both figures, the sum of the grey shaded
areas identifies all the reports with a valid known-ID. Also shown is the percentage of reports in long tracks (more than 50 observations per month)
represented by the dark grey shaded area, the fraction of medium tracks (between 50 and 10 observations per month), specified by the medium grey
shaded area and the percentage of short tracks (between 10 and 4 observations per month) and unusable tracks, identified respectively by the light grey
shaded area and the area between the solid grey line and the black dashed one. Note that only decks from the tracked and complete decks categories
have been included. Both plots show monthly data filtered with a 12-month running mean. [Colour figure can be viewed at wileyonlinelibrary.com].

the method. Figure 7 shows the known-ID tracks and the
NA reports before (left) and after (right) applying the
tracking method for three different periods: not only do
new tracks appear but also IDs characterized by ‘odd’
patterns are rearranged to form new, more consistent,
tracks. For example, in Figure 7(a) and (b), the east Pacific
is characterized in the original ICOADS record by several
‘zig zag’ tracks which correspond to truncated IDs (e.g. a
four digit ID when the expected format was eight digits)
representing a mixture of different ships. Figure 7(a) also
exhibits some examples of mispositioned data remaining
in the final record: in fact, as mentioned before, in order
not to fragment long tracks with few mispositioned reports,
mispositioned data were not always removed, as appears in
some tracks in the west Pacific characterized by ‘sudden’
jumps.

In order to test the assignment of IDs through tracking,
we performed an analysis of variance (R Core Team,
2015) of SST within 20∘ monthly grid boxes, calculating
the percentage of variance explained by partitioning the
observations between IDs. The location of each obser-
vation within the 20∘ box is the factor that explains the
most variance of the SST observations. Using the ID as an
additional factor is equivalent to assuming each ship has
a constant SST bias, and that accounting for these biases
would improve the consistency of the data. Figure 8 shows
the percentage of variance that can be explained using

different assignments of ID. When the pre-tracking
known-IDs are used to group the observations typically
10–30% of the variance can be explained, varying with
the proportion of observations assigned to a known-ID
compared to the number of NAs (see Figure 1(b)). In
contrast, when the tracked-IDs are used the variance
explained is larger, and more consistent over time, typi-
cally between 20 and 30% over the period. For periods
where the majority of observations have a known-ID,
such as the late 1880s, the variance explained by the
tracked-IDs and known-IDs is similar. When a random
clustering of observations with a number of groups sim-
ilar to the tracked-IDs is used, the variance explained is
typically between 5 and 10%. The increase in the variance
explained by the tracked-IDs, compared to known-IDs,
gives confidence that the tracking process is working, with
observations with similar properties clustered together.
The much smaller percentage of variance explained for
the randomly clustered data gives confidence that the
improvement is not due to changes in the number of
degrees of freedom.

Figure 9 shows the percentage of observations for dif-
ferent ranges of the TQI, computed as in Equation (6).
The quality indicator varies over time, but tracks dur-
ing the periods between about 1890 and 1910 and dur-
ing World War II are particularly low quality (high TQI),
as NA reports are concentrated together giving a larger
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NA 01178845 01178846
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Figure 6. (a) ID 104906 was converted to 04906, dropping the first digit to make the ID consistent with those in a different deck (QC ID). (b)
Sequentially ordered IDs (represented by dots of sequentially ordered colours), originally assigned to only one report, clustered together. (c) NA
observations assigned to a known-ID track (13560), and then joined to another known-ID track (31313560). (d) NA observations clustered together

to create a new track. (e)–(f) Examples of tracks formed by joining different IDs. [Colour figure can be viewed at wileyonlinelibrary.com].

number of choices for any assignment, clustering or join-
ing. Different ranges can be computed (tracks not mod-
ified by the tracking analysis must have utrack = 0) and
can be explored separately. Figure 10 shows an example
for 1870 of the tracks with a TQI of zero and those
with larger values (utrack ≥ 2) separately. Tracks with a
zero TQI are those that are unchanged by the process-
ing, or where reports were assigned, clustered or track
segments joined with no competing reports. Comparing
Figures 10(a) and 7(a) shows that some of the tracks with
a TQI of zero are new tracks. The tracks which may be
of lower quality (Figure 10(b)) are concentrated in the
major shipping lanes for that period, which is also the
region where NA reports are concentrated (compare with
Figure 7(a)).

In order to explore the record after the tracking anal-
ysis, we created different indicators describing the track
characteristics, as the track speed, its temporal coverage
and a measure of the difference between the strings of any

combined ID. These flags may be used to understand the
quality of the derived record but can also help to describe
the evolution of the marine observing system and its
changes. Figure 11 shows the 12-month running mean ship
speed overlaid on a density plot of the speed distribution.
In the early record, before 1900, many ships have distribu-
tions containing either zero or large speed due to the round-
ing of locations to 1∘ resolution in some decks. Changes to
shipping during World War II are also evident, with a clear
decrease in the ship speed. During the war, the percentage
of ships characterized by a low speed (less than 5 km h−1)
or almost stationary in their position exceeds 40%, how-
ever the drop in the mean ship speed is not so dramatic due
to the presence of some high speeds of 50 km h−1 or more
(off the scale of the plot). The overall reduction in speed is
expected from the convoy system adopted to protect mer-
chant ships as the convoy had to assemble and then move
at the speed of the slowest ship (Burn, 1998). The SST bias
correction model (Folland and Parker, 1995) assumes a
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Figure 7. Comparison between the original ICOADS record and the record after the tracking analysis (observations in the tracked decks category
only). Known-IDs (blue lines and points) and NAs observations (red points) are shown for the original ICOADS record (left) and the record after

the tracking analysis (right) for three different periods.
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Figure 8. Percentage of SST variance explained (observations in the tracked decks category only). Shown is the percentage of variance for the SST
that can be explained by partitioning the observations using the known-IDs in the original ICOADS record (black dotted line), the tracked known-IDs
(green solid line) and using random clustered observations (red dashed line). The plot shows monthly data filtered with a 12-month running mean.

[Colour figure can be viewed at wileyonlinelibrary.com].

linear increase in the ship speed from 4 to 7 m s−1 (approx-
imately 14–25 km h−1) over the period 1850–1940. Ship
speeds derived from our analysis show an increase of sim-
ilar magnitude, but the change is not linear.

5. Summary and the potential for future
improvements

ICOADS ship ID information is often missing or unus-
able, preventing the linking of reports to an individual

ship. In this study, we used a probabilistic approach to
reconstruct ship voyages that groups observations together
to give plausible ship tracks. The increased proportion
of reports associated with known-IDs and the increased
overall length of the tracks illustrates the efficacy of
the method. Validation was initially by visual inspection
of the tracks and statistics indicating track quality were
calculated.

Issues in the data (such as duplicates, mispositioned
reports and rounding of position information) were found
to be one of the main challenges in implementing the
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Figure 9. Percentage of observations for different TQI (bits) ranges (observations in the tracked decks category only). Shown is the percentage
of observations for five different ranges of the track quality indicator, with the quality of the track decreasing from the bottom (utrack < 0.5)
to the top (utrack ≥ 2.0). Note that tracks not modified by the tracking analysis have utrack = 0. The plot shows monthly data filtered with a 12-month

running mean. [Colour figure can be viewed at wileyonlinelibrary.com].

Figure 10. Example of tracks with a TQI (bits) of zero and tracks with larger values (observations in the tracked decks category only). Shown for
1870 are the tracked observations with a track quality indicator of zero (a) and those with larger values of utrack (b). [Colour figure can be viewed at

wileyonlinelibrary.com].
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Figure 11. Ship speed (km h−1) (observations in the tracked decks category only). The mean ship speed (black line) is presented overlaid on a
density plot of the speed distribution. The plot shows monthly data filtered with a 12-month running mean. [Colour figure can be viewed at

wileyonlinelibrary.com].

tracking algorithm. There is much to be gained from
the identification of duplicates and relocation of misposi-
tioned data, as ship tracking inevitably works best when
observations are correctly located and unique. Particu-
larly, in the early record before 1900, many tracks are
characterized by truncated positions (longitude and/or lati-
tude rounded to the closest degree) or by ‘dead reckoning’,
where a known position is advanced by means of recorded
heading, speed and time. Therefore, even in the absence
of corrupted position information, some IDs may show

‘jumps’ in their tracks. Many of the reports with rounded
position information are contained in legacy decks (Free-
man et al., 2015; personal communication) with no ID
information, which are then fragmented by the ICOADS
dupelim processing.

Presently, the tracking algorithm does not account for
the presence of land. It is possible therefore that the
constructed tracks may require the ship to cross land. This
was not a problem that was identified as prevalent from the
visual inspection of results, due to the constraints applied
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to the process, including speed and similarity of reports.
However, improving this aspect of the tracking is clearly
desirable.

Mispositioned data were not fully handled by the track-
ing algorithm. For known-ID tracks, mispositioned data
were identified but not relocated. Interpolation techniques
could be used to correct, as a first approximation, the errors
in the positions of some reports. Mispositioned reports
with no ID information cannot be easily relocated. Posi-
tional inaccuracy, including some gross mispositioning of
reports, affects the quality of the record and may impact
the quality of any derived climate analysis.

Even though results are encouraging and show that the
implemented data association method works well, future
effort is needed to elucidate the reasons of some of the
data issues present in ICOADS and to eventually cor-
rect them. ICOADS has long been the focus of the main
improvements in the understanding of marine climatology
(Kennedy, 2014). Alongside ongoing efforts to identify
and digitize new data, a critical reprocessing of ICOADS
legacy data is needed to provide a more reliable baseline
for the understanding of the future global climate.

Acknowledgements

This work was funded by a grant from the Natural Envi-
ronment Research Council (NE/J020788/1). The authors
thank the anonymous reviewers for their help in improving
this article as wells as the ICOADS team for useful advice
and providing the data. The authors thank Hans Hersbach
at ECMWF for helpful comments and discussion.

Appendix

This appendix describes the criteria applied in the
pre-processing step.

Appendix A1. Selection of decks for analysis

Table A1 shows the decks excluded from our analysis.
The excluded decks can be grouped into three main cate-
gories:
1. Buoy-only decks: the observations coming from these

decks have missing platform type PT (e.g. PT= 0–5
for ship types) and must be excluded explicitly.

2. Complete decks: unique data with full ID information
thought to be from unique sources. While the majority
of these decks were not tracked because of their good
data quality, some have inconsistent positions due to
dead reckoning.

3. Decks 732 and 874: observations from deck 732
between 1958 and 1974 were identified as being incor-
rectly located and 17 areas of 5∘ or blocks of 5∘
areas were found artificially warm or cold relative
to neighbouring areas and relative to other observa-
tions within the area (Kennedy et al., 2011b). Reports
from deck 874 [US e-logbook software package, Ship-
board Environmental Acquisition System (SEAS)] will
be excluded from the next ICOADS Release as they

were found to be unreliable (Freeman et al., 2015; per-
sonal communication). We did not therefore include
this deck in our tracking.

Table A1. List of ICOADS decks, containing data with PT= 0–5
or missing, that were excluded from tracking analysis.

Deck Description Category

143 Pacific Marine Environmental Laboratory
(PMEL) Buoys

1

144 TAO/TRITON and PIRATA Buoys (from
PMEL and JAMSTEC)

1

145 PMEL Equatorial Moorings and Island
Stations

1

239 British Navy (HM) Ships 2
245 Royal Navy Ships Logs (keyed by 2007) 2
246 Antarctic Expeditions: Printed/Published

(Met. Office)
2

247 Atmospheric Circ. Reconstructions over
the Earth (ACRE) Data

2

701 US Maury Collection 2
702 Norwegian Logbook Collection 2
707 US Merchant Marine Collection

(1912-46), 700 series
2

714 Canadian Integrated Science Data Mgmt.
(ISDM) Buoys

1

730 Climatological Database for the World’s
Oceans (CLIWOC)

2

731 Russian S.O. Marakov Collection 2
732 Russian Marine Met. Data Set

(MARMET)
3

734 Arctic Drift Stations 2
736 Byrd Antarctic Expedition (keyed by

Hollings Scholars)
2

740 Research Vessel (R/V) Data Quality
Evaluated by FSU/COAPS

2

761 Japanese Whaling Ship Data (CDMP/
MIT digitization)

2

762 Japanese Kobe Collection Data (keyed
after decks 118-119)

2

780 NODC/OCL World Ocean Database
(WOD)

2

793–795 NCEP BUFR GTS 1
874 Shipboard Environmental (Data)

Acquisition System (SEAS)
3

883 US National Data Buoy Center (NDBC) 1
900 Australian 2

The excluded decks are in three different categories: buoy-only decks
with missing PT (1), complete decks (2) and decks 732 and 874 (3).

Note that for the analysed period (1855–1969) the num-
ber of reports in category 1 is negligible and is not shown
in Figure 5(a). Finally, to be added to the excluded obser-
vations, are those without day or hour information from
any deck. Prior to 1855, there are a substantial number of
reports with missing time information, while after 1855,
over 90% of reports, and by 1858 over 99% of reports, have
full time information.

Appendix A2. Flagging of invalid ID types

Table A2 shows the possible ID types for each deck.
If the ID was not of the expected format, it was flagged
as invalid and treated as NA in the tracking analysis. The
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extant ID information was however used in the similarity
testing of ID information used to choose amongst compet-
ing reports or tracks. For example, a truncated version of
an ID would be matched in preference to an ID of different
format.

Table A2. ID types per deck.

ID type Decks

Ship name 704, 897
Callsign 926, 927
N 188
NN 128
NNN 116, 128, 196, 197, 926, 927
NNNN 116, 117, 128, 186, 187,

197, 667, 735, 926, 927
NNNNN 116, 189, 194, 195, 201, 202,

203, 206, 207, 209, 210, 211,
213–215, 215, 218, 221,
224–227, 229, 230, 233,
234, 254, 255, 735, 926, 927

NNNNNN 118, 119, 189, 194, 197,
216, 254, 926, 928

NNNNNNN 197, 928
NNNNNNNN 192, 215, 720, 902
-NNN 128, 927
-NNNN 116, 195
ANN 128, 197, 849
ANNN 128, 197, 889
ANNNNN 197
ANNNNNN 197
NNNNA 762
NNNSNNNN &
ANNSNNNN,
ANNSNNNN &
NNSNNNN & NNSSNNNN
& NNNSSNNN &
ANNSSNNN

184

NNNNANNN 192
NSNNNN 194
US Journals ID
(AANNNNN &
AANNNNNN &
AAANNNNN &
AANNNNNA)

705

OWS ID (NNNNA, starting
C7 or 4Y)

896

The expected ID types are listed for each deck in the tracked decks cat-
egory only (see Table A1). Key: N= [0–9]; A= [A–Z, a–z]; S= space;
note ‘-’, ‘C7’ and ‘4Y’ represent their specific characters.

Appendix A3. Pre-processing of IDs and time
information

Further pre-processing criteria were adopted to correct
the ID or the time information.
1. Sequential IDs in deck 720 before 1891, originally

assigned to only one report, were clustered together.
2. Based on preliminary results from the tracking anal-

ysis, the IDs from some decks were altered to match
formats in other decks that were seen to have com-
mon data. In particular, we removed the first digit in
six digits IDs from deck 194, while for deck 701 addi-
tional information from ICOADS supplementary mate-
rial was appended to make unique IDs from the same
ship name.

3. Reports from deck 201 before 1899 taken at the GMT
midnight were moved one day before the reported
date.

Appendix A4. Constraints on tracking jointly reports
from different decks

Finally, Table A3 lists the constraints we adopted on
tracking jointly reports from different decks in the tracked
decks category. Decks were classified according to differ-
ent types. Data from decks that were thought to be unique
but did not have complete ID information (as opposed to
the complete decks in Table A1, unique and with com-
plete ID information) were only tracked within the deck.
On the other hand, decks that were though to have com-
mon data were tracked jointly and data coming from these
decks were allowed to be assigned, clustered and joined
together.

Table A3. Constraints on tracking jointly reports from different
decks in the tracked decks category.

Deck types Decks Action

Decks with
substantial ID
information
(few missing or
invalid), that
could be unique

117, 118, 119, 187, 188, 195,
229, 667, 704, 705, 706

Tracked
within deck

Decks
containing data
from single ship
with missing ID

897 Tracked
within deck

Decks with
missing or
partial ID
information,
that could be
unique

666, 899 Tracked
within deck

Decks that may
have common
data

110, 116, 128, 150, 151, 152,
155, 156, 184, 185, 189, 192,
193, 194, 196, 197, 201, 202,
203, 204, 205, 206, 207, 209,
210, 211, 213, 214, 215, 216,
218, 221, 223, 224, 226, 227,
230, 233, 234, 254, 255, 281,
555, 700, 720, 735, 749, 792,
849, 850, 888, 889, 892, 896,
898, 901, 902, 926, 927, 928,
999

Tracked
together

Ice stations
with some
common data

186, 733 Tracked
together

The table shows the decks that, according to their deck type, were tracked
together and those that were tracked within the deck only.
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