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The use of opportunistic data for IUCN Red List assessments 37 

DIRK MAES, NICK J.B. ISAAC, COLIN A. HARROWER, BEN COLLEN, ARCO J. VAN STRIEN and 38 

DAVID B. ROY 39 

 40 

IUCN Red Lists are recognized worldwide as powerful instruments for the conservation of 41 

species. Quantitative criteria to standardise approaches for estimating population trends, 42 

geographic ranges and population sizes have been developed at global and sub-global levels. 43 

Little attention has been given to the data needed to estimate species trends and range sizes 44 

for IUCN Red List assessments. Few regions collect monitoring data in a structured way and 45 

usually only for a limited number of taxa. Therefore, opportunistic data are increasingly used 46 

for estimating trends and geographic range sizes. Trend calculations use a range of proxies: i) 47 

monitoring sentinel populations, ii) estimating changes in available habitat or iii) statistical 48 

models of change based on opportunistic records. Geographic ranges have been determined 49 

using: i) marginal occurrences, ii) habitat distributions, iii) range-wide occurrences, iv) species 50 

distribution modelling (including site-occupancy models) and v) process-based modelling. Red 51 

List assessments differ strongly among regions (Europe, Britain and Flanders, north Belgium). 52 

Across different taxonomic groups, in European Red Lists IUCN criterion B and D resulted in the 53 

highest level of threat. In Britain, this was the case for criterion D and criterion A, while in 54 

Flanders criterion B and criterion A resulted in the highest threat level. Among taxonomic 55 

groups, however, large differences in the use of IUCN criteria were revealed. We give examples 56 

from Europe, Britain and Flemish Red List assessments using opportunistic data and give 57 

recommendations for a more uniform use of IUCN criteria among regions and among 58 

taxonomic groups. 59 

ADDITIONAL KEYWORDS: Britain – citizen science – Europe – Flanders (north Belgium) – 60 

geographic range size – threatened species – trend calculations 61 

 62 

INTRODUCTION 63 
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IUCN Red Lists are recognized worldwide as very powerful instruments for the conservation of 64 

threatened species (Lamoreux et al., 2003; Rodrigues et al., 2006). Although theoretically Red 65 

Lists are designed for estimating the extinction risk of species, they are used in conjunction 66 

with other information for setting priorities in the compilation of species action plans (e.g., 67 

Keller & Bollmann, 2004; Fitzpatrick et al., 2007), reserve selection and management (e.g., 68 

Simaika & Samways, 2009) and as indicators for the state of the environment (Butchart et al., 69 

2006). The compilation of IUCN Red Lists has a long history (Scott, Burton & Fitter, 1987): the 70 

first assessments based on (subjective) expert opinion were produced in the 1970’s for 71 

mammals (IUCN, 1972), followed by fish (IUCN, 1977), birds (IUCN, 1978), plants (Lucas & 72 

Synge, 1978), amphibians and reptiles (IUCN, 1979) and invertebrates (IUCN, 1983). Following 73 

recognition of the need to standardise approaches to avoid issues such as severity of threat 74 

and likelihood of extinction, more objective and quantitative criteria were developed in the 75 

1990’s (Mace & Lande, 1991; Mace et al., 1993). These criteria have become widely 76 

implemented at the global (Mace et al., 2008), national and regional level (Gärdenfors et al., 77 

2001; Miller et al., 2007) as a means of classifying the relative risk of extinction of species. 78 

As well as on the global level, Red Lists can also be compiled on continental (e.g., European, 79 

African), national (e.g., Eaton et al., 2005; Keller et al., 2005; Rodríguez, 2008; Brito et al., 80 

2010; Collen et al., 2013; Juslén, Hyvärinen & Virtanen, 2013; Stojanovic et al., 2013) or 81 

regional (sub-national) scales (e.g., Maes et al., 2012; Verreycken et al., 2014). Research has 82 

mainly focused on the implementation of the IUCN criteria at sub-global levels (Gärdenfors et 83 

al., 2001), but far less attention has been given to the data needed and/or used to estimate 84 

species trends and rarity. The number of species assessed at the global (76 000 species in the 85 

latest IUCN update) and sub-global level is large and increasing, and consequently greater 86 

scrutiny has been brought to bear on the types of data available to conduct such assessments 87 

(e.g., the latest update of the National Red List database contains 135 000 species 88 

assessments; www.nationalredlist.org). 89 

http://www.nationalredlist.org/
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Only few regions in the world collect data on trends, geographic range size and population 90 

sizes in a structured way (e.g., statistically sound monitoring networks – Thomas, 2005), 91 

usually for a limited number of taxa (e.g., birds – Baillie, 1990; butterflies – van Swaay et al., 92 

2008). Such data collection is often done with a network of volunteer experts (i.e., citizen 93 

science) under the co-ordination of professionals (e.g., Jiguet et al., 2012; Pescott et al., 2015). 94 

Monitoring data collected in a structured way allow for the use of most of the IUCN criteria, 95 

but require sustained funding (Hermoso, Kennard & Linke, 2014). Increasingly, opportunistic 96 

data (i.e., distribution records collected by volunteers in a non-structured way) are used for 97 

regional Red List assessments (e.g., Fox et al., 2011; Maes et al., 2012). Especially in NW 98 

Europe (Britain, the Netherlands, Belgium), the number of volunteers contributing to 99 

distribution and monitoring data is increasing yearly (Pocock et al., 2015). In Flanders, for 100 

example, the online data portal www.waarnemingen.be of the volunteer nature NGO 101 

Natuurpunt started in 2008 and now has almost 20 000 active distribution record providers. 102 

The total number of records in the data portal at present amounts to more than 15 million, of 103 

which almost 2 million are accompanied by a picture to check identifications. Birds are by far 104 

the most recorded taxonomic group in Flanders (51%), followed by plants (26%), moths (8%), 105 

butterflies (5%), mushrooms, mammals (both 2%), dragonflies, beetles, flies, bees and wasps, 106 

amphibians and reptiles and grasshoppers (all 1%). Whilst the number of records collated is 107 

impressive, it is less clear how suitable these opportunistic data are for Red Listing. 108 

Opportunistic data are often biased, both in time (e.g., recent periods are usually much 109 

better surveyed then ‘historical’ ones), in space (e.g., not all areas are surveyed with an equal 110 

intensity – Dennis, Sparks & Hardy, 1999), but also in volunteer preferences for taxonomic 111 

groups (e.g., birds, mammals, butterflies) and in differences in observation volunteer skills 112 

(e.g., identification errors, detectability - Dennis et al., 2006). A growing diversity of 113 

approaches, however, has been developed to take these biases in opportunistic data into 114 

account when calculating trends in both abundance and in distribution and geographic ranges 115 

(Isaac et al., 2014). 116 

http://www.waarnemingen.be/
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Here, we focus on opportunistic citizen science data used to classify species into IUCN Red 117 

List categories at sub-global levels. We review the assessment of IUCN criteria in Europe, 118 

Britain and Flanders (north Belgium) and give examples of how they were applied in the 119 

different regions. Specifically, we examine the role of opportunistic data and compare them 120 

with data that have been collected in a standardized way, mainly for the estimation of 121 

population trends (IUCN criterion A) and for species’ geographic range sizes (IUCN criterion B). 122 

 123 

HOW RED LIST ASSESSMENTS WORK: IUCN CRITERIA AND CATEGORIES 124 

Red List categories provide an approximate measure of species’ extinction risk in a given 125 

region, by quantitatively evaluating some of the key symptoms of risk: 1) a trend in population 126 

size or distribution, 2) rarity (abundance) and/or restriction (geographic range) and 3) 127 

population size (number of reproductive individuals). These measures reflect the major 128 

determinants of risk identified by conservation biology (Caughley, 1994): species are at 129 

greatest risk of extinction when population sizes are small, decline rate is high and fluctuations 130 

are high relative to population growth. Very small populations are also more susceptible to 131 

negative genetic, demographic and environmental effects. At relatively large scales (e.g., 132 

global, continental), data are often very patchy (e.g., GBIF – Beck et al., 2014), but this can also 133 

be the case on national or regional levels when survey intensity is low. The over-riding 134 

philosophy is to ‘make do’ with the available data, since the conservation problem is too 135 

pressing to wait for more robust data (Hermoso, Kennard & Linke, 2014). IUCN criteria are, 136 

therefore, designed to be used with different types of data (Mace, 1994). 137 

The IUCN applies five main criteria to classify species in Red List categories: 138 

A. Population size reduction 139 

B. Geographic range size 140 

C. Small population size and decline 141 

D. Very small population or restricted distribution 142 

E. Quantitative analysis of extinction risk. 143 
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Eleven IUCN categories are used for listing species in sub-global Red Lists (Fig. 1 – 144 

Gärdenfors et al., 2001). These use the same quantitative criteria as those applied to global 145 

Red Lists, but with an additional criterion of downgrading the risk category when rescue 146 

effects, across national or regional borders can occur (Gärdenfors et al., 2001). During a Red 147 

List assessment, all taxa are assessed against as many IUCN criteria as possible and the Red List 148 

category that results in the highest level of extinction risk is assigned to a taxon. Opportunistic 149 

data are most often used for assessing IUCN criteria A (population trends) and B (geographic 150 

range sizes). But, by making use of expert opinion and when the focal region is well-surveyed, 151 

criterion C (population sizes) and D (very small AOO or very limited number of populations) can 152 

also be assessed with opportunistic data. 153 

 154 

IUCN CRITERION USE IN EUROPE, BRITAIN AND FLANDERS 155 

Many countries and regions make use of the IUCN Red List criteria to estimate species’ 156 

extinction risks at sub-global levels. Here, we review the use of the different IUCN criteria for 157 

Red List assessments in three ‘regions’: Europe (continental), Britain (national) and Flanders 158 

(north Belgium – regional; Table 1). We also give examples of appropriate methods to estimate 159 

trends and geographic range sizes for regional Red List assessments. 160 

The proportions of the different criteria assessed over all taxonomic groups in Europe, 161 

Britain and Flanders are given in Fig. 2. For the European Red Lists, the criteria that resulted in 162 

the highest threat level were B (57%) and D (32%). In Britain, this applies to criterion D (47%) 163 

and criterion A (27%), while in Flanders; this was the case for criterion B (57%) and criterion A 164 

(25%). Among taxonomic groups, however, large differences in the use of the different IUCN 165 

criteria were revealed (Fig. 3). In Europe, criterion A resulted in the highest threat level for 166 

mammals (44%) and butterflies (43%), criterion B for saproxylic beetles (85%), amphibians 167 

(68%) and reptiles (63%), criterion C for dragonflies (21%) and criterion D for terrestrial (51%) 168 

and freshwater molluscs (39% − Fig. 3). In Britain, criterion A resulted in the highest threat 169 

levels for butterflies (67%) and plants (44%), criterion B for dragonflies (100%) and water 170 
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beetles (80%), criterion C for flies (30%) and criterion D for boletes (100%) and lichens (68% − 171 

Fig. 3). In Flanders, criterion A lead to the highest threat level in water bugs (50%), freshwater 172 

fishes (29%) and ladybirds (27%), criterion B for reptiles (100%) and amphibians (83%), 173 

criterion C for mammals (18%) and amphibians (17%) and criterion D for mammals only (44% − 174 

Fig. 3). 175 

 176 

POPULATION TREND ESTIMATES 177 

Few species globally have their entire population monitored regularly in order to accurately 178 

assess trends in population size. One of several shortcuts is, therefore, typically employed. A 179 

first possible shortcut is to use a small number of sentinel populations that are monitored 180 

regularly, either at long-term research sites or as part of co-ordinated schemes such as the UK 181 

or Dutch Butterfly Monitoring Scheme (Botham et al., 2013; van Swaay et al., 2013) or the 182 

Breeding Bird Survey in the UK or Flanders (Harris et al., 2014; Vermeersch & Onkelinx, 2014). 183 

This approach can deliver precise trend estimates, but in most cases the populations are a 184 

biased subset and may not be representative of the wider species’ population (Brereton et al., 185 

2011). A second and coarser tool is to estimate changes in the amount of available habitat, 186 

typically from polygon maps, but problems with this approach (commission and omission 187 

errors, see further) have been documented and discussed (Boitani et al., 2011). The approach 188 

is appealing, as remote sensed data on change in habitat extent can be cost-effectively applied 189 

to a range of species. However, even if changes in habitat can be captured accurately, it is 190 

unclear how trends reflect actual trends in abundance (Van Dyck et al., 2009). Thus, both these 191 

proxies rely on a large number of untested assumptions. A third proxy is to construct a 192 

statistical model of change based on opportunistic biological records. Often, measures of 193 

change from biological records have been derived from simple ‘grid cell counts’ between atlas 194 

periods (e.g., Maes & van Swaay, 1997; Maes & Van Dyck, 2001; Thomas et al., 2004; Maes et 195 

al., 2012), which is conceptually similar to the use of habitat extent maps described above. 196 

Estimating change from biological records is complicated, because the intensity of recording 197 
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varies in space and time (Prendergast et al., 1993; Isaac & Pocock, 2015) and can be difficult to 198 

estimate from the records alone (Hill, 2012). The development of methods for estimating 199 

trends from biological records has recently been the subject of considerable research effort 200 

and several robust approaches are increasingly being used. Abundance data is generally 201 

considered superior to distributional data for trend estimation (Isaac et al., 2014) and 202 

statistical methods are starting to be developed which derive composite trends using models 203 

that combine information from both data types (Pagel et al., 2014). 204 

Using the IUCN criteria, a population trend (criterion A) can be assessed in five different 205 

ways. Criterion Aa (direct observation of population decline) is only rarely used: in the 206 

European Red List, eight freshwater fishes, six freshwater molluscs, two terrestrial molluscs 207 

and one mammal, plant, reptile and saproxylic beetle were assessed against this criterion. In 208 

the UK, criterion Aa was only applied to four vascular plant species, while in Flanders this 209 

criterion is not yet used in Red List assessments. The use of criterion Ab (an index of 210 

abundance) depends strongly on the taxonomic group (e.g., for British butterflies, an index of 211 

abundance (criterion Ab) is available for 49 out of 62 resident species (79%), Fox et al., 2011 – 212 

Box 1). Criterion Ac (a decline in geographic range or in habitat quality – Box 2), is the most 213 

often used criterion in Britain (93%), in Flanders (91%) and Europe (50% − Fig. 4). Criterion Ad 214 

(actual or potential levels of exploitation) is mainly used in European Red List assessments for 215 

freshwater fishes (13 species) and mammals (four species). Finally, criterion Ae (effects of 216 

introduced taxa, hybridization, pathogens, pollutants, competitors or parasites) is used in 22% 217 

of the cases (Fig. 4). Criterion Ae was used mainly for freshwater organisms such as fishes and 218 

molluscs where invasive species are a major problem (Strayer, 2010; Roy et al., 2015b). In 219 

Flanders, this criterion was also used for the negative effect of the Harlequin ladybird on native 220 

ladybirds (Roy et al., 2012a). 221 

 222 

Box 1 – Trend calculations using abundance data from standardized citizen science 223 

monitoring data (IUCN criterion Ab) 224 
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There is a wide spectrum of citizen science approaches which contribute to monitoring 225 

biodiversity, ranging from simple protocols with wide participation to structured approaches 226 

which often include elements of professional support and co-ordination (Schmeller et al., 227 

2009; Roy et al., 2012b; Isaac & Pocock, 2015; Pescott et al., 2015). Structured, participatory 228 

monitoring schemes such as those established for birds, butterflies and mammals in Europe 229 

and North America (Devictor, Whittaker & Beltrame, 2010) typically comprise counts of target 230 

species throughout the year, repeated annually at fixed locations across a region. For example, 231 

the UK Butterfly Monitoring Scheme (UKBMS) provides a standardised annual measure (index) 232 

of butterfly populations at line-transect sites (Rothery & Roy, 2001). 233 

The UKBMS was initiated in 1976 with 34 sites, rising to more than 100 sites per year from 234 

1979 onwards and currently comprises 2000 sites recorded annually. The UKBMS also 235 

incorporates a Wider Countryside Butterfly Scheme component to improve the spatial 236 

coverage of the scheme (Roy et al., 2015a) Indices from different UKBMS sites over years are 237 

combined to derive regional and national collated indices, which can be used to assess long- 238 

and short-term population trends (Pannekoek & van Strien, 2003). The UKBMS has been used 239 

to assess threat status of 49 out of 62 species (79%) over two time periods: (i) 10 years (1995–240 

2004) and (ii) long-term (typically 1976–2004) for the Red List of British Butterflies (Fox et al., 241 

2011). Other examples of the use of structured monitoring schemes are the bird scheme in the 242 

UK where 22 out of 74 species (30%) were classified as threatened on the basis of trends in 243 

abundances (Eaton et al., 2005). 244 

One advantage of a volunteer-based, structured monitoring scheme is good statistical 245 

power for measuring trends (e.g. Roy, Rothery & Brereton, 2007) and the capacity to generate 246 

time series with comprehensive spatial coverage of a region. They have also provided a rich 247 

resource for scientific research, investigating large-scale pattern and processes (Thomas, 248 

2005). Although there has been a growth in the number of such schemes in some regions (e.g., 249 

N America, NW Europe) during the current century (Nature Editorials, 2009), there remains a 250 

paucity for many species groups in most parts of the world. Successful schemes often rely on 251 
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institutional support and funding, as well as having a large pool of potential contributors. 252 

Although we recommend adopting best practice from established schemes to further their 253 

value for future Red List criterion Ab assessments, distribution data (criteria Ac) is typically 254 

available for a wider set of species groups and for more regions of the world (see Box 2). 255 

 256 

 257 

Box 2 – Trend calculations using opportunistic distribution data (IUCN criterion Ac) 258 

Citizen science data are a potentially valuable source of information of changes in 259 

distributions, but they suffer from uneven and unstandardized observation effort (Isaac & 260 

Pocock, 2015). Changes in observation efforts across years may easily lead to artificial trends 261 

or mask existing trends in species’ distributions.  262 

In the past, researchers used broad time periods in their comparisons of distribution to 263 

ensure sufficient effort and spatial coverage in each time period (van Swaay, 1990). Other 264 

authors have filtered their data and used thresholds of completeness of sampling per grid cell 265 

(cf. Soberón et al., 2007) for estimating trends (e.g., Maes et al., 2012). Recently, the methods 266 

available for trend estimations have developed substantially (Powney & Isaac, 2015). Isaac et 267 

al. (2014) tested a number of approaches for estimating trends from noisy data. Using 268 

simulations, they found that simple methods may easily produce biased trend estimates, 269 

and/or had low power to detect genuine trends in distribution. Two sophisticated methods 270 

known as Frescalo and site-occupancy models emerged as especially promising.  271 

Frescalo uses information about sites’ similarity to neighbouring sites to assign local 272 

benchmark species (Hill, 2012). These benchmarks provide a measure of local observation 273 

effort that can be statistically corrected. Frescalo was used to assess changes in plant species 274 

distributions for the recent vascular plant Red List for England (Stroh et al., 2014). 275 

Site-occupancy models have a special mechanism to adjust for observation effort. They 276 

separate occupancy (the presence of a species in a site) from detection (the observation of the 277 

species in that site) when analysing field survey data (MacKenzie et al., 2006). The models 278 
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require that species are recorded as an assemblage, such that observations of one species can 279 

be used to infer non-detection of others (Isaac & Pocock, 2015). Detection can be estimated 280 

from sites that were surveyed multiple times in any given time period (e.g., a year). If 281 

observation effort increases over time, a species will be observed during more visits, which 282 

leads to a higher detection probability, but not to a higher occupancy probability (van Strien, 283 

van Swaay & Termaat, 2013). Site-occupancy models have been successfully used in status 284 

assessments of butterflies and dragonflies in the Netherlands (van Strien et al., 2010; van 285 

Strien, van Swaay & Termaat, 2013). 286 

 287 

METHODS FOR ESTIMATING GEOGRAPHIC RANGE SIZE 288 

The IUCN Red List criteria embrace two different measures of geographic range: Extent of 289 

Occurrence (EOO) and Area of Occupancy (AOO). The EOO (criterion B1) is defined as the area 290 

contained within the shortest continuous imaginary boundary which can encompass all the 291 

known, inferred or projected sites of present occurrence of a taxon, excluding cases of 292 

vagrancy. The AOO (criterion B2) is intended to represent the total amount of occupied habitat 293 

(excluding cases of vagrancy). IUCN guidelines advocate the use of 2 x 2 km² grid cells to 294 

estimate AOO (IUCN, 2013), so it is generally used for species with restricted geographic 295 

ranges. 296 

Different approaches can be applied to estimate geographic range sizes: marginal 297 

occurrences, habitat distributions, range-wide occurrences, species distribution modelling 298 

(including site-occupancy models) and process-based modelling (Gaston & Fuller, 2009). i) 299 

marginal occurrences, i.e., mapping the outer boundaries of species and subsequently 300 

interpolating the area in between (Boitani et al., 2011). Such maps are often displayed in field 301 

guides to illustrate the possible species distribution range in a usually large region (e.g., world, 302 

continent – Graham & Hijmans, 2006). ii) habitat and/or associations with environmental 303 

variables as a proxy (Boitani et al., 2011). iii) when range-wide occurrences are available for a 304 

focal region (country), records are often assigned to a grid cell projection (e.g., Universal 305 
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Transverse Mercator – UTM) to produce local or regional distribution atlases. At fine resolution 306 

(e.g., 1 x 1 km² or 5 x 5 km²), these data are sufficient to capture a species’ distribution, so long 307 

as sampling intensity is relatively equally spread over the region (Gaston & Fuller, 2009). 308 

Coarse grid cells (e.g., 10 x 10 km² or even 50 x 50 km²) are seldom useful for regional 309 

conservation purposes, because they include too much unsuitable habitat (Rondinini et al., 310 

2006), but recently, downscaling methods have been proposed to estimate local occupancy 311 

from coarse-grain distribution atlas data (Barwell et al., 2014). iv) species distribution 312 

modelling is a helpful tool to determine species geographic ranges (Pena et al., 2014). 313 

Typically, presence/absence or presence-only data are used in different modelling techniques 314 

(Guisan et al., 2013) to ‘predict’ where suitable environmental conditions occur in a given 315 

region for a given species (e.g., Thomaes, Kervyn & Maes, 2008; Cassini, 2011; Syfert et al., 316 

2014). v) processed-based modelling using small-scale environmental variables (e.g., 317 

microclimate) can be applied to estimate the possible geographic range of species (e.g., 318 

Kearney, 2006; Kearney et al., 2014; Tomlinson et al., 2014; Panzacchi et al., 2015). Range-319 

wide occurrences tend to underestimate the geographic range of species due to incomplete 320 

sampling (omission errors), while the other approaches tend to overestimate the distribution 321 

range of species (commission errors) because it incorporates large areas in which the species 322 

cannot occur (Gaston & Fuller, 2009). 323 

 324 

ESTIMATING GEOGRAPHIC RANGE SIZES WITH OPPORTUNISTIC DATA 325 

EOO and AOO reflect two different processes (spread of extinction risk and vulnerability due to 326 

a restricted range, respectively) and it is, therefore, useful to estimate both criteria in Red List 327 

assessments. All three regions assessed taxa against both EOO and AOO (Fig. 4). In Europe, the 328 

joint use of both EOO and AOO (50%) and AOO alone (50%) resulted equally often in the 329 

highest threat level for criterion B, probably depending on individual species’ data availability. 330 

In Britain, the combined use of EOO and AOO resulted in the highest Red List category (76%), 331 

while in Flanders this was the case for AOO (86% - Fig. 4). 332 
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 333 

Box 3 Estimating geographic range sizes (criterion B) 334 

EOO (criterion B1): Minimum Convex Polygons for plants and bees in the UK 335 

One of the simplest methods to estimate a species’ EOO is to calculate the Minimum Convex 336 

Polygon (MCP), the smallest polygon that will contain all the points and in which no internal 337 

angle is greater than 180 degrees (Fig. 5b). The MCP has, however, been criticised as being 338 

sensitive to errors in location, being derived from the most extreme points (Burgmann & Fox, 339 

2003) and for incorporating large areas of unsuitable habitat. Two alternative methods to 340 

calculate species ranges that are less susceptible to these issues are: 1) the α-hull (Burgmann & 341 

Fox, 2003) and 2) the Localised Convex Hulls (LoCoH) (Getz & Wilmers, 2004). It should be 342 

noted that the IUCN guidelines recommend such methods, designed to exclude discontinuous 343 

or outlying areas, only when comparing changes in EOO over time discouraging their use when 344 

estimating the EOO itself for assessment via criterion B1, as these outlying areas are important 345 

in determining the risk associated with geographic range. Both of these methods have recently 346 

been applied to Red List assessments in the UK for vascular plants (Stroh et al., 2014) and 347 

aculeate Hymenoptera (www.bwars.com; Edwards et al., in prep). The α-hull is derived from a 348 

mathematical algorithm for converting points (the locations of records) into triangles based on 349 

a threshold parameter α (Burgmann & Fox, 2003). The hull produced becomes more inclusive 350 

and approaches the MCP as α increases (Fig. 5c). 351 

The Localised Convex Hull (LoCoH) is an adaptation of the MCP but rather than fitting one 352 

hull to the entire dataset, the LoCoH is the result of the union of a set of ‘localised’ MCPs 353 

created by fitting the MCP to subsets of the data (Getz & Wilmers, 2004). There are several 354 

ways in which these local subsets can be determined (Getz et al., 2007): 1) fixed number of 355 

points (k-LoCoH) in which subsets consist of k-1 closest points to each root point, 2) fixed 356 

sphere-of-influence (r-LoCoH) in which subsets consist of all points within a radius r of each 357 

root point, and 3) adaptive sphere-of-influence (a-LoCoH) in which subsets consist of the root 358 

point and the closest points where the sum of the distances between the points in the subset 359 

http://www.bwars.com/
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and root is less than a. In the UK Red Listing exercises for vascular plants and aculeate 360 

Hymenoptera, the fixed sphere-of-influence method (r-LoCoH) was used as it facilitated the 361 

data review for the taxonomic exports and because it gave a visual understanding of the final 362 

Red Listing decisions (Fig. 6d). This variant of LoCoH is also fairly insensitive to sporadic but 363 

spatially clustered recording which is relatively common in opportunistic citizen science data. 364 

In both the α-hull and LoCoH, the resulting area is dependent on the value of a control 365 

parameter (α for α-hull and k, r, or a for the LoCoH variants). The selection of this parameter is 366 

a non-trivial process as it has a marked impact on the EOO estimates. Conceptually, there is no 367 

‘correct’ value. Rather, the most suitable value depends upon i) the aims of the study, i.e., a 368 

trade-off between being as inclusive as possible at the cost of including some unsuitable areas 369 

(commission errors) or being cautious at the cost of excluding of some suitable areas (omission 370 

errors), ii) the degree of spatial coverage in the data (with poorly sampled data requiring 371 

higher parameter values) and iii) the properties of the taxa being investigated (e.g., for highly 372 

mobile taxa, the most appropriate value is larger than for sedentary ones while large values for 373 

linearly distributed taxa (e.g., coastal species) can result in the incorporation of large areas of 374 

unsuitable habitat). In the UK Red Listing exercises mentioned above, the parameter values 375 

were selected to match the IUCN guidelines and previous Red Listing exercises (i.e., vascular 376 

plants – Cheffings et al., 2005) on the one hand or through expert opinion based on the 377 

outputs produced using a series of parameter values on the other. 378 

 379 

AOO (criterion B2): Ecological ecodistricts for ladybirds in Flanders (north Belgium) 380 

For some regions and for particular taxonomic groups, opportunistic data are available on a 381 

high resolution and covering a large part or even the entire region (e.g., birds in the UK – 382 

Balmer et al., 2013; butterflies in Flanders – Maes et al., 2012). In such cases, the AOO can be 383 

estimated by summing the area of these high resolution grid cells in which a species was 384 

observed in a recent period (e.g., 1 x 1 km² − Maes et al., 2012 or 2 x 2 km² − Fox et al., 2011). 385 

In regions where mapping coverage for taxonomic groups is fairly incomplete (e.g., ladybirds in 386 
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Flanders), AOO can be strongly underestimated by using the sum of the area of high resolution 387 

grid cells (Sheth et al., 2012). On the other hand, EOO is much less likely to be biased by 388 

incomplete sampling, as it uses only the outer boundaries of the distribution. As EOO for 389 

ladybirds in Flanders, we, therefore, used the sum of the areas of the ecological districts (i.e., 390 

relatively small and geographical units with a very similar climatology, geology, relief, 391 

geomorphology, landscape, etc. – n = 36, Fig. 6) when the species was observed in at least 392 

three 1 x 1 km² grid cells in the period 2006-2013. The minimum number of three grid cells per 393 

ecological district was applied to exclude single observations of vagrant or erratic individuals. 394 

(Adriaens et al., 2015). 395 

 396 

DISCUSSION 397 

IUCN enables the use of five different criteria to estimate the extinction risk of species: A) 398 

population size reduction, B) geographic range size, C) small population size and decline, D) 399 

very small population and/or restricted distribution and/or E) quantitative analysis of 400 

extinction risk. In the ideal case, the presence of a statistically sound monitoring scheme in a 401 

focal region would allow the use of all IUCN criteria to assess the Red List status of species. 402 

With opportunistic data, IUCN criteria A and B can be assessed applying different statistical 403 

techniques. But, when mapping intensity is sufficiently high, opportunistic data can also serve 404 

to estimate population size classes (criterion C) of some relatively well-known taxonomic 405 

groups (e.g., mammals, birds) and for determining species with very small AOO’s or a very 406 

small number of populations (criterion D). 407 

Before assessing taxa against IUCN criteria, it would be desirable to assess whether a focal 408 

region has the appropriate data to calculate ‘reliable’ trends and geographic ranges for a given 409 

taxonomic group. In Flanders, prior to the compilation of an IUCN Red List, the institute co-410 

ordinating all regional Red List assessments (i.e., the Research Institute for Nature and Forest – 411 

INBO) applies a quantitative and simple procedure to judge whether a dataset is sufficiently 412 

good to reliably estimate trends and range sizes. First, the Red List compilers determine which 413 
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periods will be compared to calculate population trends. Here, IUCN recommends a recent 414 

period of 10 year or three generations, whichever is the longer (IUCN, 2003), but many Red List 415 

compilers use historical periods that are longer than 10 years usually to compensate for the 416 

lower number of historical records in many data sets (e.g., the English Red List of plants – Stroh 417 

et al., 2014). Second, for these periods, the grid cells (e.g., 1 x 1 km² or 5 x 5 km²) that have 418 

been sufficiently well mapped in common in both periods are located. Mapping intensity can 419 

be estimated using species completeness measures (Soberón et al., 2007), rarefaction 420 

measures (Carvalheiro et al., 2013), reference species (Maes & van Swaay, 1997) etc. In a third 421 

step, the sufficiently well-surveyed grid cells are attributed to the twelve ecological regions in 422 

Flanders (i.e., regions with similar biotopes, soil types and landscapes – Couvreur et al., 2004). 423 

To make a representative Red List for a focal region, the recommendation for Flanders is that 424 

distribution data should be available in a minimum number of the grid cells (e.g., 10%) in all 425 

the (relevant) ecological regions for the given taxonomic group. If a data set of a taxonomic 426 

group does not fulfil these criteria, it is considered as currently insufficient for the compilation 427 

of an IUCN Red List in Flanders. Fig. 7 visualizes this procedure for dolichopodid flies and 428 

butterflies. The first group failed to pass, while the latter fulfilled the criteria (Maes et al., 429 

2012). 430 

Even in data-rich regions or countries, the estimated trends and geographic ranges, as well 431 

as the Red List categories are subject to a degree of uncertainty (Akçakaya et al., 2000). To 432 

inform users of Red Lists about this, the IUCN Red List Categories and Criteria (IUCN, 2013) 433 

suggests the inclusion of metadata about this uncertainty, including a range of plausible values 434 

for the Red List assessment. These will be affected by how well a species has been surveyed in 435 

time and space. This approach adds transparency to the Red Listing process, and helps defining 436 

the Data Deficient category more objectively (e.g., when the range of uncertainty ranges from 437 

Least Concern to Critically Endangered). 438 

On larger scales (e.g., world, continental, European Union), it would be biologically more 439 

meaningful to make Red Lists per ecological and/or biogeographical regions as, for example, 440 



 
18 

for the global biodiversity hotspot of the Mediterranean region (Myers et al., 2000). In this 441 

region, such lists have been compiled for mammals (Temple & Cuttelod, 2009), dragonflies 442 

(Riservato et al., 2009), freshwater fishes (Smith & Darwall, 2006), cartilaginous fishes 443 

(Cavanagh & Gibson, 2007) and amphibians and reptiles (Cox, Chanson & Stuart, 2006). On the 444 

other hand, conservation planning is usually the responsibility of national governments, which 445 

makes biogeographical Red Lists difficult to apply in the field. 446 

Due to differences in scale requirements and longevity among species (e.g., short-lived 447 

invertebrates versus long-lived vertebrates or trees), but also because of differences in data 448 

availability, some have argued that IUCN criteria should be differentiated for taxonomic groups 449 

(e.g., invertebrates – Cardoso et al., 2011; Cardoso et al., 2012) and/or for spatial scales (Brito 450 

et al., 2010). Some countries continue to use national Red List criteria and categories instead 451 

of those of the IUCN criteria because they judge them unusable in smaller regions (e.g., the 452 

Netherlands – de Iongh & Bal, 2007). If applied correctly and even with the use of 453 

opportunistic and/or data, we are convinced that the present-day IUCN criteria can be applied 454 

to a wide variety of taxa, including invertebrates (Collen & Böhm, 2012) and at many different 455 

spatial scales (from global to regional). The key point is that such data should be scrutinised 456 

and not used blindly. IUCN Red Lists are useful to countries or regions since they need to 457 

understand and track the fate of species within their borders. Legislation such as the 458 

Convention on Biological Diversity encourages countries to do this at a national level (Zamin et 459 

al., 2010). For example, should Britain care about a butterfly species that is at the edge of its 460 

northern range in a restricted area within the south of the region? From a global or continental 461 

extinction risk perspective, probably not. The vast population in the rest of mainland Europe 462 

means that the potential loss of the species in Britain is no threat to its overall survival. Since 463 

the butterfly is part of Britain’s biodiversity and is considered nationally threatened, however, 464 

it should be protected and conserved. This clearly demonstrates the difference between a Red 465 

List which ‘only’ estimates the extinction risk of a given species in a focal region on the one 466 

hand and a national or regional list of conservation priorities on the other (Lamoreux et al., 467 
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2003). Red Lists should, therefore, be considered as decision support tools and not as decision 468 

making tools (Possingham et al., 2002). 469 

To conclude, we give some recommendations that may help to apply IUCN criteria more 470 

uniformly across taxa and across regions from an organisational point of view but also for 471 

peers that compile Red List in other parts of the world. Documenting a Red List assessment is 472 

of vital importance to understand trend analyses and geographic range size estimates. 473 

Therefore, it is important to document spatial and temporal mapping intensity in the focal 474 

region, to give detailed information on how trends, distribution ranges and population sizes 475 

were calculated and which assumptions were made in the analyses. Important organisational 476 

aspects that can improve Red List assessments are, among others, the assignment of a Red List 477 

co-ordinator in a region to have consistency among Red Lists of different taxonomic groups 478 

(e.g., BRC in Britain, the Research Institute for Nature and Forest (INBO) in Flanders), the 479 

availability of the dataset used for the Red List assessment for peers (open access data, e.g., 480 

GBIF, National Red List database; www.nationalredlist.org), and the motivation and 481 

documentation of expert-judgement when using subcriteria such as fragmentation, 482 

fluctuations and rescue effects or for the estimation of population sizes. 483 
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Table 1. IUCN Red Lists in Europe, Britain and Flanders that were screened on the use of the different 833 
IUCN criteria. 834 
 835 
Europe (ec.europa.eu/environment/nature/conservation/species/redlist/) 836 
 837 
Amphibians (Temple & Cox, 2009); Butterflies (van Swaay et al., 2010); Dragonflies (Kalkman et al., 838 
2010); Freshwater fishes ( Freyhof & Brooks, 2011); Freshwater molluscs (Cuttelod, Seddon & Neubert, 839 
2011); Mammals (Temple & Terry, 2007); Reptiles (Cox & Temple, 2009); Saproxylic beetles (Nieto & 840 
Alexander, 2010); Terrestrial molluscs (Cuttelod, Seddon & Neubert, 2011); Vascular plants, partim (Bilz 841 
et al., 2011) 842 
 843 
Britain (jncc.defra.gov.uk/page-3352) 844 
 845 
Boletes (Ainsworth et al., 2013); Butterflies (Fox, Warren & Brereton, 2010); Dragonflies (Daguet, French 846 
& Taylor, 2008); Flies (Falk & Crossley, 2005; Falk & Chandler, 2005); Lichens and lichenicolous fungi 847 
(Woods & Coppins, 2012); Vascular plants (Cheffings et al., 2005); Water beetles (Foster, 2010) 848 
 849 
Flanders (http://wwwl.inbo.be/nl/rode-lijsten-vlaanderen) 850 
 851 
Amphibians (Jooris et al., 2012); Butterflies (Maes et al., 2012); Freshwater fishes (Verreycken et al., 852 
2014); Ladybirds (Adriaens et al., 2015); Mammals (Maes et al., 2014); Reptiles (Jooris et al., 2012); Stag 853 
beetle (Thomaes & Maes, 2014); Water bugs (Lock et al., 2013) 854 

http://ec.europa.eu/environment/nature/conservation/species/redlist/
http://jncc.defra.gov.uk/page-3352
https://drupal.inbo.be/nl/rode-lijsten-vlaanderen
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Figures 855 
 856 

 857 
Figure 1. IUCN categories at the regional level (IUCN, 2003). 858 
 859 

 860 
Figure 2. Overall criterion use for species in Britain (total number of threatened species = 1569), Europe (n = 714) and 861 
Flanders (n = 125). Criterion A = Population size reduction, Criterion B = Geographic range size, Criterion C = Small 862 
population size and decline, Criterion D = Very small or restricted population, Criterion E = Quantitative analysis of 863 
extinction risk. 864 
 865 

 866 
Figure 3. Criterion use per taxonomic group in Britain (left), Europe (middle) and Flanders (right). 867 
 868 
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 869 
Figure 4. Use of approaches in IUCN criterion A (population size reduction, left) and IUCN criterion B (geographic 870 
range size, right) in Red List assessments in Britain, Europe and Flanders. Criterion A: Aa = direct observation, Ab = an 871 
index of abundance appropriate to the taxon, Ac = a decline in AOO, EOO and/or habitat quality, Ad = actual or 872 
potential level of exploitation, Ae = effects of introduced taxa, hybridization, pathogens, pollutants, competitors or 873 
parasites; Criterion B: B1 = EOO, B2 = AOO, B1+B2 = EOO + AOO. 874 
  875 
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a b  876 

c d  877 

Figure 5. Maps showing the EOO estimates for Andrena bicolor in the UK between 1996-2010 using a) observed 10 x 878 
10 km² grid squares (total area = 46 100 km2), b) Minimum Convex Polygon (MCP – 324 850 km2 for full MCP or 208 879 
150 km2 for intersection of MCP with land area) c) α-hull (101 895km2) with α = 40 000 m and d) r-LoCoH (101 919 880 
km2) with r = 40 000 m. These figures were produced for a Red Listing assessment of aculeate Hymenoptera in Great 881 
Britain (Edwards et al., in prep) using data collected by the Bees, Wasp & Ants Recording Scheme (BWARS). 882 
 883 
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 885 
Figure 6. AOO of the ladybird Coccinella hieroglyphica using the 36 ecological districts in Flanders (north Belgium) in 886 
the period 2006-2013. The distribution of the species is shown using 1 x 1 km² grid cells (black dots). Only ecological 887 
districts (in grey) in which the species was observed in at least three grid cells were incorporated in the estimate of the 888 
AOO (i.e., 3 087 km² – Adriaens et al., 2015). 889 
  890 
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 Dolichopodid flies Butterflies 891 

a)   892 

b)  893 

c)  894 

d)  895 
Figure 7. Visualization of the procedure used in Flanders (north Belgium) to judge whether enough data are available 896 
for a Red List assessment. As a background, the 12 ecological regions of Flanders are shown. a) all grid cells (5 x 5 km²) 897 
surveyed in the first period for dolichopodid flies (left) and butterflies (right), b) all grid cells surveyed in the second 898 
period, c) all grid cells surveyed in common in both periods, d) all grid cells in common in both periods that are 899 
considered as sufficiently well surveyed (i.e., ≥ 10 species per grid cell in both periods). 900 
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