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Highlights 20 

• Time-series of 35 elephant seal winter foraging trips to Antarctica were analysed 21 

• A high resolution dive behaviour dataset was used to predict foraging events 22 

• The links between foraging and sea ice, hydrography and topography were quantified 23 

• Foraging strategies depended on the sex of seals 24 

• The foraging activity was associated with a number of oceanographic discontinuities 25 
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Abstract 30 

Understanding the responses of animals to the environment is crucial for identifying critical foraging 31 

habitat. Elephant seals (Mirounga leonina) from the Kerguelen Islands (49° 20’ S, 70° 20’ E) have 32 

several different foraging strategies. Why some individuals undertake long trips to the Antarctic 33 

continent while others utilise the relatively close frontal zones is poorly understood. Here, we 34 

investigate how physical properties within the sea ice zone are linked to foraging activities of 35 

southern elephant seals (SES). To do this, we first developed a new approach using indices of 36 



  

foraging derived from high temporal resolution dive and accelerometry data to predict foraging 37 

behaviour in an extensive, low resolution dataset from CTD-Satellite Relay Data Loggers (CTD-SRDLs). 38 

A sample of 37 post-breeding SES females were used to construct a predictive model applied to 39 

demersal and pelagic dive strategies relating prey encounter events (PEE) to dive parameters (dive 40 

duration, bottom duration, hunting-time, maximum depth, ascent speed, descent speed, sinuosity, 41 

and horizontal speed) for each strategy. We applied these models to a second sample of 35 seals, 20 42 

males and 15 females, during the post-moult foraging trip to the Antarctic continental shelf between 43 

2004 and 2013, which did not have fine-scale behavioural data. The females were widely distributed 44 

with important foraging activity south of the Southern Boundary Front, while males predominately 45 

travelled to the south-eastern part of the East Antarctica region. Combining our predictions of PEE 46 

with environmental features (sea ice concentration, water masses at the bottom phase of dives, 47 

bathymetry and slope index) we found higher foraging activity for females over shallower seabed 48 

depths and at the boundary between the overlying Antarctic Surface Water (AASW) and the 49 

underlying Modified Circumpolar Deep Water (MCDW). Increased biological activity associated with 50 

the upper boundary of MCDW, may provide overwintering areas for SES prey. Male foraging activity 51 

was strongly associated with pelagic dives within the Antarctic Slope Front where upwelling of 52 

nutrient rich Circumpolar Deep Water onto surface water may enhance and concentrate resources. A 53 

positive association between sea ice and foraging activity was found for both sexes where increased 54 

biological activity may sustain an under-ice ecosystem. Variability of the East Antarctic sea ice season 55 

duration is likely a crucial element to allow air-breathing predators to benefit from profitable prey 56 

patches within the pack ice habitat.  57 

 58 

1. Introduction 59 

 The Southern Ocean is highly productive which influences the structure and dynamics of the 60 

Antarctic marine ecosystem at all trophic levels (Tynan, 1998; Nicol et al., 2000a, 2000b). Short and 61 

intense phytoplankton blooms (Smetacek and Nicol, 2005) are dependent on spatio-temporal 62 

distribution of nutrients, themselves determined by interactions between topography of the 63 

seafloor, water mass properties and circulation, ocean currents and sea ice seasonality (Prézelin et 64 

al., 2000; Brierley and Thomas, 2002). The continental shelf, polynyas, sea ice edge and areas where 65 

the bathymetric profile allows intrusion of nutrient rich water masses onto the shelf (such as 66 

Circumpolar Deep Waters) stimulate primary productivity (Moore and Abbott, 2000; Nicol et al., 67 

2005) and the population growth of mid (Prézelin et al., 2000) and upper trophic levels (La Mesa et 68 

al., 2010) including top predators. The latter includes purely Antarctic species and also species 69 

breeding in the sub-Antarctic, such as southern elephant seals (SES, Mirounga leonina, Biuw et al., 70 

2007, 2010), king penguins (Aptenodyptes patagonicus, Bost et al., 2004) and Antarctic fur seals 71 



  

(Arctocephalus gazella). However, the nature of the linkages between environmental factors and 72 

higher trophic levels is unclear. 73 

 In this study, we investigated how physical environmental factors influence SES foraging 74 

strategies in the East Antarctic region of the Southern Ocean (0-150°E). This region is characterized 75 

by considerable intra- and inter-annual variation in sea ice and prominent ocean circulation features 76 

including the eastern end of the Weddell gyre, and an intense westward flowing current steered by 77 

the Antarctic continental shelf (the Antarctic Slope Current; ASC). Reported changes and variability in 78 

sea ice and ocean water masses in the East Antarctic region are possibly associated with changes in 79 

ocean circulation patterns (e.g. Rintoul, 2007; Nicol et al., 2012; Massom et al., 2013). These changes 80 

can be rapid and complex with contrasting signals in close areas on regional to local scales. However, 81 

how these local changes of the environment would influence the dynamics of the entire ecosystem is 82 

poorly understood. 83 

 Several hypotheses have been proposed to link local environmental factors with apex 84 

predator foraging behaviour. One is that sea ice variability in East Antarctica may dictate the 85 

distribution of prey species, many of which are known to interact with sea ice. For example, krill 86 

(Euphausia superba) living within the seasonal pack ice zone depends on ice-algae to survive in 87 

winter (e.g. Daly, 1990; Atkinson et al., 2004; Meiners et al., 2012) and mesopelagic fish such as the 88 

Antarctic lanternfish (Electrona antarctica) feed on krill and other zooplankton under pack ice 89 

(Kaufmann et al., 1995). A second hypothesis is that discontinuities between nutrient-poor and 90 

nutrient-rich water masses may result in increased biological activity at these water-masses 91 

boundaries (Rodhouse and Clarke, 1985; Prézelin et al., 2000), providing rich food sources that could 92 

be easily detected (Sticken and Dehnhardt, 2000) and exploited by predators (Boyd and Arbom, 93 

1991). A third hypothesis is that the complex regional circulation features such as the Antarctic Slope 94 

Front (ASF) may control the distributions of chlorophyll, krill and apex predators (Bindoff et al., 95 

2000). This would be largely due to upwelling of nutrient rich circumpolar deep water, onto the 96 

eutrophic zone on the shelf, which would enhance productivity (Jacobs, 1991).  97 

 Elephant seals are deep-diving, wide-ranging (Hindell et al., 1991a, 1991b; McConnell et al., 98 

1992) top predators of the Southern Ocean that utilize radically different marine habitats between 99 

different sexes, ages, breeding colonies and according to individual preferences (Biuw et al., 2007). 100 

The main populations are located in the South Atlantic, Southern Indian, and South Pacific oceans, 101 

and display contrasting demographic trends, presumably in response to environmental variability 102 

(McMahon et al., 2005). SES from Kerguelen show two-distinct foraging strategies: 75 % of the 103 

females forage in frontal areas of the Antarctic Circumpolar Current (ACC) and 25 % on the peri-104 

Antarctic shelf. Males forage on the Kerguelen and peri-Antarctic shelf (Bailleul et al., 2010a). Our 105 

understanding of the foraging behaviour of SES and its interplay with environmental features such as 106 



  

hydrography, sea ice, bottom topography or dynamic environmental features such as eddies and 107 

fronts has increased in recent years (Bornemann et al., 2000; Bailleul et al., 2007a, 2007b, 2010a, 108 

2010b; Biuw et al., 2007, 2010; Bestley et al., 2012; Guinet et al., 2014; Hindell et al., 2015). 109 

However, no studies on Kerguelen SES have quantified the role of combined environmental factors 110 

that would make migrations of male and female within the East Antarctic sea ice zone during winter 111 

profitable and sustainable over years. Unique environmental features and important life history 112 

stages may hold the answer to the causes underpinning seal movements.  113 

  Understanding the effect of environmental variability on foraging behaviour requires 114 

knowledge of where and when animals feed and assimilate energetic reserves. A major challenge in 115 

marine ecology of top predators is the difficulty in obtaining appropriate foraging indices from simple 116 

behavioural data, particularly in the context of poorly known prey fields. Most studies use proxies for 117 

feeding such as changes in vertical or horizontal movements, or time spent in specific areas (Bailleul 118 

et al., 2007b, 2008; Biuw et al., 2003, 2007; Thums et al., 2011; Dragon et al., 2012a, 2012b; Hindell 119 

et al., 2015). Although these proxies can indicate areas where foraging effort is focused, they do not 120 

necessarily quantify the foraging success of the animal. New approaches employing acquisition of 121 

high resolution data of seal body dynamics from accelerometers are now filling the gap (Guinet et al., 122 

2014).  123 

 By simultaneously recording animal location, dive behaviour and hydrographic profiles in situ 124 

and in real time, we studied the foraging behaviour of Kerguelen elephant seals migrating during 125 

post-moult movements from the Kerguelen Islands to the Antarctic shelf. The aim of the study was to 126 

identify and quantify the role of environmental features involved in the acquisition of food resources 127 

for SES during winter trips in the Antarctic sea ice zone. We developed a new approach using indices 128 

of foraging derived from high resolution dive and accelerometry data (prey encounter events, PEE) to 129 

predict foraging behaviour in an extensive, low resolution dataset from CTD-Satellite Relay Data 130 

Loggers (CTD-SRDLs). Information on the properties of water masses, sea ice concentration and 131 

topography was combined and sexual differences were investigated.   132 

 133 

2. Materials and Methods 134 

 2.1. Animal handling and tag deployment 135 

 Two different datasets were used in this study; one as a training dataset to build a predictive 136 

model of foraging behaviour (hereafter, referred to as the training dataset), and a second on which 137 

that model was used to predict foraging in space and time and relate foraging activity to 138 

environmental features of the region (referred to as the study dataset). A summary of the different 139 

steps followed in this study is presented in Figure 1.   140 



  

 The training dataset consisted of 37 post-breeding SES females captured on the Kerguelen 141 

Islands (49° 20’ S, 70° 20’ E) in October/November between 2008 to 2013 (Appendix A, Table A1). 142 

Twenty three seals were equipped with a head-mounted GPS capable of relaying data via satellite 143 

using Service Argos combined with an archival data logger (SPLASH10-Fast-Loc GPS, Wildlife 144 

Computers; WC). SPLASH10 devices transmitted Argos location data, collected GPS location data at 145 

20 min intervals and recorded pressure at 1 or 2s intervals. In addition, 12 seals were equipped with 146 

a head-mounted conductivity-temperature-depth satellite-relay data loggers (CTD-SRDLs, Sea 147 

Mammal Research Unit, University of St Andrews), and 2 others with Smart Position and 148 

Temperature Tags (SPOT, WC). All tags were combined with a TDR−accelerometer data logger 149 

(MK10-X, Wildlife Computers), sampling acceleration and pressure. Acceleration was measured at 16 150 

Hz on 3 axes (longitudinal (surge), vertical (heave) and lateral (roll) axes) and the separation between 151 

dynamic and gravitational acceleration was done via post-processing of all 3 axes.  152 

 The study dataset consisted of 35 post-moulting SES, 20 males and 15 females, that were 153 

captured on the Kerguelen Islands between December/February from 2004 to 2013 (Appendix A, 154 

Table A2). For this analysis we used only post-moulting SES that used the sea ice zone. All animals 155 

were equipped with CTD-SRDLs (Sea Mammal Research Unit, University of St Andrews) measuring 156 

conductivity, temperature and pressure. An average of 2.8 ± 1 CTD profiles (n=29) were transmitted 157 

daily (Boehme et al., 2009) and the tag positions were estimated by the Argos system. For all CTD-158 

SRDLs (from Sea Mammal Research Unit, University of Saint Andrews), the datapoints transmitted for 159 

each profile (mean of 16 ± 6 (SD), n=29) are a combination of T (temperature) and S (salinity) at a set 160 

of preselected standard depths, and at another set of depths chosen by a broken-stick algorithm that 161 

selects the important inflection points in T and S data (recorded every second during the ascent 162 

phase of the dives). All tags were initially calibrated at the laboratory and a part of them were also 163 

tested at sea against a ship based CTD before deployment. All tags were then post-calibrated using 164 

standardized procedures described in Roquet et al. (2011, 2014). The minimum accuracies of post 165 

processed data were estimated to be at ± 0.03 °C in temperature and ± 0.05 psu, increasing to ± 0.01 166 

°C and ± 0.02 psu in the best cases (Roquet et al., 2014). 167 

 Individuals were anaesthetized using a 1:1 combination of tiletamine and zolazepam (Zoletil 168 

100), which was injected intravenously (Field et al., 2002). Data loggers were glued to the head of the 169 

seals using quick-setting epoxy (Araldite AW 2101, Ciba; Field et al., 2012). Instruments were 170 

retrieved from post-breeding females upon returning from their foraging trip.  171 

 Females in the training dataset had an average weight of 288 ± 51 kg (mean ± standard 172 

deviation) and an average length of 243 ± 14 cm, similar to the weight and length of females from 173 

the study dataset of 324 ± 56 kg and 244 ± 16 cm respectively. However, males were heavier and 174 

longer than females (553 ± 256 kg and 292 ± 41 cm).  175 



  

 176 

 2.2. Behavioural data 177 

  2.2.1 Filtering trajectories  178 

 Of the 37 females in the training dataset, 23 individuals provided GPS positions, while 14 had 179 

only Argos locations. For both types, a simple speed filter similar to McConnell et al. (1992) was used.  180 

 For 35 individuals of the study dataset, Argos positions were filtered using State-Space-181 

Model (SSM) (step 1, Figure 1) with the package bsam following Jonsen et al. (2012). Locations of 182 

class Z (i.e. the lowest location quality index provided by Service Argos, and for which no stated 183 

position uncertainty is provided) were removed prior to analysis. Two Markov chains with a total of 184 

100000 simulations were computed, taking one in ten samples, with a burn in of 50000 simulations. 185 

The analysis sets an interval of 6h between each position and for each position we obtained 5000 186 

samples per chain. The average of the 10000 samples gave the estimated position of the animal as 187 

well as uncertainty estimate associated with this position. Confirmation of the convergence of the 188 

model was checked graphically. Two individuals were removed from analysis due to devices 189 

functioning for less than 30 days. Each dive’s location was based on a time-based linear interpolation 190 

between corrected locations.  191 

 192 

  2.2.2 Dive data collected 193 

 For the training dataset, data from accelerometers were processed according to Viviant et al. 194 

(2009) and Gallon et al. (2013). Identification of prey encounter events (hereafter PEE) from the 195 

accelerometry data followed Guinet et al. (2014). A PEE does not mean that the seal was necessarily 196 

ingesting food, but should be considered as an index of prey encounters during the dive.  197 

 For the study dataset, tags were programmed to record dive depth and time every 4s, from 198 

which dive start time, dive end time, dive duration and post dive surface interval were determined. 199 

Only the four main inflection points of the time-depth time series, indicating a rapid change of the 200 

dive shape, were transmitted for each dive according to tag programming (Sea Mammal Research 201 

Unit).  202 

 For both datasets, a zero offset surface correction was set to 15 m (Guinet et al., 2014). Only 203 

dives deeper than 40 m and longer than 3 min were kept for analysis. 204 

 205 

  2.2.3 Predictive model of foraging behaviour 206 

 Following Viviant et al. (2014), we developed indices of foraging derived from high resolution 207 

dives, trajectory and PEE to estimate foraging behaviour from the lower temporal resolution dataset 208 

(CTD-SRDLs). The purpose of this step was to first use the high resolution training dataset to identify 209 

dive and trajectory parameters associated with high PEE (step 2 of Figure 1). Using these results we 210 



  

then calculated PEE per day based on diving and movement patterns of the 35 individuals equipped 211 

with CTD-SRDLs (study dataset; step 3 of Figure 1) for which no information on foraging success was 212 

available otherwise.  213 

 To obtain dive profiles with a similar resolution for both the training dataset used to 214 

construct the model (37 post-breeding SES) and the study dataset used to apply the prediction (35 215 

post-moulting SES), we first computed a “broken-stick” algorithm (from Heerah et al., 2014) to 216 

degrade high resolution dive data into the four inflection time-depth points, i.e. identical to the dive 217 

data provided by the CTD-SRDLs. The variables (from degraded dive data) used to describe foraging 218 

behaviour were dive duration, bottom duration (time spent at 80 % of the maximum depth), hunting-219 

time (see Heerah et al., 2014), maximum depth, ascent speed, descent speed of the next dive, track 220 

turning angle (sinuosity) and horizontal speed (between two dives). These values were averaged for 221 

each day because the predictive abilities of similar models were low at the scale of a single dive and 222 

higher at a scale of a day containing multiple dives (Viviant et al., 2014). The daily PEE was calculated 223 

from the rate of PEE per hour multiplied by 24 hours. 224 

 Southern elephant seals display either a demersal or pelagic foraging strategy (i.e. the 225 

dominant type of dive behaviour in a given day) depending on the habitat (Bailleul et al., 2007a, 226 

2007b), which might influence patterns of foraging activity and dive behaviour. Therefore, to build 227 

the model, the training dataset was divided into pelagic and demersal dive strategies for locations on 228 

the Kerguelen shelf (Appendix B).  229 

 We then used a generalised linear mixed model (GLMM) to identify the most informative 230 

variables explaining daily PEE for each strategy based on the training dataset (Appendix C). A quasi-231 

Poisson distribution was used for the error structure of the response variable and individuals were 232 

included as random factor. When applying the models to the study dataset, we distinguished 233 

between demersal and pelagic strategy over the peri-Antarctic shelf (rather than the Kerguelen Shelf) 234 

(Appendix B). The statistical model (averaged regression coefficients obtained from model averaging) 235 

was then applied to the variables of the study dataset for each strategy to predict PEE per day for the 236 

35 post-moulting individuals (step 3 of Figure 1; Appendix C). 237 

 238 

 2.3 In situ and remotely sensed oceanographic data 239 

  2.3.1 In situ salinity and temperature profiles 240 

 Among the 35 study individuals, 29 had usable CTD (Conductivity-Temperature-Depth) 241 

profiles. To obtain continuous T and S vertical profiles, a linear interpolation with a vertical resolution 242 

of 18 m was applied. The resolution of 18 m was chosen as the best compromise between high 243 

vertical resolution and avoiding addition of non-available data or loss of information (Heerah et al., 244 

2013; the minimum of the mean intervals (for each individual) between two data points for all 245 



  

profiles was 18.3 m). CTD positions were corrected by interpolating SSM locations along the track 246 

based on the CTD date and time. Water masses sampled during the transit of seals along their trip 247 

from 55°S to the Antarctic continent were then determined from their temperature, salinity and 248 

neutral density ƴn (Jackett and McDougall, 1997). We distinguished between nine water masses 249 

(Bindoff et al., 2000; Meijers et al., 2010): (1) Intermediate Water (IW); (2) Antarctic Surface Water 250 

(AASW); (3 & 4) Modified and Circumpolar Deep Water (CDW, MCDW); (5) High Salinity Modified 251 

Circumpolar Deep Water (HSMCDW); (6) Mixed Shelf Water (MSW); (7) Antarctic Bottom Water 252 

(AABW); (8) High Salinity Shelf Water (HSSW); and (9) Ice Shelf Water (ISW). Criteria to define these 253 

water-masses were adapted from Bindoff et al. (2000), Meijers et al. (2010), Lacarra et al. (2011) and 254 

Orsi et al. (1995), and are presented in Table 1. 255 

 To identify the water mass used when the seals were foraging, we used the water mass 256 

encountered during the bottom phase of each dive, as this is  where most PEE are expected to occur 257 

(Guinet et al., 2014) (step 5 of Figure 1). Each dive was then associated with the closest CTD profile in 258 

time collected by the same individual (step 5 of Figure 1). A maximum time interval of 12 h between 259 

the CTD and the dive was set, leading to an average distance difference between the CTD and the 260 

dive of 9.1 ± 9.6 km. Following this procedure, 70.4 % of dives were associated with a CTD profile. 261 

 262 

  2.3.2 Extraction of ocean floor topography and sea ice concentrations at animal 263 

positions 264 

  This study focused on individuals using the Antarctic shelf and the sea ice zone. The 265 

maximum extension of sea ice was reached in September at latitudes close to 55°S. The area south of 266 

55°S to the Antarctic continent was used as the spatial domain for the environmental study where 267 

hydrology, topography and sea ice data were linked to foraging behaviour. 268 

 Two bathymetry datasets were used; the GEBCO One Minute Grid-database (1’ per cell grid) 269 

for graphical purpose, and GEBCO_08 Grid-database (30s per cell) for analysis 270 

(http://www.gebco.net/).  271 

 To take into account the spatial error associated with each location when extracting 272 

environmental variable under the seals’ tracks, the mean and variance/covariance matrix of the 273 

10000 posterior samples available after the filtering process for each position estimate were 274 

computed. These were used to generate a random sample, from a bivariate Normal distribution, 275 

from which 200 random pairs of latitude/longitude coordinates were extracted for each position. 276 

Bathymetry associated with these 200 samples was then extracted and a mean bathymetry for each 277 

position was computed. 278 

 To define the shelf area and the continental slope, the inflection point in meridional 279 

bathymetric contours, which represents the shelf break, was identified for each half degree of 280 



  

longitude from 0 to 150°E. The boundary between the continental slope and the open ocean was 281 

defined as the region where the influence of the Antarctic Slope Front stops. We used pressure 282 

gradient on an isopycnal computed from historical Argo floats and ship observations of the region to 283 

dynamically define the influence of the slope front and associated it with, roughly, the 3500 m 284 

isobaths for our region. Each dive position of seals was attributed either to the shelf, slope or the 285 

open ocean area. 286 

 Sea ice concentration was extracted from AMSR-E daily sea ice concentration images for 287 

years 2004 to 2011 (http://www.iup.physik.uni-bremen.de:8084/amsr/amsre.html) and derived sea 288 

ice maps from SSMIS were used for the year 2012. Although AMSR-E resolution (6.25 km * 6.25 km) 289 

is higher than SSMIS resolution (13.2 km * 15.5 km), the same algorithm was applied and the grid 290 

spacing of 6.25 km was kept. The AMSR2 satellite was used for 2013. Each “grid cell” has an allocated 291 

sea ice concentration from 0 to 100 %. Finally, we accounted for location uncertainty as described 292 

above (step 4). Ice concentrations were grouped into three categories based on their frequency 293 

distribution: class 1 ([ice] ≤ 5 %), class 2 (5 % < [ice] ≤ 80 %) and class 3 (80 % < [ice]). 294 

 295 

 2.4 Habitat use  296 

 We compared the proportion of time spent in several habitats: (a) different areas (i.e. shelf, 297 

continental slope, pelagic zone); (b) different water masses; (c) different sea ice concentrations; and 298 

(d) different seasons (i.e. summer defined by February, autumn by March-May, winter by June-299 

August, and spring by September-November). We then tested if the time within each habitat type 300 

was significantly different between males and females by applying a Wilcoxon-Mann-Whitney test. 301 

  302 

 2.5 Statistical analysis of oceanographic conditions in foraging zones 303 

 The influence of hydrological features, sea ice concentration and sea floor topography on 304 

foraging behaviour (estimated PEE per day) was quantified using GLMMs (step 6 of Figure 1; 305 

Appendix C). Bathymetry, slope and sea ice concentration values were averaged for each seal each 306 

day and the most frequent water masses encountered at the bottom phase of dives each day were 307 

used. Two models were built, one for each sex, based on 11 females and 17 males including 308 

trajectories from 55°S to the Antarctic continent. Explanatory co-variables included factor variables 309 

such as class of sea ice concentration, water masses at the bottom phase of dives and continuous 310 

variables such as the day of the year, the sea-bed depth and the slope index associated with 311 

topography features. The same process was followed for the 2 models; a negative binomial 312 

distribution was used for the error structure of the response variable and individuals were included 313 

as random factor.  314 

 315 



  

3. Results 316 

 3.1 Trajectory and diving features 317 

 A total of 72209 and 211909 dives were recorded for the 37 post-breeding (training) and the 318 

35 post-moulting (study) seals respectively, with an average track duration of 29 ± 17 days where 319 

accelerometry data were available (mean ± standard deviation) and 159 ± 75 days, respectively. 320 

Within each dataset (training and study), diving features are presented in Table 2 by separating 321 

demersal dives from pelagic ones. 322 

 Animals from the training dataset made 65.2 ± 12.1 dives per day and travelled 49.8 ± 30.1 323 

km per day (Table A.1), compared to 40.1 ± 17.5 dives per day and 38.7 ± 33.2 km per day for the 324 

study animals (Table A.2). Some of the difference between the two datasets might arise from the 325 

non-transmission of some dives when the animal is surfacing for the Argos tags (study dataset). 326 

Demersal dives represented 5 % of dives for the training dataset (only females) and 21 % of the study 327 

dataset (8 % of females’ dives and 35 % of males’ dives). 328 

 Thirty one of the 35 study animals travelled to the Antarctic continent, remaining in the 329 

seasonal sea ice zone (Figure 2). Some seals stayed exclusively within the sea ice zone while others 330 

had pelagic sorties out of the pack ice. Sex and individual differences were observed and are 331 

described in section 3.3.1.2. 332 

 333 

 3.2 Foraging behaviour  334 

  3.2.1 Predictive model of foraging activity: diving predictors and performance 335 

 The training dataset was used to build the models of foraging behaviour relating observed 336 

PEE to dive and trajectory parameters. The demersal model was built with 60 days of observations 337 

from 8 different females. The pelagic model was built with 984 days of observations, using all 36 338 

females. 339 

 For the demersal model, retained variables after checking colinearity were ascent speed, 340 

maximum depth of the dive, dive duration and turning angle, but only ascent speed and dive 341 

duration were retained as significant after the stepwise procedure. In the full model, 79 % of 342 

variance was explained by fixed effects (marginal R
2
) and 82 % by both fixed and random effects 343 

(conditional R
2
) (Table 3). Regression coefficients computed using leave-one-out cross-validation (CV) 344 

(see appendix C) (Table 3) indicate low individual variability and increased PEE with increasing ascent 345 

speed and dive duration. Ascent speed had the largest predictive value of the model. The predictive 346 

ability of the model was assessed using CV, and explained 53% of the deviance. 347 

 For the pelagic model, the use were ascent speed, maximum depth of the dive, bottom time 348 

duration, horizontal speed and turning angle, of which four were retained after the stepwise 349 

procedure (turning angle was removed). Based on this model, 39% of the variance was explained by 350 



  

fixed effects (marginal R
2
), and 67 % by both fixed and random effects (conditional R

2
) (Table 3). 351 

Regression coefficients indicate that PEE increased with increasing bottom phase duration and ascent 352 

speed, and decreasing maximum depth and horizontal speed. Maximum depth and ascent speed 353 

represented the most important contributors of the model. About 30 % of deviance was explained by 354 

the model. Figure 3A and 3C show the predictive ability for the demersal model determined by the 355 

CV and Figure 3B and 3D the predictive ability for the pelagic model. In the pelagic model, three 356 

individuals had some predicted values over-estimated relative to their observed values (Figure 3B), 357 

and a deviation is also observed on MSPE (Figure 3D). Tracks of these three individuals are mostly 358 

composed of demersal daily observations that could explain why they differed from the 33 animals 359 

left when they are involved in a pelagic strategy. Moreover, for high PEE between 1000 and 1870 PEE 360 

(maximum observed in the training dataset), the model tended to under-estimate the values. 361 

 362 

  3.2.2 Application and prediction of the foraging activity on the study dataset 363 

 Within the study dataset, 19 % of daily observations represented the demersal strategy 364 

(Figure D1), of which 15% were from females (6 individuals) and 85 % were from males (19 365 

individuals). The pelagic strategy represented 81 % of the dataset (Figure D1), with 58 % and 42 % of 366 

female and male observations respectively, made by 15 females and 20 males. 367 

 Mean predicted values obtained from the demersal model were 251 ± 106 PEE/day, less than 368 

the mean of observed values from the training dataset of 394 ± 165 PEE/day. For the pelagic model, 369 

the mean of the predicted values from the study dataset was of 510 ± 231 PEE/day, similar to the 370 

mean of observed values from the training dataset of 585 ± 278 PEE/day. For subsequent analyses, 371 

predicted values with PEE/day above 1000 and dive depths ≤ 250m were removed due to the 372 

predictive range of the model. It represented 88 daily observations on a total of 3889 (i.e. 2.3 % of 373 

the study dataset) from 5 individuals, all of which were males.  374 

 Males had on average 418 ± 226 PEE/day and females 494 ± 170 PEE/day. For illustration 375 

purposes, we used a threshold of 500 PEE/day, slightly above the average values, to define areas of 376 

high foraging activity (“hotspots”). On the shelf, 402 ± 265 PEE/day were observed, 459 ± 180 377 

PEE/day within the continental slope and 481 ± 161 PEE/day for the pelagic area. 378 

 Post-moult females had a wide distribution in the East Antarctic region with dominant 379 

movements within pelagic areas and the continental slope for some individuals (Figure 4A). 380 

Conversely, male movements were mostly on the south-eastern part of the region within the 381 

Antarctic shelf and slope zone (Figure 4C). Only two males did not exhibit such behaviour; one of 382 

which was foraging on the south part of the Gunnerus Ridge along the continental slope and over the 383 

shelf (Ind. 2013-4), while the other remained within the pelagic area (Ind. 2013-12).  384 



  

 For females, high foraging activity was mostly localized south of the 4000 m isobaths, within 385 

the continental slope/shelf and in pelagic area (Figure 4A). Conversely, male foraging activity was 386 

concentrated principally over the Antarctic shelf and continental slope with hotspots in the region of 387 

Cape Darnley within the Amery Ice shelf and in the region close to 110-115°E within the shelf and 388 

shelf break (Figure 4C). One region around 30°E within the shelf break represented a hotspot used by 389 

both males and females (Figure 4A & 4C). Foraging areas tended to be located in area of high sea ice 390 

concentration along the trip of both males and females (Figure 4). 391 

 392 

 3.3 Linking behaviour to oceanographic conditions  393 

 From the 35 total individuals, only 28 seals were used; 11 females and 17 males. One 394 

individual with short tracks and 6 seals with incomplete hydrological data were removed prior to 395 

analysis. 396 

 397 

  3.3.1 Qualitative approach: Description of seals movements within the habitat398 

   3.3.1.1 Topographic features 399 

 The twenty-eight seals spent 36.4 %, 16.6 % and 50 % of their time within the shelf, the 400 

continental slope and the pelagic area respectively (Figure 5A).  401 

  Over the shelf, the pelagic strategy represented 32 % of observations (of which 9 % 402 

were performed by females and 91 % by males) and the demersal strategy 68 % (of which 13 % were 403 

performed by females and 87 % by males). Over the continental slope, the pelagic strategy 404 

represented 83% of observations (with 48 % and 52 % for females and males respectively), while the 405 

demersal strategy represented 17 % (with 18 % and 82 % for females and males respectively). Deep 406 

dives in canyons within the shelf and slope area (previously defined by criteria for demersal strategy; 407 

see Appendix B) represented 1.7 % of total dives of which 21 % female dives and 79 % male dives.  408 

 409 

   3.3.1.2 Movements within sea ice 410 

 The seals spent 38 % of their time within sea ice concentration of class 1, 28 % within class 2 411 

and 34 % within class 3 (Figure 5B).  412 

 Sex-specific differences were observed in the movements of animals in relation to the 413 

seasonality of the sea ice (Figure 2). Most females in 2004, 2008, 2012 and 2013 remained in high sea 414 

ice concentration inside pack ice, but tended to track the sea ice edge (Figure 2). In contrast, one 415 

female in 2013 travelled to the West along the Antarctic continent despite increased sea ice extent 416 

before going back to Kerguelen (Figure 2). Among males, two different behaviours were exhibited by 417 

different individuals throughout the ice covered season: one group of males in 2004, 2012 and 2013 418 

remained within the peri-Antarctic shelf independently of the sea ice extent (Figure 2); while another 419 



  

group (1 individual each time in 2004, 2008, 2009, 2012, and 4 individuals in 2013) exhibited patterns 420 

similar to females (Figure 2). The latter group arrived on the Antarctic shelf earlier in the season than 421 

the other individuals. 422 

 Figure 6 shows the monthly animals’ track versus the monthly sea ice extent variability for 423 

the specific year 2013. Females (red tracks on Figure 6) exploited mostly areas where sea ice 424 

concentration was highly variable (except the female travelling to the West) a pattern not observed 425 

for males (black tracks on Figure 6).  426 

 427 

   3.3.1.3 Hydrographic properties 428 

 A total of 9 water masses were used by the seals during their bottom phase of dives (Figure 429 

5C; Figure 7). Females only rarely visited shelf-associated water masses (i.e. HSSW and ISW). Males 430 

and females clearly targeted different water-masses for hunting (Figure 8). While both males and 431 

females tended to use hunting hotspots in AASW and MCDW, they used very distinct 432 

temperature/salinity classes within these water masses. The largest hotpot for females was in the 433 

warmer part of MCDW and AASW, while males favoured mainly the coldest part of AASW. Males also 434 

used hotspots of foraging activity in the warmer part of AASW, but to a lesser extent than those in 435 

the colder AASW. These distinct TS classes were characteristic of distinct geographic regions. The 436 

coldest part of AASW lies over the shelf and over the continental slope (Bindoff et al., 2000), while 437 

the warmer AASW is observed further north, in the open ocean, and shallower than the warmer part 438 

of MCDW (Bindoff et al., 2000). 439 

 440 

  3.3.2 Quantitative approach: Environmental conditions and foraging behaviour 441 

 For males, the most parsimonious model describing PEE/day included all variables except 442 

bathymetry (Table 4): PEE/day was higher for high slope indices, in class 2 of sea ice concentration 443 

and in AASW relative to other water masses. However, male PEE/day was significantly lower within 444 

the MSW relative to other water masses and with advance of the year. Both AASW and high slope 445 

indices correspond to the continental slope area where the Antarctic slope current is observed. High 446 

slope indices could be found within canyons as well. For females, the most parsimonious model 447 

included all variables (Table 4). Female foraging activity (predicted PEE/day) was higher for shallower 448 

seabed depths, high slope indices, class 3 of sea ice concentration, and within the MCDW. Note that 449 

while foraging activity was higher for shallower seabed depths, these shallower depths refer to 450 

relatively deep water, north of the continental shelf (females stay mostly north of the continental 451 

shelf; see Figure 4A). Female foraging behaviour (predicted PEE/day) was significantly lower within 452 

the AAIW relative to other water masses and with advance of the year. 453 

 454 



  

4. Discussion 455 

 4.1 From dives to prey: new approach, limits and perspectives 456 

 A key objective of this study was to assess if PEE in SES could be predicted from low-457 

resolution dive parameters at the scale of one day. PEE represent a proxy of foraging activity (Viviant 458 

et al., 2009; Gallon et al., 2013) and provide indirect information on the distribution and relative 459 

abundance of prey (Naito et al., 2013; Guinet et al., 2014). The objective was not to predict the exact 460 

number of PEE/day but to obtain a relative index of foraging activity for a large number of individuals 461 

foraging in Antarctic waters. 462 

 463 

  4.1.1 Predictive ability, population inference and limitations 464 

 Our method has a number of limitations with respect to sample size, foraging area, life stage 465 

and sex ratio. Despite these factors, patterns of dive behaviour and path trajectory linked to foraging 466 

activity were nonetheless identified. Moreover, predictive models provided important information 467 

on foraging activity for low-resolution datasets for which no information on foraging activity was 468 

otherwise available. Indeed, most studies on low-resolution datasets of SES used proxies of feeding 469 

activity associated with specific vertical movements (e.g. Bailleul et al., 2007a), horizontal 470 

movements (e.g. Dragon et al., 2012b) or both (Dragon et al., 2012a; Bestley et al., 2012, 2015) 471 

without direct evidence with a foraging metric. Studies using body condition (e.g. Biuw et al., 2007) 472 

as a proxy of feeding success are complicated by the temporal lag between feeding areas and 473 

detectable responses in body condition (Thums et al., 2008; Dragon et al., 2012a).  474 

 The limited number of individuals in the training dataset for the demersal model (i.e. 8 out of 475 

37 individuals) reduces confidence in predictions at the population level. However, in view of the 476 

behavioural differences observed between the demersal and pelagic dives, a specific model for each 477 

foraging strategy was probably still better than considering a global model.  478 

 No post-moulting animals feeding close to the Antarctic continent have been equipped with 479 

accelerometers due to technical (high memory need of accelerometer data) and field logistics 480 

(recapture of the animal) limitations. Thus, both pelagic and demersal predictive models were built 481 

on individuals using the frontal zones around the Kerguelen Islands, but subsequently applied to 482 

individuals in the Antarctic region. However the animals in the training dataset encounter a sufficient 483 

range of environmental conditions to capture a range of behaviours so we assumed that any bias 484 

associated with differences in foraging areas is limited.  485 

 Furthermore, the models were developed on post-breeding animals and then applied to 486 

post-moulting animals, which have different energy requirements and prey abundance. Shallower 487 

and longer dives were observed for post-moulting seals compared to post-breeding for both 488 



  

strategies (i.e. demersal and pelagic), leading to a potential overestimation of foraging activity when 489 

applying regression coefficients from the training dataset on the study dataset (cf. Table 3). 490 

 Males were not represented in the training dataset. Bailleul et al. (2010a) described marked 491 

differences in behaviour according to sex and age, most likely due to different mass and previous 492 

investigations highlighted a positive correlation between body size and maximum dive durations 493 

(Hindell et al., 2000; Irvine et al., 2000; McIntyre et al., 2010a) while the physical size of animals did 494 

not govern the depths utilized (McIntyre et al., 2010a). Differences in body condition between males 495 

and females could also be expected with implications on dive behaviour: for example, juvenile males 496 

allocate relatively more energy to lean tissue than juvenile females storing greater proportions as fat 497 

(Field et al., 2007a). The training dataset only composed by females did not allow us to test the 498 

gender difference in the relation between dive patterns and PEE. However, only two males in our 499 

study had a mass above 1000 kg suggesting most of males were sub-adult males with mass similar to 500 

females (Table A.2). We then expected the same sign in the relation for males and females with 501 

differences in the strength of the relation depending of the sex.  502 

 503 

  4.1.2 Dive and trajectory parameters: predictors of foraging activity  504 

 The study shows that dive behaviour and path trajectory parameters can be used to predict 505 

PEE of SES. Only two variables (dive duration and ascent speed) were needed to predict foraging 506 

activity adequately for the demersal model, while four variables (ascent speed, horizontal speed, 507 

maximum diving depth and bottom phase duration) were required in the pelagic model. 508 

 The metrics for dive time differed between pelagic and demersal strategies, with an 509 

important positive contribution of dive duration in the demersal model while only bottom duration 510 

was retained for the pelagic model and made a poor contribution to the prediction. The number of 511 

PEE/day was lower in the demersal strategy compared to pelagic strategy, and on the shelf 512 

compared to the continental slope and pelagic area. Small, schooling prey (e.g. Myctophids; Koz, 513 

1995; Cherel et al., 2008) were likely to be targeted by seals foraging in pelagic waters, while larger 514 

prey items such as Notothenids and Morids (Bradshaw et al., 2003; Banks et al., 2014) are probably 515 

more dominant prey items for seals foraging demersaly on the shelf. Foraging theory predicts that 516 

animals exploiting clumped or ephemeral prey such as schooling fish need to invest less time in 517 

foraging activities than animals feeding on solitary prey (Perry and Pianka 1997; Thums et al., 2013; 518 

Bestley et al., 2015). In a demersal dive strategy, longer dives would increase the probability of 519 

encountering prey (Mori and Boyd 2004; Austin et al., 2006). Between the pelagic and demersal 520 

strategies, the differences in selection and contribution of dive time variables and number of 521 

PEE/day suggest that optimal dive parameters of elephant seals vary significantly depending on 522 

habitat, prey size, quality and distribution (Costa 1991; Thompson and Fedak 2001). Regarding the 523 



  

negative relationship between foraging activity and dive depth for the pelagic strategy, we suggested 524 

that seals are likely to obtain a prey items sooner in a high-quality patch (i.e. high average rate of 525 

resources acquisition) than in a low-quality patch, thus reducing diving depth as reported by Bestley 526 

et al. (2015). 527 

Finally, we observed that predators reduced their horizontal speed, increasing their search 528 

and encounter rate with prey as suggested by Fauchald and Tveraa (2003), Thums et al. (2011) and 529 

Dragon et al. (2012a) when engaged in a pelagic dive strategy and in areas of high prey density 530 

(based on high PEE). Vertical transit rate (ascent speed) was an important predictor of foraging 531 

activity for both pelagic and demersal model as previously observed for Antarctic fur seals and SES 532 

which adopt higher ascent and descent rates in high-quality patches (Thums et al., 2013; Viviant et 533 

al., 2014) probably to optimize the energy gained from prey relative to the energy expended during a 534 

dive, but also presumably to quickly relocate the favourable prey patch (Gallon et al., 2013).  535 

 536 

 4.2. Long migration within a remote and constrained environment: linking oceanographic 537 

conditions to foraging efforts 538 

 We identified the foraging behaviour of elephant seals in relation to oceanographic 539 

processes that might influence nutrient availability and resource abundance. We described different 540 

strategies adopted by males and females and linked our results with inference about the diet, life-541 

history traits and predictability of foraging grounds. 542 

 543 

  4.2.1 Female patterns  544 

 The distribution of female foraging activity broadly matched the southern extent of the 545 

Southern Boundary Front, an important region of high primary production supporting a rich marine 546 

ecosystem (e.g. Tynan, 1998).  547 

 Sea ice played also an important role in terms of the seal distribution patterns. Females 548 

mostly exploited coastal regions west of 70°E where short duration of seasonal ice cover is observed 549 

in coastal and marginal ice regions west of 85°E (Massom et al., 2013). Further east (from 70°E to 550 

145°E), females remained over deep waters between 4000m and 2000m isobaths again coinciding 551 

with the short duration of seasonal ice cover largely confined to the marginal ice zone for the eastern 552 

sector (Massom et al., 2013). Females from Kerguelen may overcome the constraints of sea ice by 553 

using areas where sea ice is highly variable or the outer part of the pack ice, enabling them to avoid 554 

the risk of getting trapped by sea ice (Bornemann et al., 2000; Bailleul et al., 2007a; Thums et al., 555 

2011; Hindell et al., 2015). A recent study demonstrated a negative influence of increased sea ice 556 

duration on female abundance in breeding colonies at Macquarie Island between 1988 and 2011 557 

with a lag of three years, probably by preventing them from accessing profitable prey patch areas 558 



  

close to the continental shelf or within the pack ice (van den Hoff et al., 2014). Observed changes and 559 

variability of East Antarctic sea ice season duration from 1979/80 to 2009/10 highlights that in this 560 

region sea ice patterns are considerably more complex than the well-documented trends in the 561 

western Ross Sea sectors showing extensive increased ice season duration over the past three 562 

decades (Massom et al., 2013). It is then likely that areas of more variable sea ice conditions allow 563 

females to benefit from profitable prey patch areas within the pack ice in East Antarctica while 564 

minimizing the risk of getting trapped compared to the western Ross Sea.  565 

 A key finding of our study was that predicted foraging activity was higher within high sea ice 566 

concentration, which is consistent with the seasonal sea ice zone being one of the most dynamic and 567 

productive marine ecosystems on Earth (Brierley and Thomas, 2002; Clarke et al., 2008). During 568 

formation, sea ice incorporates particulate matter, so its algal biomass is considerably greater than in 569 

the underlying upper water column (Quetin and Ross, 2009) during autumn through early spring 570 

(reviewed by Massom and Stammerjohn, 2010), providing a readily accessible food source for pelagic 571 

herbivores such as krill (Meiners et al., 2012). Extended and high sea ice concentration is usually 572 

linked with elevated ice-algal productivity and a higher krill biomass (Loeb et al., 1997; Atkinson et 573 

al., 2004). Krill represents a keystone organism in the Antarctic food chain that could sustain higher 574 

predators including SES foraging within the pack ice (Nicol, 2006; Schofield et al., 2010; Walters et al., 575 

2014).  576 

 The hydrographic properties of hotspots of foraging activity suggested that female SES 577 

feeding south of the 4000m isobaths within the pack ice and over middle basins dived through the 578 

cold AASW to target discontinuities such as the transition between the AASW and the MCDW. The 579 

MCDW may represent important overwintering areas for mesopelagic fauna such as zooplankton, 580 

fish and squid (Schnack-Shiel, 2001; Lawson et al., 2004; Biuw et al., 2007). Females were also 581 

foraging in areas close to the Antarctic shelf and within the continental slope where intrusion of 582 

MCDW brings relatively warm and nutrient rich water onto the continental shelf stimulating primary 583 

and secondary production in the region (Prézelin et al., 2000). These results are clearly illustrated in 584 

Figure 9B, where TS classes of Figure 8 recorded by females SES were projected on a high resolution 585 

meridional oceanographic section (along 60°E; Meijers et al., 2010) similar to the study of Biuw et al. 586 

(2007). The figure shows an important area of foraging activity along the upper boundary of MCDW 587 

and close to the shelf as previously observed by Biuw et al. (2007) and Hindell et al. (2015). 588 

Interestingly, females also spent an important proportion of time within HSMCDW (the saltiest part 589 

of MCDW), which could be used to locate prey patches as it is known that seals may employ high 590 

salinity chemo-olfaction for prey location (Sticken and Dehnhardt, 2000). Foraging activity was 591 

significantly lower within AAIW confirming that the area encompassed between the PF and the 592 

SACCF is less profitable to SES (Biuw et al., 2007; Guinet et al., 2014).   593 



  

The ocean properties of areas of high foraging activity can be explained by the presence of 594 

potential prey of female SES. For example, the Antarctic silverfish (Pleurogramma antarcticum), 595 

which is the most abundant pelagic fish in Antarctic shelf water (La Mesa et al., 2010), generally 596 

spawns at the sea ice edge (Koubbi et al., 2009) and juveniles are often associated with intrusion of 597 

MCDW onto the Antarctic shelf/slope (La Mesa et al., 2010). Similarly, mesopelagic fish such as the 598 

Antarctic lanternfish (Electrona Antarctica), which usually inhabit deep waters and are found under 599 

pack ice feeding on zooplankton (Kaufmann et al., 1995), may also be consumed by SES. A recent 600 

study coupling tracking data with fatty acid signature analysis (FASA) on female SES from Macquarie 601 

Island, reported that females foraging in the pack ice habitat were likely to have a multi-species diet, 602 

i.e. an evenly mixed diet of fish and squid (Banks et al., 2014). Females may therefore consume 603 

various types of prey associated with the sharp discontinuity and intrusion on the shelf of the MCDW 604 

and inhabiting the pack ice.  605 

 Females foraging in the inter-frontal zone weaned smaller pups than females foraging in 606 

Antarctic waters (Authier et al., 2012b). Thus, Antarctic trips associated with ocean features with 607 

predictable enriched resources (such as the MCDW and pack ice habitat), adopted by 25 % of females 608 

from Kerguelen (Bailleul et al., 2010a), may explain the apparent benefit in terms of pup survival 609 

observed in the study of Authier et al. (2012b).  610 

 611 

  4.2.2 Male patterns 612 

 Our study revealed that sub-adult males mainly travelled and foraged within the south-613 

eastern part of the study area: east of ~70°E and in the Antarctic shelf and continental slope regions.  614 

 One prominent feature of the male foraging strategy was the number of pelagic dives 615 

performed on the Antarctic shelf. Males spent 51 % of their time on the shelf where pelagic dives 616 

represented 33 % of all dives, which resulted in a higher rate of foraging when feeding pelagically. 617 

This result contrasts with previous studies assuming that seals within the peri-Antarctic shelf region 618 

mostly foraged benthically (Bailleul et al., 2007a, 2007b; Biuw et al., 2007, 2010; Costa et al., 2010; 619 

James et al., 2012; McIntyre et al., 2014). Individuals using a pelagic strategy likely target pelagic fish 620 

prey (e.g. P. antarcticum) or squid, while those using a demersal strategy likely take deep species 621 

such as Antarctic toothfish (Dissostichus mawsoni). However, adult toothfish also use the water 622 

column and are potentially more common at depths shallower than 200 m than previously thought 623 

(Fuiman et al., 2002). The pelagic dive strategy displayed by males over the shelf/slope region could 624 

be a response to a large biomass of prey in the water column, and is an important supplement to the 625 

demersal dives (e.g. Bailleul et al., 2007a, 2007b). The lack of influence of seafloor depth on the 626 

foraging behaviour of males and the importance of pelagic dives within the ASF can possibly be 627 

attributed to sub-adult males exploiting the seafloor itself less often, compared to adult males (e.g. 628 



  

McIntyre et al., 2014). Interestingly, the deep dives within canyons were mainly performed by males 629 

with above average weight (i.e. 664 ± 177 kg; average male weight 553 ± 256 kg), perhaps the only 630 

ones physiologically capable of foraging deeper (McIntyre et al., 2010b) and catching bigger prey 631 

items such as large squid (Field et al., 2007b) thereby increasing the range of prey sizes and their 632 

foraging niche. Another explanation may lie in greater energy requirements of large males forcing 633 

them to hunt for larger and/or more energetically rewarding prey in these deep canyons. Further, a 634 

few males continuously dived for short periods to depths shallower than 250 m with high PEE 635 

(≤1000) on the shelf mostly during winter season when sea ice cover is important. Male SES from 636 

King George Island displayed similar behaviour with shallower dives when in high sea ice 637 

concentrations (McIntyre et al., 2014). This new observation could reflect SES foraging on prey close 638 

to the surface in response to reduced surface light intensity during winter, such as the Antarctic 639 

silverfish (Pleuragramma antarcticum) (Fuiman et al., 2002) or even krill associated with sea ice 640 

habitat (Walters et al. 2014). 641 

 Foraging activity was higher within the continental slope in AASW relative to other regions 642 

and water-masses. The influence of the AASW is from the coldest class (< -1.6°C; Bindoff et al., 2000; 643 

Figure 8A) and TS characteristics show typical waters of the Antarctic Slope Front and shelf waters. 644 

High foraging activity was clearly associated with TS classes corresponding on the meridional 645 

oceanographic section to a deepening of isopycnals and high horizontal velocity (Figure 9A). This 646 

strongly suggests that the TS classes in which males actively foraged were tightly associated with 647 

Antarctic Slope Current jet (ASC) and Antarctic Slope Front (ASF). The ASF corresponds to the strong 648 

subsurface horizontal temperature and salinity gradient separating the lighter AASW from the denser 649 

MCDW (Meijers et al., 2010). The significance of the continental slope region to biological 650 

productivity in the Antarctic is evident from the potential of upwelling deep water to elevate the 651 

early larval stages of krill (Euphausia superba) onto the continental shelf (Marr, 1962). Jacobs (1991) 652 

observed a regionally higher biological productivity along the ASF, which plays an important role in 653 

the distribution of sea ice, chlorophyll, krill and cetaceans (Nicol et al., 2000a, 2000b). This cold, 654 

dynamic and topographically constrained structure, might constitute a deep ocean source region for 655 

nutrients (Jacobs, 1991), resulting in higher productivity and enhanced and concentrated resources, 656 

which could be detectable in terms of prey availability for SES. Meijers et al. (2010) found the ASF 657 

extends from the surface to the bottom over the maximum gradient in the shelf break (i.e. depths ~ 658 

500 dbar to 1000 dbar) that could be reached by SES. Two important hotspots of foraging activity 659 

were identified for males associated with the ASF. One was situated in the region of Cape Darnley 660 

known for the particular “V” shape of the Antarctic Slope Front at 70°E (Meijers et al., 2010). The 661 

second is situated in the region close to 110-115°E within the shelf and shelf break, and matches with 662 

observations from Bindoff et al. (2000) who described a very pronounced horizontal temperature, 663 



  

salinity and density gradient of the ASF at 112°E. Connection between important physical 664 

oceanographic features and SES foraging behaviour has been also reported by McIntyre et al. (2012) 665 

for males from Marion Island with increased foraging efforts along the South West Indian Ridge due 666 

to higher productivity in mid-water depth layers associated with upwelling (Sokolov and Rintoul 667 

2007). Similarly, males from King George Island travelled to the region of the Filchner Trough outflow 668 

in the Weddell Sea that supports intensive mixing (Tosh et al., 2009).  669 

 The pattern of males remaining on the shelf irrespective of sea ice extent is consistent with 670 

results of Bailleul et al. (2007a) and Hindell et al. (2015). However, one group of males did move 671 

north with the ice to pelagic foraging grounds similar to the females. This group was mostly 672 

composed of smaller seals, probably corresponding to juvenile animals and of two heavier sub-adult 673 

animals. Younger and less experienced seals may not take the risk of being trapped by sea ice 674 

probably due to mid-year haulouts for these age classes, which agrees with the observed ontogenetic 675 

change in foraging ground selection from oceanic to neritic in males (Bailleul et al., 2010a; Chaigne et 676 

al., 2013). As the seals age, they perform longer trips to sea, travelling farther and spending more 677 

time closer to Antarctica (Field et al., 2004). In contrast, the two larger males may have moved north 678 

to avoid getting trapped by sea ice, since they are approaching or reached sexual maturity and 679 

therefore may prioritize returning to breeding colonies (as suggested by Biuw et al., 2010). 680 

 Different individuals tended to forage in the same zones (both within and between years) 681 

suggesting that the distribution of many prey species associated with some meso-scale features may 682 

be predictable to some degree (Field et al., 2001; Bradshaw et al., 2004; Weimerskirch, 2007). While 683 

opportunistic foraging was observed during transit, most males maintained their trajectory towards 684 

the Antarctic continent supporting the hypothesis that elephant seals possess a "memory map" of 685 

expected foraging gains in different regions, based on experience from previous years (Thums et al., 686 

2011). Finally, Authier et al. (2012a) revealed how a stable foraging strategy developed early in life 687 

positively covaried with longevity in male SES. This could explain why similar movements and 688 

foraging patterns are observed for males in our study over multiple years. 689 

 690 

5. Conclusion  691 

 692 

 The present study shows that low-resolution dive data can be used to predict the foraging 693 

behaviour of apex predators, allowing older datasets to be re-visited. 694 

 Over years, females showed a wide distribution with area of high foraging activity mainly 695 

south of the 4000m isobaths, within the pack ice and over mid-depth basins. They targeted the upper 696 

boundary of MCDW which may represent important overwintering areas for mesopelagic fauna and 697 

avoided being trapped by sea ice by remaining in areas of high sea ice variability. Males 698 



  

predominately travelled to the south-eastern part of the East Antarctica region where they were 699 

found to be associated, at a large scale, with the ASF known to play an important role in the 700 

concentration of potential prey species of SES. Unexpectedly, hotspots of high foraging activity were 701 

associated with pelagic dives within the ASF and not to demersal behaviour on the shelf probably 702 

due to their diving capacities associated with their age. High foraging activity was associated with 703 

intermediate sea ice concentration that could be explained by an early arrival in the season on the 704 

Antarctic region, restricted trajectories to the Eastern part where sea ice extent is lower or a 705 

potential use of coastal polynyas. 706 

 Sea ice is an ecological double-edged sword: it can impede access to marine food resources 707 

while enhancing biological productivity. However, the precise contribution of sea ice to utilization of 708 

the peri-Antarctic region in winter by SES remains unknown. Further work is needed to identify the 709 

type of sea ice used by seals (compact or diffuse sea ice edge, flaw leads, fast ice, polynyas) and how 710 

they rely on these features in terms of cost and benefit. Optimal sea ice zones in terms of SES 711 

foraging activity probably constitutes an important information source regarding the under sea ice 712 

physical and biological habitat, a current “blind spot” that we can investigate using instrumented 713 

vertebrates. The complex responses of organisms to sea ice requires to investigate the complete 714 

linkage between SES and sea ice and how apex predators and their related resources could be 715 

influenced by changes in sea ice in the East Antarctic region. 716 
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Tables 

Table 1. Definition criterions of water masses determined from CTD-SRDLs temperature, salinity, pressure collected by the 35 post-

moulting seals at the bottom phase of dives from 2004 to 2013 along tracks from 55°S to the Antarctic continent and from 0 to 

150°E. 

 

Acronym Type of water mass Neutral density  

ƴn (kg.m-3) 

Potential Temperature θ (°C) Salinity S (psu) 

AAIW Antarctic Intermediate Water 27.0 < γn < 27.5   

AASW Antarctic Surface Water 27.5 < γn < 28.03   

CDW Circumpolar Deep Water 28.03 < γn < 28.27 θ > 1.5 S > 34.5 

MCDW Modified Circumpolar Deep Water 28.03 < γn < 28.27 θ < 1.5 S < 34.7 

HSMCDW High Salinity Modified Circumpolar Deep Water 28.03 < γn < 28.27 θ < 1.5 S >= 34.7 

MSW Mixed Shelf Water γn > 28.27 θ > -1.85  

AABW Antarctic Bottom Water γn > 28.27 θ > -1,7 S > 34,6 

HSSW High Salinity Shelf Water γn > 28.27 Tf < θ < -1.85 S < 34,72 

ISW Ice Shelf Water γn > 28.03 θ < Tf  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 2 Summary of the dive and trajectory statistics for the study dataset (post-moulting SES) and for the training dataset (post-

breeding SES) for each dive strategy (i.e. demersal or pelagic). 

 

  Study dataset (post-moulting) 

      Demersal 

  

Pelagic 

    Quantile 25 % Median Quantile 75 % Quantile 25 % Median Quantile 75 % 

Maximum depth (m) 290 390 503.8 231.3 380 525 

Dive duration (min) 16.1 21 27.1 17 23.5 31.3 

Bottom time duration (min) 8.3 12.3 17.6 6.9 11.2 17.4 

Speed descent (m.s
-1

) 1.4 1.7 2.1 0.73 1.2 1.6 

Speed ascent (m.s
-1

) 0.88 1.2 1.4 0.65 0.97 1.2 

Horizontal speed (m.s
-1

) 0.18 0.32 0.51 0.32 0.60 0.98 

  Training dataset (post-breeding) 

      Demersal 

  

Pelagic 

    Quantile 25 % Median Quantile 75 % Quantile 25 % Median Quantile 75 % 

Maximum depth (m) 460.9 545.5 591.4 356.5 491 674.8 

Dive duration (min) 16 18.3 20.7 16 18.8 21.7 

Bottom time duration (min) 7 9.5 11.9 6.1 8.6 11.1 

Speed descent (m.s-
1
) 1.1 1.7 2.3 1.1 1.5 1.8 

Speed ascent (m.s
-1

) 1.2 1.5 1.7 1.2 1.4 1.5 

Horizontal speed (m.s
-1

) 0.03 0.26 1.1 0.38 0.68 0.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 3. Summary of regression coefficients and goodness-of-fit indices from the two generalized linear mixed effects models of 

Prey Encounter Events (PEE, based on high-frequency sampled activity data) as a function of various summary dive parameters, 

based on 37 post-breeding females (training dataset). Separate models were fitted for demersal and pelagic type dives. 

 

Quasi-Poisson distribution Pelagic Model  

(n=984, 36 females) 

Demersal Model  

(n=60, 8 females) 

Explanatory variables Coef ± SE Coef ± SE 

Intercept 6.20 ± 0.02 5.47 ± 0.11 

Maximum depth -0.28 ± 0.01 / 

Dive duration / 0.44 ± 0.05 

Bottom-time 0.09 ± 0.02 / 

Speed ascent 0.28 ± 0.01 0.31 ± 0.12 

Horizontal speed -0.21 ± 0.01 / 

Goodness-of-fit     

Deviance explainedCV 30.36 % 52.68 % 

R
2

LMM/GLMM(m)-full 38.58 % 79.21 % 

R
2 

LMM/GLMM(c)-full 67.45 % 81.97 % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Table 4. Summary of regression coefficients from the two most parsimonious models (GLMM) relating predicted PEE/day to 

environmental parameters for the 28 post-moulting SES equipped with CTD-SRDLs from 2004 to 2013. Coefficients are presented ± 

SE with their p-value associated. Significant parameters are denoted by bold characters. For factor variables (i.e. class of sea ice 

concentration and type of water mass) coefficients are given relative to the class 1 of sea ice concentrations and AASW for water 

masses. 

Negative Binomial distribution Male Model  

(n=1774, 17 males) 

Female Model  

(n=1419, 11females) 

Explanatory variables Coefficient ± SE p-value  Coefficient ± SE p-value  

Intercept 5.85 ± 0.08 < 2.0.10
-16***

 6 ± 0.04 < 2.0.10
-16***

 

Topographic parameters 

Bathymetry / / -0.18 ± 0.02 < 2.0.10
-16***

 

Slope 0.07 ± 0.01 1.4.10
-8***

 0.07 ± 0.01 3.2.10
-12***

 

Sea ice (relative to Class 1) 

Class 2 of sea ice concentration 0.19 ± 0.03 1.2.10
-9***

 0.02 ± 0.03 0.4 

Class 3 of sea ice concentration 0.11 ± 0.03 0.0008*** 0.14 ± 0.03 3.6.10
-8***

 

Water Masses (relative to AASW) 

CDW -0.14 ± 0.22  0.54 0.08 ± 0.05 0.1 

MCDW -0.02 ± 0.03 0.54 0.05 ± 0.02 0.038* 

HSCDM -0.07 ± 0.07 0.29 -0.01 ± 0.03 0.62 

MSW -0.25 ± 0.05 6.4.10
-6***

 0.20 ± 0.15 0.16 

AABW -0.03 ± 0.1 0.78 0.03 ± 0.06 0.56 

HSSW -0.13 ± 0.1 0.16 0.18 ± 0.32 0.59 

ISW -0.08 ± 0.06 0.17 / / 

AAIW -0.14 ± 0.10 0.16 -0.31 ± 11 0.0035** 

Time 

Day of the year -0.05 ± 0.02 0.0025** -0.06 ± 0.01 6.1.10
-6***

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure captions 

Figure 1. Diagram summarizing the different steps of both behavioural and environmental studies. Numbers refer to the order in 

which these steps were realized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 2. Tracks per year of the 35 post-moulting SES equipped with CTD-SRDLs from 2004 to 2013 (study dataset), linked with the 

seasonality of the sea ice in the East Antarctic region. The color scale represents the time expressed in month and the same scale is 

used for sea ice extent and tracks of animals; each sea ice line represents the maximum extent for a given day. Tracks of animal 

following the sea ice edge as sea ice extends are represented by a black line, while ones remaining in high sea ice concentration 

independently of the sea ice extension are represented by a grey line. Sea ice extent lines start from April for all years and were 

computed from AMSRE, SSMIS product and AMSR-2 satellite data. For each year, tracks of post-moulting animals are represented 

(left: males, right: females). The unique individual in 2009 was removed for visual purposes. 

 



  

 

 

 

 

 



  

Figure 3. Predictive ability of behavioural models based on the training dataset of 37 post-breeding females. For A and B, observed 

versus predicted values obtained after the leave-one-out cross-validation (CV) process are represented for the demersal model (A) 

and the pelagic model (B). For C and D, MSPE and standard error computed for each individual along the CV process are represented 

for the demersal model (C) and the pelagic model (D). Color scale on A and B represents each individual and the line 1:1 is shown, 

each dot corresponds to one daily observation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 4. Tracks of the 35 post-moulting individuals 

equipped with CTD-SRDLs from 2004 to 2013 (study 

dataset). For A and C, color indicates prediction of PEE/day 

along the track for females (A) and males (C). An 

interpolation every 12h was applied for visual purpose. For 

B and D, color indicates sea ice concentration associated 

with females (B) and males (D) filtered positions. A position 

every 6h is shown. Oceanic fronts from Roquet et al. (2013) 

are represented in white dot-dashed lines, from North to 

South: Subantarctic Front (SAF), Polar Front (PF), Southern 

Antarctic Circumpolar Current Front (SACCF) and Southern 

Boundary of the Antarctic Circumpolar Current (SB).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 5. Boxplots representing the proportion of time spent 

in each type of environment for the 28 post-moulting 

animals equipped with CTD-SRDLs from 2004 to 2013 and 

including tracks from 55°S to the Antarctic continent. 

Statistics are presented separately for males (left panels) 

and females (right panels). Part A indicates the time spent in 

different type of zone, (1) the Antarctic shelf, (2) the 

continental slope, (3) the pelagic area. Part B indicates the 

time spent in different type of sea ice concentration, (1) 

from 0 to 5 %, (2) from 5 to 80 %, (3) from 80 to 100 %. Part 

C indicates the time spent in different water masses (1) 

AASW, (2) AAIW, (3) CDW, (4) MCDW, (5) HSMCDW, (6) 

MSW, (7) AABW, (8) HSSSW, (9) ISW. Part D indicates the 

time spent in different seasons (1) Summer, (2) Autumn, (3) 

Winter, (4) Spring. Significant differences of time spent in 

each type of environment between males and females are 

indicated by a star. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 6. Tracks per month of the 13 individuals equipped with CTD-SRDLs in 2013 (5 females, 8 males) linked with sea ice variability. 

The variability is expressed as the standard deviation of the monthly average of sea ice concentration (expressed in %) from AMSR-2 

satellite data. Tracks in red correspond to females, while the black ones are for males. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 7. Temperature salinity diagrams representing all water masses sampled at the bottom phase of dives of the 17 males (A) and 

11 females (B) equipped with CTD-SRDLs from 2004 to 2013. Acronyms and definitions of water mass classes can be found in Table 

1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 8. Temperature salinity diagrams representing hydrologic properties sampled at the bottom phase of dives averaged at the 

scale of the day of the 17 males (A) and 11 females (B) equipped with CTD-SRDLs from 2004 to 2013. Color scale represents 

predicted prey encounter events from behavioural models. PEE per day below 500 is shown in gray as an attempt to highlight 

foraging hotspots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 9. Projection of the foraging activity in temperature-salinity classes (shown in Figures 8) onto a high-resolution meridional 

oceanographic section (along 60ºE; Meijers et al., 2010). Color scale represents predicted prey encounter events from the 

behavioural models for males (A) and females (B). PEE per day below 500 are not color-coded as an attempt to highlight foraging 

hotspots. The grey shading in the background corresponds to the sum of PEE per day per grid points: darker areas are associated 

with a concentration of high foraging events. Bold lines represent the 28.03 kg.m
-3

 (upper) and the 28.27 kg.m
-3

 (lower) neutral 

surfaces, while dashed lines represent intermediate neutral surfaces every 0.1 kg.m
-3

. Blue arrows represent the horizontal extent of 

the Antarctic Slope Front defined by the maximum LADCP zonal velocities observed along the meridional section (from Meijers et 

al., 2010). Bottom bathymetry along the section is shown in gray. 

 

 

 


