1	Phosphorus behavior in sediments during a sub-seabed CO ₂ controlled release experiment
2	
3	
4	Ayumi Tsukasaki ^a *, Masahiro Suzumura ^a , Anna Lichtschlag ^b , Henrik Stahl ^{c, d} and Rachael H.
5	James ^e
6	^a Research Institute for Environmental Management Technology, National Institute of Advanced
7	Industrial Science and Technology (AIST), AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki
8	305-8569, Japan
9	^b National Oceanography Centre Southampton, University of Southampton Waterfront Campus,
10	European Way, Southampton SO14 3ZH, UK
11	^c The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA,
12	UK
13	^d Zayed University, PO Box 19282, Dubai, United Arab Emirates
14	^e Ocean and Earth Science, National Oceanography Centre Southampton, University of
15	Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK
16	*Corresponding author. Tel.: +81-29-861-3789; fax: +81-29-861-8392.
17	E-mail address: ayumi-tsukasaki@aist.go.jp (Ayumi Tsukasaki)
18	

19 Highlights

- 20 ✓ Behavior of sedimentary phosphorus (P) during sub-seabed controlled release of CO₂.
- \checkmark Potential P release from CO₂ exposure varies widely as a function of sediment type.
- \checkmark Calcium-bound P acts as a source for P released by low pH induced by CO₂.
- \checkmark Iron-bound P acts as a sink for P released by low pH induced by CO₂.

25 Abstract

26 The CO₂ controlled release experiment "Quantifying and Monitoring Potential Ecosystem Impacts 27 of Geological Carbon Storage" (QICS) assessed the impacts of potential CO₂ leakage from 28 sub-seabed carbon capture and storage reservoirs to the marine environment. During QICS, CO2 29 gas was released into shallow sediment in Ardmucknish Bay, Scotland, in the spring and summer 30 of 2012. As part of this project, we investigated the effects of CO₂ leakage on sedimentary 31 phosphorus (P), an essential nutrient for marine productivity. We found no statistically significant 32 effects during QICS, as the solid-phase P content in the sediment was constant before, during, and 33 after exposure to CO₂. However, laboratory experiments using marine sediment standard materials 34 as well as QICS sediment revealed substantial differences among these different sediment types in 35 their potential for P release during CO₂ exposure. Employing the SEDEX sequential extraction 36 technique to determine the sizes of the major P pools in the sediments, we showed that 37 calcium-bound P can be easily released by CO2 exposure, whereas iron-bound P is a major sink of 38 released P. The overall impacts of CO₂ leakage on sediment P behavior appear to be low compared 39 to natural variability. 40

41 Keywords:

Sub-seabed carbon capture and storage; CCS; CO₂ leakage; marine sediment; phosphorus;
sequential extraction.

1. Introduction

46	Long-term storage of carbon dioxide (CO ₂) beneath the seafloor promises to help mitigate global
47	climate change by reducing anthropogenic CO_2 emissions into the atmosphere (IPCC, 2005).
48	However, one risk associated with this carbon capture and storage (CCS) technology is the
49	potential for CO_2 leakage due to failures of the pipeline infrastructure and injection wells or due to
50	leakage through ruptures in the caprock, which may be created by events such as earthquakes
51	(Monastersky, 2013; Van Noorden, 2010).
52	The impact of CO ₂ leakage on the marine environment is a special concern (De Vries et al.,
53	2013; Widdicombe et al., 2013). To date, most of our information about the effects of elevated
54	atmospheric concentrations of CO_2 on marine ecosystems comes from studies of ocean
55	acidification (Gattuso et al., 2008; Kleypas et al., 2006; Orr et al., 2005; Royal Society, 2005).
56	Some of these have shown that seawater acidification can alter the biogeochemical cycles of
57	nutrients. Huesemann et al. (2002) found that high levels of CO_2 inhibit nitrification in the water
58	column. Indexes of bioavailability of phosphorus (P) for marine microbes can be altered by
59	changes in pH due to increased CO ₂ . Uptake rates of P by phytoplankton and phosphatase activities
60	increase or decrease depending on the location and community structure (Endres et al., 2013;
61	Yamada and Suzumura, 2010). To examine the impact of high CO ₂ levels on benthic biota, in situ
62	CO2 exposure experiments have been conducted, but these are restricted to brief and localized
63	experiments using benthic chambers (Ishida et al., 2005, 2013).
64	In the recent experiment "Quantifying and Monitoring Potential Ecosystem Impacts of

65	Geological Carbon Storage" (QICS), 4.2 t of CO_2 gas was released through a pipeline drilled from
66	land into unconsolidated sediments about 11 m below the seabed (Blackford and Kita, 2013;
67	Blackford et al., 2014). The gas was released over a period of 37 days, and the effects were
68	monitored for a further 90 days. As part of the QICS experiment, we investigated the impacts of
69	CO ₂ leakage on the behavior of P in the marine sediments.
70	Although P is an essential nutrient for sustaining marine productivity, an excess of P can
71	degrade water quality through eutrophication and the triggering of harmful algal blooms in coastal
72	ecosystems (Conley et al., 2009). Sediment is an important sink in the oceanic P cycle
73	(Benitez-Nelson, 2000; Paytan and McLaughlin, 2007), and sediment plays an essential role in
74	regulating P availability in shallow coastal environments through P release to and uptake from the
75	water column (e.g., Fisher et al., 1982; Slomp et al., 2013). Release and uptake of P by sediments
76	largely depend on the environmental conditions (e.g., redox potential, pH, activities of benthic
77	organisms) and the reactivity of the different geochemical pools of P in the sediment (Mayer and
78	Jarrell, 2000; Ruttenberg, 1992). Through its role as a major factor controlling sediment pH, CO ₂
79	can regulate the behavior of P in sediments.
80	Our objective was to evaluate to what extent CO_2 leakage from CCS reservoirs into the
81	overlying sediment and seawater can induce changes in sedimentary P behavior. During the QICS
82	field experiment, we recorded the changes in P concentration in sediments before, during, and after
83	the CO ₂ release in both the solid phase and pore water. We also conducted laboratory experiments
84	to evaluate the potential for P release from the sediment solid phase due to CO ₂ exposure, using

85	standard reference materials of coastal and pelagic marine sediments as well as a sediment sample
86	collected from the QICS site. We used a sequential extraction technique to identify the pools of P in
87	sediment that are most sensitive to changes in CO ₂ levels.
88	
89	2. Materials and methods
90	2.1 QICS field experiment and sampling
91	The CO ₂ release experiment was conducted in Ardmucknish Bay, on the west coast of
92	Scotland. A pipeline was drilled from land into shallow sediment 350 m offshore. CO_2 gas was
93	introduced into the sediment through a perforated diffuser (0.5 mm holes) at the end of the pipeline
94	11 m below the seabed. The depth of the overlying water column was 10-12 m, depending on the
95	state of the tide. A total of 4.2 t of CO_2 gas was injected over 37 days between 17 May and 22 June
96	2012, and the site was monitored for a further 90 days. CO_2 was initially injected at a rate of 10
97	kg/d, and then the injection rate was incrementally increased to 210 kg/d. Full details of the
98	experimental setup are given elsewhere (Blackford et al., 2014; Taylor et al., this issue).
99	Core samples of sediment were collected from directly above the CO ₂ injection site (QICS
100	Zone 1; Z1) during six campaigns: (1) 10 May, seven days prior to the start of CO_2 release (D-7),
101	(2) 30–31 May (D 13/14, during injection), (3) 20–21 June (D 34/35, during injection), (4) 28–29
102	June (D 42/43, 5–6 days after the end of injection), (5) 9–10 July (D 54/55, 17–18 days after the
103	injection), and (6) 20-21 September (D 126/127, 89-90 days after the injection). Another core
104	sample was collected within an active pockmark close to a bubble stream (Zone 1 pockmark; $Z1p$)

105	on D 34/35. Cores were collected by SCUBA divers using acrylic tubes (5 cm i.d.). Immediately
106	after collection, pore water in the cores was extracted by filtering with Rhizon Pore Water
107	Samplers (pore size $0.15 \mu\text{m}$, Rhizosphere Research Products, Netherlands). Subsamples of the
108	filtered pore water were fixed with mercuric chloride for dissolved inorganic carbon (DIC) analysis
109	or frozen for dissolved inorganic phosphorus (DIP) analysis. The sediment cores were sliced into
110	sections 2 cm thick in a temperature-controlled room set at in situ temperature (~8 °C), freeze-dried,
111	and then homogenized with an agate mortar and pestle (details in Lichtschlag et al., this issue).
112	
113	2.2 Laboratory CO ₂ exposure experiment
114	To quantify the potential for P release from different types of sediment, we conducted a series
115	of laboratory CO ₂ exposure experiments using standard reference materials and a sediment sample
116	from the QICS site. Reference materials representing coastal and pelagic marine sediments (JMS-1
117	and JMS-2, respectively) were provided by the Geological Survey of Japan. The JMS-1 sediment
118	was collected from a eutrophic coastal basin (Tokyo Bay), and the JMS-2 sediment was a mixture
119	of pelagic and zeolitic clay from seven locations in the South Pacific (Terashima et al., 2002). The
120	QICS sample consisted of sediment from 0-2 cm depth, collected from site Z1 prior to release of
121	CO ₂ .
122	A schematic diagram of the experiment is shown in Figure 1. A 0.30 g sediment sample was
123	placed into a polycarbonate centrifuge tube and 30 mL of P-depleted pelagic seawater collected
124	from the surface of the western North Pacific Ocean (155°E, 20°N) was added. The concentration

125	of DIP, as a measure of dissolved orthophosphate, in the seawater sample was below detection
126	limit (< 0.02 μ M). The seawater was filtered through a 0.2 μ m Nuclepore filter (Whatman, UK)
127	before use to minimize microbiological influences, then saturated with CO ₂ by bubbling just before
128	the experiment. The mixture of sediment and seawater was continuously bubbled with CO_2 gas for
129	24 hours at 25 °C. To evaluate the effects of physical disturbance by bubbling, parallel experiments
130	bubbling laboratory air (rather than CO ₂) were conducted as a control. After 24 hours, the mixture
131	was centrifuged (4000 rpm, 2380 g for 10 min), and the supernatant was analyzed for DIP. Another
132	30 mL aliquot of filtered seawater was then added to the same sediment sample, and this procedure
133	was repeated five times such that six sequential experiments were run for each sediment type.
134	
135	2.3 Chemical analysis
135 136	2.3 Chemical analysis The total P content of the sediment solid phase (total P) was determined in the freeze-dried
135 136 137	2.3 Chemical analysis The total P content of the sediment solid phase (total P) was determined in the freeze-dried samples by using the method of Aspila et al. (1976), slightly modified by Suzumura (2008). Briefly,
135 136 137 138	 2.3 Chemical analysis The total P content of the sediment solid phase (total P) was determined in the freeze-dried samples by using the method of Aspila et al. (1976), slightly modified by Suzumura (2008). Briefly, 0.5 mL of 0.17 M magnesium nitrate was added to 0.1 g of sediment, and then the mixture was
 135 136 137 138 139 	 2.3 Chemical analysis The total P content of the sediment solid phase (total P) was determined in the freeze-dried samples by using the method of Aspila et al. (1976), slightly modified by Suzumura (2008). Briefly, 0.5 mL of 0.17 M magnesium nitrate was added to 0.1 g of sediment, and then the mixture was dried on a hotplate and combusted at 470 °C for 90 min. DIP was extracted with 1 M hydrochloric
135 136 137 138 139 140	2.3 Chemical analysis The total P content of the sediment solid phase (total P) was determined in the freeze-dried samples by using the method of Aspila et al. (1976), slightly modified by Suzumura (2008). Briefly, 0.5 mL of 0.17 M magnesium nitrate was added to 0.1 g of sediment, and then the mixture was dried on a hotplate and combusted at 470 °C for 90 min. DIP was extracted with 1 M hydrochloric acid and determined spectrophotometrically with a Seal Analytical QuAAtro Autoanalyser (2-HR,
 135 136 137 138 139 140 141 	2.3 Chemical analysis The total P content of the sediment solid phase (total P) was determined in the freeze-dried samples by using the method of Aspila et al. (1976), slightly modified by Suzumura (2008). Briefly, 0.5 mL of 0.17 M magnesium nitrate was added to 0.1 g of sediment, and then the mixture was dried on a hotplate and combusted at 470 °C for 90 min. DIP was extracted with 1 M hydrochloric acid and determined spectrophotometrically with a Seal Analytical QuAAtro Autoanalyser (2-HR, UK). To determine DIP concentrations of the pore water samples, the frozen samples were thawed,
 135 136 137 138 139 140 141 142 	2.3 Chemical analysis The total P content of the sediment solid phase (total P) was determined in the freeze-dried samples by using the method of Aspila et al. (1976), slightly modified by Suzumura (2008). Briefly, 0.5 mL of 0.17 M magnesium nitrate was added to 0.1 g of sediment, and then the mixture was dried on a hotplate and combusted at 470 °C for 90 min. DIP was extracted with 1 M hydrochloric acid and determined spectrophotometrically with a Seal Analytical QuAAtro Autoanalyser (2-HR, UK). To determine DIP concentrations of the pore water samples, the frozen samples were thawed, diluted 20 times, and then measured with the Autoanalyser. DIC in the pore water samples was
 135 136 137 138 139 140 141 142 143 	2.3 Chemical analysis The total P content of the sediment solid phase (total P) was determined in the freeze-dried samples by using the method of Aspila et al. (1976), slightly modified by Suzumura (2008). Briefly, 0.5 mL of 0.17 M magnesium nitrate was added to 0.1 g of sediment, and then the mixture was dried on a hotplate and combusted at 470 °C for 90 min. DIP was extracted with 1 M hydrochloric acid and determined spectrophotometrically with a Seal Analytical QuAAtro Autoanalyser (2-HR, UK). To determine DIP concentrations of the pore water samples, the frozen samples were thawed, diluted 20 times, and then measured with the Autoanalyser. DIC in the pore water samples was measured by using an Apollo SciTech DIC analyzer (AS-C3) with a CO ₂ /H ₂ O infrared analyzer

145 H₃PO₄.

146	The different geochemical reservoirs of P were quantified by using a sequential extraction
147	technique (SEDEX) following Ruttenberg (1992). Approximately 0.30 g of sediment (both the
148	original sediment and the sediment subjected to bubbling with CO ₂ or air) was extracted
149	sequentially with 30 mL of (1) 1 M magnesium chloride (pH 8), (2) citrate dithionite buffer (CDB;
150	pH 7.6), (3) 1 M sodium acetate buffer (pH 4), and (4) 1 M hydrochloric acid. In step 5, the residue
151	from step 4 was ashed at 550 $^{\circ}\mathrm{C}$ and extracted with 30 mL of 1 M hydrochloric acid. After
152	extraction steps 1, 2 and 3, sediment samples were rinsed first with 1 M magnesium chloride (30
153	mL), then with water (30 mL) to prevent the readsorption of extracted phosphate. The extraction
154	and washing solutions were centrifuged (4000 rpm, 2380 g for 10 min) and filtered through a
155	syringe filter with 0.45 μ m pore size (Millex-HV, Millipore, USA). The supernatants containing
156	magnesium chloride or sodium acetate buffer were acidified to pH 1 by the addition of
157	hydrochloric acid, and DIP analysis followed. The CDB extracts are not suited to analysis by the
158	standard molybdenum blue method because the citrate interferes with reduction of molybdate
159	complex (Ruttenberg, 1992); therefore, a solid-phase extraction technique was used (Suzumura
160	and Koike, 1995). All reagents used were of analytical grade. Purified water obtained from a
161	Milli-Q Gradient System (Millipore, USA) was used for reagent preparation and rinse. Three
162	replicate measurements were carried out for total P analysis and SEDEX. All results of this
163	procedure are reported on an oven-dry (110 °C) basis.
164	The chemical composition of the sediments was determined by energy-dispersive X-ray

165	fluorescence spectrometry (EDXL300, Rigaku, Japan). Loss-on-ignition (LOI) was determined
166	after heating for 1 hour at 750 $^{\circ}$ C (JIS, 2009). The carbonate content of the sediments was
167	determined by using a CO_2 coulometer (Coulometrics, USA) that measures the CO_2 released
168	during sample dissolution under acidic conditions (10% phosphoric acid) in a closed system
169	(Johnson et al., 1987). The Brunauer-Emmett-Teller (BET) specific surface area of the sediments
170	was determined by nitrogen adsorption (BELSORP-max, BEL JAPAN, Japan).
171	
172	2.4 Calculations and statistical analysis
173	Results are reported as the mean ± 1 standard deviation (SD), where applicable. For statistical
174	analyses, we used the program SigmaStat, included in the Sigmaplot 11 software package (Systat
175	Software, Chicago, USA). We used a significance level of 5%.
176	
177	3. Results and discussion
178	3.1 Total P concentration in QICS sediment from the field experiment
179	Vertical profiles of total P in the QICS sediment are shown in Figure 2. Total P concentrations
180	at site Z1 before CO ₂ injection were ~14 μ mol/g (12.6–14.2 μ mol/g; Fig. 2a) and showed little
181	variation with depth. The total P concentrations that we measured in the Ardmucknish Bay
182	sediments were somewhat lower than values reported for other continental margins and coastal
183	areas (~34 µmol/g; e.g., Frankowski et al., 2002; Küster-Heins et al., 2010; Suzumura, 2008).
184	During and after exposure to CO ₂ , we observed no obvious changes in total P (Fig. 2). Although

185	concentrations of DIC in the sediment pore water increased significantly below 20 cm depth 35
186	days after the start of the CO ₂ release (Blackford et al., 2014; Lichtschlag et al., this volume), total P
187	concentrations (11.8–16.6 μ mol/g; Fig. 2b) were close to those observed before the CO ₂ release
188	(12.6–14.2 μ mol/g). The highest levels of pore-water DIC (10 times background levels) were
189	observed for five days after the release of CO_2 was terminated, but there was no obvious effect on
190	total P concentration during this period (12.5–15.6 μ mol/g; Fig. 2c). Throughout the experiment,
191	changes in the total P content of the sediments were not statistically significant (ANOVA; $p = 0.126$,
192	n = 8). Figure 2d shows the vertical profile of total P at the bubble stream site (Z1p) after the start of
193	the CO_2 injection (D 34/35). Again, changes in the total P content of these sediments, relative to the
194	other sediment cores collected from Z1, were not significant (paired <i>t</i> -test, $p = 0.803$, $n = 12$).
195	These results indicate that leakage of CO_2 had no effect on the total P content of Ardmucknish Bay
196	sediments. DIP concentrations in sediment pore water varied vertically, ranging between \sim 3 and \sim 7
197	μ mol/L, before the CO ₂ release (Fig. 3a). DIP in pore water increased slightly with high DIC
198	concentrations at D 34/35 at site Z1 (up to 13 μ mol/L; Fig. 3b), but this increase was not observed
199	in pore water with high DIC from site $Z1p$ (Fig. 3d). These fluctuations in DIP concentration
200	observed during the QICS field experiment are unexplained.
201	

202 **3.2 Laboratory CO₂ exposure experiment**

- 203 To assess whether the lack of any obvious change in the total P content of the Ardmucknish
- 204 Bay sediments during the QICS experiment was due to non-reactive forms of P in these sediments,

205	or the rate and amount of CO_2 released, a series of laboratory experiments were performed. In our
206	laboratory experiments, sediment samples were exposed to high levels of CO2 (equivalent to
207	approximately 30 mmol/L as DIC) to assess the role of non-reactive P. The concentration of DIP in
208	seawater increased when either CO_2 or air was bubbled through the sediment suspension. The
209	amount of DIP released from the sediment solid phase (P _{released}), as estimated from the measured
210	DIP concentration of seawater, decreased gradually over the course of the experiment, but DIP was
211	still being released even after five episodes of bubbling (Fig. 4a). To estimate the potential
212	maximum amount of releasable P in the sediment solid phase, we assumed that the P concentration
213	was in solid-liquid equilibrium and fitted the following equation to our data:
214	$\Sigma \mathbf{P}_{released} = (1 - q^n) \mathbf{P}_{max},$
215	where P_{max} is the maximum amount of releasable P (µmol P/g) as obtained by extending each
216	regression curve in Figure 4a to infinity, n is the number of bubbling episodes, and q is the
217	fractionation coefficient, defined as releasable P content remaining in the sediment per DIP content
218	in seawater plus releasable P content remaining in the sediment. The fit is good between our data
219	and this equation ($r^2 > 0.96$, $p < 0.01$, $n = 6$). The calculated values of P _{max} from the CO ₂ bubbling
220	experiment (CO ₂ -P _{max}) for QICS sediment from site Z1 was $0.83 \pm 0.11 \mu\text{mol/g}$ ($n = 6$). This value
221	is equivalent to 6.0% of the total P in the sediment (Table 1). Such small changes in total P would
222	be difficult to detect in the QICS field experiment, even in sediments exposed to very high levels of
223	CO ₂ . With one outlier, P_{max} induced by air bubbling (Air- P_{max}) in the QICS sediment was 0.69 ±
224	0.01 μ mol/g ($n = 5$), accounting for 4.9% of total P. The difference between CO ₂ -P _{max} and Air-P _{max}

225	corresponds to the potential amount of releasable P due to leakage of CO ₂ . Although the difference
226	between CO ₂ -P _{max} and Air-P _{max} was significant ($p < 0.05$), the amount of the difference, 0.14
227	μ mol/g, is equivalent to only 1.0% of total P. This result implies that most of the P released by
228	bubbling is due to physical disturbance of the sediments, and leakage of CO_2 does not lead to
229	notable change in the total P content of sediments in Ardmucknish Bay. The stability of total P
230	concentrations during the QICS field experiment is therefore most likely because the sediment P
231	was in forms that were not reactive to CO_2 exposure.
232	To assess whether the non-reactivity of P with respect to CO_2 is a general property of marine
233	sediments or is specific to the sediments in Ardmucknish Bay, we performed laboratory
234	experiments using two standard reference marine sediments (JMS-1 and JMS-2). The results are
235	shown in Figures 4b and c and in Table 1. The rate and extent of P release differed substantially
236	between the different sediment samples. For the coastal marine sediment (JMS-1), the release of P
237	in the air bubbling experiment (Air-P _{max} ; $1.27 \pm 0.30 \mu$ mol/g) was nearly twice that in the CO ₂
238	bubbling experiment (CO ₂ -P _{max} ; $0.66 \pm 0.12 \mu mol/g$). These results suggest that although the
239	physical disturbance of bubbling induced P release from the JMS-1 sediment regardless of gas type,
240	P release was considerably depressed by exposure to CO ₂ . In the pelagic marine sediment (JMS-2),
241	P release was greatly enhanced by CO ₂ bubbling, such that CO ₂ -P _{max} (13.84 \pm 3.31 µmol/g) was an
242	order of magnitude higher than for the other sediments (Table 1). On the other hand, Air- P_{max} of the
243	JMS-2 sediment was comparable to its value in the QICS and JMS-1 sediments. In addition, the
244	proportion of P release induced by CO_2 (CO_2 - P_{max} - Air- P_{max}) to total P was substantially higher in

the JMS-2 sediment (7.3%). The considerable difference in P dissolution behavior among the three
different sediment types is most likely due to differences in the P pools and their reactivity with
CO₂.

248	During the laboratory experiment, pH values were generally constant (8.07 ± 0.06 , $n = 90$)
249	among three sediments throughout all five episodes of air bubbling, but they varied greatly with
250	CO ₂ bubbling (Fig. 5). The CO ₂ bubbling experiments produced the highest pH values in seawater
251	during the first bubbling episode for all sediment samples, particularly in JMS-2 (5.40 ± 0.05 , $n =$
252	6). This value was significantly higher ($p < 0.01$) than the pH range in the QICS sediment (5.17 ±
253	0.04, $n = 6$) and JMS-1 (5.19 ± 0.03, $n = 6$). The pH decreased to a constant value of ~5.0 after the
254	second bubbling episode in the QICS and JMS-1sediments. However, pH in the JMS-2 sediment
255	decreased more gradually, reaching 5.12 ± 0.02 ($n = 6$) after the second bubbling episode and
256	stabilizing at ~5.0 after the third bubbling episode. The higher pH in the initial stages was likely due
257	to buffering by carbonates in the sediments. This would imply that JMS-2 had the highest buffering
258	capacity of the three sediments, which might be related to the greater P release from JMS-2 than
259	from QICS and JMS-1 after CO_2 exposure. To confirm this, further chemical analyses were
260	performed.

261

262 **3.3 Chemical forms of Pin sediments**

For a better understanding of P behavior during CO₂ exposure, we quantified the various forms
of P in the sediments, both before and after bubbling, using the well-established SEDEX method

266	more strongly bound P. The P fractions extracted by the first three steps—loosely sorbed P (step 1),
267	iron-bound P (step 2), and calcium-bound P (step 3)—are considered to be easily releasable, for
268	example, by changes in environmental conditions. Step 4 extracts detrital P, and step 5 extracts
269	organic P (Fig. 6).
270	There were substantial differences in P composition among the sediments before bubbling
271	(original sediments). The original QICS sediment was dominantly detrital P, which accounted for
272	71% of the total extracted P from all five steps. Original sediment JMS-1 contained large
273	proportions of organic P (28%) and iron-bound P (31%). Original sediment JMS-2 was dominantly
274	calcium-bound $P(30\%)$ and detrital $P(48\%)$. These results are consistent with the bulk chemical
275	analyses, which showed that JMS-2 had the highest contents of calcium and carbonates (Tables 2
276	and 3).
277	Although CO_2 and air bubbling released P (as DIP) from the QICS sediment into seawater
278	(Table 1), the difference between P extracted by SEDEX from the original sediment (14.7 ±0.78
279	$\mu mol/g)$ and the bubbled sediment (air: 14.1 \pm 0.31 $\mu mol/g,$ CO_2: 14.3 \pm 0.54 $\mu mol/g)$ was not
280	significant (<i>t</i> -test, $p > 0.05$, $n = 3$). Two factors likely account for the lack of significance: first, the
281	accumulated error over the steps of the SEDEX procedure is large compared to the difference
282	between the original and bubbled sediments. Second, the concentration difference between the
283	solid phase (μ mol/g) and solution phases (μ mol/L) is necessarily very large, such that small
284	changes in the solid phase that are less than the limits of detection can cause detectable changes in

(Ruttenberg, 1992). In SEDEX, the strength of the extractant is incrementally increased to separate

the solution phase.

286	In the JMS-1 sediment, the total P extracted by SEDEX from the original, air-bubbled, and
287	$CO_2\text{-bubbled}$ samples was 20.8 \pm 0.04, 20.2 \pm 0.11, and 20.7 \pm 0.18 $\mu mol/g,$ respectively. The
288	decrease in P relative to the original sample in the air-bubbled sample was significant (t-test, $p < $
289	0.05, $n = 3$), but it was not significant in the CO ₂ -bubbled sample (<i>t</i> -test, $p > 0.05$, $n = 3$). Although
290	the decrease caused by air bubbling was statistically significant, its magnitude (0.6 μ mol/g) was
291	comparable to the decrease in the QICS sediment. CO ₂ bubbling increased the content of
292	iron-bound P in JMS-1 significantly relative to the original and the air-bubbled sediments (Fig. 6b).
293	This accounts for the result that P release from the JMS-1 sediment was depressed by CO_2
294	bubbling (Fig. 4b). It appears that the released DIP was redistributed to the iron-bound P pool in
295	this sediment in the amount of $1.43\pm0.40~\mu mol/g.$
296	In the JMS-2 sediment, much greater changes were observed after CO ₂ bubbling: detrital and
297	calcium-bound P decreased, and iron-bound and loosely sorbed P increased by statistically
298	significant amounts ($n = 3, p < 0.01$). According to Ruttenberg (1992), the calcium-bound P
299	fraction contains authigenic apatite, biogenic hydroxyapatite, and calcium carbonate-bound P (e.g.,
300	calcite). Detrital P contains relatively stable inorganic materials, including lithic clasts and minerals
301	such as detrital apatite of igneous or metamorphic origin. It may be that dissolution of abundant
302	apatite species in JMS-2 raised the seawater DIP concentration during the CO ₂ bubbling
303	experiment. Redistribution of released P appeared to be greater in JMS-2 than in the JMS-1
304	sediment. It is noteworthy that JMS-2 has the largest specific surface area of the three sediments

305	(Table 3), and therefore the largest number of adsorption sites, as well as the highest iron content
306	(Table 2). The significant increase in loosely sorbed and iron-bound P in JMS-2 after CO_2 bubbling
307	may indicate that some of the DIP released from apatite was subsequently taken up into these pools
308	by adsorption and scavenging. Anderson and Delaney (2000) reported that most loosely sorbed P is
309	composed of phosphate adsorbed on oxides, including iron oxide. Therefore, the increase in
310	loosely sorbed P in JMS-2 after CO ₂ bubbling may be P adsorbed on iron oxides, that is,
311	iron-bound P.
312	The behavior and status of calcium-bound and iron-bound P have been studied in solutions
313	over a wide range of pH, regardless of CO_2 concentration. It has been shown that DIP is released
314	from calcium-bound P and incorporated into iron-bound P at pH 6.0 or lower (Golterman, 1995;
315	Gomez et al., 1999). The substantial changes in the P pools in the JMS-2 sediment, therefore, were
316	most likely induced by changes in pH during CO_2 bubbling. Consistent with that finding, we
317	observed a small but significant increase in iron-bound P in the JMS-1 sediment as a result of CO_2
318	bubbling. Iron-bound P may therefore act as a buffer and sink of P released from apatite and other
319	fractions. This effect is likely to be notable under oxic conditions, where iron-bound P is stable (e.g.,
320	Rozan et al., 2002).
321	

322 4. Summary and wider implications

Our experiments found no significant impacts of CO_2 leakage on P behavior in the sediments 323 of Ardmucknish Bay. The laboratory experiments showed that the P content in Ardmucknish Bay 324

325	sediments is rather insensitive to CO_2 exposure. Crucially, the QICS sediment has the highest
326	concentration of silica (Table 2) and contains dominantly detrital P (Fig. 6a). Thus, it may be rich in
327	non-apatite detrital materials, which tend to be relatively inert. Our results show that loosely sorbed
328	P and iron-bound P, which are relatively easily mobilized in marine environments, are largely
329	unaffected by CO ₂ exposure. On the other hand, CO ₂ exposure appears to increase acidic
330	dissolution of calcium carbonates and apatite, which liberates their P content. Although dissolution
331	of calcium carbonate was important in buffering pH changes during the QICS experiment
332	(Blackford et al., 2014), no considerable change in P concentrations of solid phases or pore water
333	was observed during the field experiment. This is likely because calcium-bound P is a minor P pool
334	in the QICS sediment. Moreover, most of the calcium-bound P fraction in the QICS sediment
335	appears to be apatite, which is orders of magnitude less sensitive to acidic dissolution than calcite
336	(Amankonah et al., 1985; Ruben and Bennett, 1987). Our data also show that much of the P
337	released from these phases was redistributed within the other sediment P pools, so the total P
338	content of marine sediments is not an effective indicator of CO_2 leakage in marine environments.
339	Our results provide insight into the processes that might occur if leaked CO ₂ were to reach
340	shallow unconsolidated sediments from deep geological storage (or shallow pipelines). Because P
341	is an essential nutrient, releases of P from sediment to seawater may affect coastal ecosystems.
342	Concentrations of iron-bound P can fluctuate considerably and seasonally in coastal sediments, and
343	such fluctuation might influence the P status of the overlying water column (Slomp et al., 2013;
344	Sundby et al., 1992). Our data show that CO ₂ exposure does not result in large P releases in

345	Ardmucknish Bay sediments. Moreover, iron-bound P functions as a sink for P, rather than a source.
346	Although we tested only three sediment samples from different locations, the wide variation in P
347	behavior after CO ₂ exposure among these samples emphasizes the importance of proper site
348	assessment at each CCS site. The effects of CO ₂ leakage on release of P are negligible relative to
349	the effects of seasonal changes in the redox conditions of coastal marine sediments. This strongly
350	suggests that proper monitoring of baseline conditions is essential to assess the potential impacts of
351	CO ₂ leakage on the dynamics of sedimentary phosphorus.
352	
353	Acknowledgments
354	We thank all of the QICS participants for valuable technical support and scientific exchange, in
354 355	We thank all of the QICS participants for valuable technical support and scientific exchange, in particular Peter Taylor, Belinda Alker, and Carolyn Graves for support during sampling. We also
354 355 356	We thank all of the QICS participants for valuable technical support and scientific exchange, in particular Peter Taylor, Belinda Alker, and Carolyn Graves for support during sampling. We also thank the skilled divers of the National Scientific Diving Facility at the Scottish Association for
354355356357	We thank all of the QICS participants for valuable technical support and scientific exchange, in particular Peter Taylor, Belinda Alker, and Carolyn Graves for support during sampling. We also thank the skilled divers of the National Scientific Diving Facility at the Scottish Association for Marine Science for collecting the cores, as well as the landowners (Lochnell Estate) and users
 354 355 356 357 358 	We thank all of the QICS participants for valuable technical support and scientific exchange, in particular Peter Taylor, Belinda Alker, and Carolyn Graves for support during sampling. We also thank the skilled divers of the National Scientific Diving Facility at the Scottish Association for Marine Science for collecting the cores, as well as the landowners (Lochnell Estate) and users (Tralee Bay Holiday Park) for allowing us to conduct this experiment. Funding was kindly
 354 355 356 357 358 359 	We thank all of the QICS participants for valuable technical support and scientific exchange, in particular Peter Taylor, Belinda Alker, and Carolyn Graves for support during sampling. We also thank the skilled divers of the National Scientific Diving Facility at the Scottish Association for Marine Science for collecting the cores, as well as the landowners (Lochnell Estate) and users (Tralee Bay Holiday Park) for allowing us to conduct this experiment. Funding was kindly provided by the Natural Environment Research Council (NE/H013962/1), the Scottish
 354 355 356 357 358 359 360 	We thank all of the QICS participants for valuable technical support and scientific exchange, in particular Peter Taylor, Belinda Alker, and Carolyn Graves for support during sampling. We also thank the skilled divers of the National Scientific Diving Facility at the Scottish Association for Marine Science for collecting the cores, as well as the landowners (Lochnell Estate) and users (Tralee Bay Holiday Park) for allowing us to conduct this experiment. Funding was kindly provided by the Natural Environment Research Council (NE/H013962/1), the Scottish Government, and the Ministry of Economy, Trade and Industry of Japan.

363 References

364

- 365 Amankonah, J. O., Somasundaran, P., Ananthapadmabhan, K.P. 1985. Effects of dissolved mineral
- species on the dissolution/precipitation characteristics of calcite and apatite. Colloids and
 Surfaces 15, 295-307.
- 368 Anderson, L. D., Delaney, M. L., 2000. Sequential extraction and analysis of phosphorus in marine
- 369 sediments: Streamlining of the SEDEX procedure. Limnol. Oceanogr. 45, 509-515.
- Aspila, K. I., Agemian, H., Chau, A. S. Y., 1976. A semi-automated method for the determination
 of inorganic, organic and total phosphate in sediments. Analyst 101, 187-197.
- 372 Blackford, J.C., Kita, 2013. A novel experimental release of CO_2 in the marine environment to aid 373 monitoring and impact assessment. Energy Procedia 37, 3387 – 3393.
- 374 Blackford, J., Stahl, H., Bull, J.M., Bergès, B.J.P., Cevatoglu, M., Lichtschlag, A., Connelly, D.,
- 375 James, R.H., Kita, J., Long, D., Naylor, M., Shitashima, K., Smith, D., Taylor P., Wright, I.,
- 376 Akhurst, M., Chen, B., Gernon, T.M., Hauton, C., Hayashi, M., Kaieda, H., Leighton, T.G.,
- 377 Sato, T., Sayer, M.D.J., Suzumura, M., Tait, K., Vardy, M.E., White P.R., Widdicombe, S., 2014.
- 378 Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage.
- 379 Nature Climate Change 4, 1011-1016, doi: 10.1038/nclimate2381.
- Benitez-Nelson, C. R., 2000. The biogeochemical cycling of phosphorus in marine systems. Earth
 Sci. Rev. 51, 109-135.
- 382 Conley, D. J., Björck, S., Bonsdorff, E., Carstensen J., Destouni, G., Gustafsson, B. G., Hietanen, S.,
- 383 Kortekaas, M., Kuosa, H., Meier, H. E. M., Müller-Karulis, B., Nordberg, K., Norkko, A.,
- 384 Nürnberg, G., Pitkänen, H., Rabalais, N. N., Rosenberg, R., Savchuk, O. P., Slomp, C. P., Voss,
- 385 M., Wulff, F., Zillen, L., 2009. Hypoxia-related processes in the Baltic Sea. Environ. Sci.
- 386 Technol. 43, 3412-3420.
- 387 De Vries, P., Tamis, J.E., Foekema, E.M., Klok, C., Murk, A.J., 2013. Towards quantitative
- 388 ecological risk assessment of elevated carbon dioxide levels in the marine environment. Mar.
- 389 Pollut. Bull. 73, 516-523.
- 390 Endres, S., Unger, J., Wannicke, N., Nausch, M., Voss, M., Engel, A., 2013. Response of Nodularia
- 391 *spunigena* to pCO2 Part 2: Exudation and extracellular enzyme activities, Biogeosci. 10,
- 392 567–582, doi:10.5194/bg-10-567-2013, 2013
- 393 Fisher, T. R., Carson, P. R., Barber, R. T., 1982. Sediment nutrient regeneration in three North

- 394 Carolina estuaries. Estuarine Coastal Shelf Sci. 14, 101-116.
- 395 Frankowski, L., Bolałek, J., Szostek, A., 2002. Phosphorus in bottom sediments of Pomeranian
- 396 Bay (Southern Baltic—Poland). Estuarine Coastal Shelf Sci. 54, 1027-1038.
- 397 Gattuso, J.-P., Orr, J., Pantoja, S., Pörtner, H.-O., Riebesell, U., Trull, T. (Eds.), 2008. Special Issue:
- 398 The ocean in the high-CO₂ world II. Biogeosci.
- 399 http://www.biogeosciences.net/special_issue44.html.
- 400 Golterman, H. L., 1995. The labyrinth of nutrient cycles and buffers in wetlands; results based on
- 401 research in the Camargue (Southern France). Hydrobiology 315, 39-58.
- 402 Gomez, E., Durillon, C., Roffs, G., Picot, B., 1999. Phosphate adsorption and release from
- 403 sediments of Brackish Lagoons: pH, O₂ and loading influence. Wat. Res. 33, 2437-2447.
- 404 Huesemann, M.H., A.D. Skillman and E.A. Crecelius, 2002. The inhibition of marine nitrification
- 405 by ocean disposal of carbon dioxide. Mar. Pollut. Bull. 44, 142-148.
- 406 IPCC, 2005, IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working
- 407 Group III of the Intergovernmental Panel on Climate Change [Metz, B., Davidson, O., de
- 408 Coninck, H. C., Loos, M., Meyer, L. A. (eds.)]. Cambridge University Press, Cambridge,
- 409 United Kingdom and New York, NY, USA, 442 pp.
- 410 Ishida, H., Watanabe, Y., Fukuhara, T., Kaneko, S., Furusawa, K., Shirayama, Y., 2005. In situ
- 411 enclosure experiment using benthic chamber system to assess the effect of high concentration of
- 412 CO_2 on deep-sea benthic communities. J. Oceanogr. 61, 835–843.
- 413 Ishida, H., Golmen, L.G., West, J., Krüger, M., Coombs, M., Berge, J. A., Fukuhara, T., Magi, M.,
- 414 Kita, J., 2013. Effects of CO₂ on benthic biota: An in situ benthic chamber experiment in
- 415 Storfjorden (Norway). Mar. Pollut. Bull. 73, 443-451.
- 416 JIS A 1226:2009. Test method for ignition loss of soils.
- 417 Johnson, K. M., Sieburth, J. McN., Williams, P. J. leB., Brändström, L., 1987. Coulometric total
- 418 carbon dioxide analysis for marine studies: Automation and calibration. Mar. Chem. 21,
 419 117-133.
- 420 Kleypas, J.A., Feely, R.A., Fabry, V.J., Langdon, C., Sabine, C.L., Robbins, L.L., 2006. Impacts of
- 421 ocean acidification on coral reefs and other marine calcifiers: a guide for future research, In:
- 422 Report of a Workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA,
- 423 and the U.S. Geological Survey.
- 424 Küster-Heins, K., Steinmetz, E., De Lange, G. J., Zabel, M., 2010. Phosphorus cycling in marine
- 425 sediments from the continental margin off Namibia. Mar. Geol. 274, 95-106.

- 426 Lichtschlag, A., James, R. H., Stahl, H., Connely, D., Effect of a controlled sub-seabed release of
- 427 CO₂ on the biogeochemistry of shallow marine sediments, their pore waters, and the overlying

428 water column. Int. J. Greenhouse Gas Control (2014) this issue.

- 429 Mayer, T. D., Jarrell, W. M., 2000. Phosphorus sorption during iron (II) oxidation in the presence of
- 430 dissolved silica. Wat. Res. 34, 3949-3956.
- 431 Monastersky, R., 2013. Seabed scars raise questions over carbon-storage plan. Nature 504,
- 432 339–340.
- 433 Orr, J.C., Pantoja, S., Pörtner, H.-O., 2005. Introduction to special section: the ocean in a high- CO₂
 434 world. J. Geophys. Res.-Oceans 110, p. C09S01
- 435 Paytan, A., McLaughlin, K., 2007. The oceanic phosphorus cycle. Chem. Rev. 107, 563-576.DOI:
 436 10.1021/cr0503613
- 437 Royal Society, 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Policy
 438 Document 12/05, The Royal Society, London.
- 439 Rozan, T. F., Taillefert, M., Trouwborst, R. E., Glazer, B. T., Ma, S., Herszage, J., Valdes, L. M.,
- 440 Price, K. S., Luther III, G. W., 2002. Iron–sulfur–phosphorus cycling in the sediments of a
- shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms.
 Limnol. Oceanogr. 47, 1346-1354.
- 443 Ruben, J. A., Bennett, A. A., 1987. The evolution of bone. Evolution 41, 1187-1197.
- 444 Ruttenberg, K. C., 1992. Development of a sequential extraction method for different forms of
- 445 phosphorus in marine sediments. Limnol. Oceanogr. 37, 1460-1482.
- 446 Slomp, C. P., Mort, H. P., Jilbert, T., Reed, D. C., Gustafsson, B. G., 2013. Coupled dynamics of
- iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobicoxidation of methane. PLOS ONE 8, 1-13.
- Sundby, B. L., Gobeli, C., Silverberg, N., Mucci, A., 1992. The phosphorus cycle in coastal marine
 sediments. Limnol. Oceanogr. 37, 1129-1145.
- 451 Suzumura, M., 2008. Persulfate chemical wet oxidation method for the determination of particulate
- 452 phosphorus in comparison with a high-temperature dry combustion method. Limnol. Oceanogr.453 Methods 6, 619-629.
- 454 Suzumura, M., Koike, I., 1995. Application of solid-phase extraction technique for determination
- 455 phosphorus in sediment extract. Geochem. J. 29, 331-335. Taylor, P., Stahl, H., Vardy, M.E.,
- 456 Bull, J.M., Akhurst, M., Hauton, C., James, R. H., Lichtschlag, A., Long, D., Aleynik, D.,
- 457 Toberman M., Naylor, M., Connelly, D., Smith, D., Sayer, M. D. J., Widdicombe, S., Wright, I.

- 458 C., Blackford, J., A novel sub-seabed CO₂ release experiment informing monitoring and impact
- 459 assessment for geological carbon storage. Int. J. Greenhouse Gas Control (2014) this issue.
- 460 Terashima, S., Imai, N., Taniguchi, M., Okai, T., Nishimura, A., 2002. The preparation and
- 461 preliminary characterisation of four new geological survey of Japan Geochemical Reference
- 462 Materials: soils, JSO-1 and JSO-2; and marine sediments, JMS-1 and JMS-2. Geostandards
- 463 Newslett. 26, 85-94.
- 464 Van Noorden, R, 2010. Carbon sequestration: Buried trouble Nature 463, 871-873.
- 465 Widdicombe, S., Blackford, J. C., Spicer, J. I., 2013. Assessing the environmental consequences of
- 466 CO₂ leakage from geological CCS: Generating evidence to support environmental risk
- 467 assessment. Mar. Pollut. Bull. 73, 399-401.
- 468 Yamada, N., Suzumura, M., 2010. Effects of seawater acidification on hydrolytic enzyme activities.
- 469 J. Oceanogr. 66, 233-241.
- 470
- 471
- 472

473 Figure captions

477.4		1' 0		•
/I [*] / /I	Higura I. Schampti	o diagram of	$fho \left(1 \right) = 0.01r ov$	nocura avnormont
4/4	TIVILE L. SCHEIHAU	L UIAPIAITI OI	$u \in C(f)/a = C A$	

475

476	Figure 2. Ve	ertical profile	es of the total l	P content of sediments	collected during	the OICS field
	A B B B B B B B B B B					

- 477 experiment. (a) Core collected at site Z1 seven days prior to the release of CO₂. (b) Cores collected
- 478 from site Z1 on days 13/14 and 34/35, during CO₂ release. (c) Cores collected from site Z1 on days
- 479 42/43, 54/55, and 126/127 during the recovery phase. (d) Core collected from an active bubble
- 480 stream, site Z1p, on days 34/35. Total P content is on an oven-dry (110 °C) basis.

481

482 Figure 3. Vertical profiles of the dissolved inorganic phosphorus (DIP) concentration in sediment

483 pore water collected during the QICS field experiment.

484

- 485 Figure 4. Plots of the integrated amount of P released by bubbling of CO₂ (red) or air (blue)
- 486 through three sediments: (a) QICS (Z1), (b) JMS-1, and (c) JMS-2. Each sample was bubbled for

487 five separate 24-hour periods. Note difference in scale in 3c relative to 3a and 3b.

- 489 Figure 5. Plots of pH during bubbling of CO₂ through QICS sediment (triangles), JMS-1 sediment
- 490 (open circles), and JMS-2 sediment (filled circles). Each sample was bubbled for five separate
- 491 periods of 24 hours.
- 492

- 493 Figure 6. P concentration in five different sedimentary P pools before (original) and after bubbling
- 494 with CO₂ or air for (a) QICS sediment, (b) JMS-1 sediment, and (c) JMS-2 sediment. P content is
- 495 on an oven-dry (110 $^{\circ}$ C) basis.

Table 1. Total P content and maximum amount of
releasable P (P_{max} , see text) of sediment samples
in the laboratory experiments.

Sample		$\frac{Mean \pm SD}{(\mu mol/g)}$	Propor tion of total P (%)
QICS	Total P	13.94 ± 0.14	
	$CO_2 P_{max}$	0.83 ± 0.11	6.0
	Air P _{max}	$0.69~\pm~0.01$	4.9
JMS-1	Total P	21.52 ± 0.18	
	$CO_2 P_{max}$	$0.66~\pm~0.12$	3.1
	Air P _{max}	$1.27~\pm~0.30$	5.9
JMS-2	Total P	163.6 ± 0.1	
	$CO_2 P_{max}$	13.84 ± 3.31	8.5
	Air P _{max}	2.00 ± 0.33	1.2

SD: standard deviation (n = 3 for total P, n = 6 for P_{max}).

	Z1	JMS-1	JMS-2
SiO ₂	65.50	56.70	46.10
Al_2O_3	11.60	14.50	10.70
Fe ₂ O ₃	0.93	6.14	10.90
CaO	2.15	1.93	4.83
Na ₂ O	7.41	3.02	4.37
K ₂ O	2.54	2.17	2.74
MgO	1.36	2.64	4.01
TiO ₂	0.31	0.64	1.45
MnO	0.03	0.10	2.37
S	0.46	1.14	0.30
Cl	5.19	2.25	3.49
LOI	2.36	8.71	7.67

Table 2. Major element compositionand loss on ignition (LOI) (wt%) ofthe three sediments in the laboratoryexperiments.

Table 3. Carbonate content and specific surface areaof the three sediments in the laboratory experiments.

	Z1	JMS-1	JMS-2
Carbonates (mg C/g)	0.90	0.51	1.41
Specific surface area (m^2/g)	1.6	23.7	85.9

Figure 1 (on the web only)

Figure 2 Figure 2 (on the web only)

Figure 4 (on the web only)

Figure 5 (on the web only)

Figure 6 (on the web only)

Loosely sorbed P