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19 Abstract – This work is a synthesis of a 5-year estimation of nitrogen-balance at a semi-arid, semi-natural, 

20 undisturbed grassland site (Bugac). We measured the N input of atmospheric pollutants by wet and dry 

21 deposition of gases and aerosols whilst we considered N output as NO, N2O gases volatilized from soil. Beside 

22 measurements of soil fluxes the denitrification-decomposition (DNDC) ecological model was also used and 

23 simulations were compared to and validated against the measured values. The daily flux simulations generally 

24 did not match well the measured data for N2O and NO. In most cases the mean fluxes were underestimated, 

25 though results of the comparison of monthly values suggest that model data, together with observed deposition 
26 data, are applicable to estimate the net N-balance for grasslands. The calculated yearly N-balance (net flux) 

27 between atmosphere and surface, without biological fixation and effect of grazing ranged between –9.4 and –14 

28 kg N ha
−1

year
−1 

as the sum of the measured deposition and emission terms: –11 to –15 and 0.9-2.9 kg N 

29 ha
−1

year
−1

, respectively, between 2006 and 2010. Observed and modeled soil emissions were lower by one order 

30 of magnitude than atmospheric deposition. Considering the biological nitrogen fixation and the effect of grazing 

31 (effects of both grazed plant and excreta) the net nitrogen balance varies within –6.6 and –11 kg N ha
−1

year
−1

. It 

32 seems - taken into account the high uncertainty in calculation due to the effect of grazing - that sources of 

33 nitrogen exceed the sinks; the surplus is probably mineralized in the soil. 

34 
35 Keywords: nitrogen exchange, deposition, soil emission, denitrification, DNDC model, grassland 

36 
37 1. Introduction 
38 
39 Among elements nitrogen (N) has one of the most complex biogeochemical cycles. It is mostly affected by 

40 human activities both directly and indirectly resulting in altered concentration, distribution and flux of reduced 

41 and oxidized N species (Erisman et al. 2011). Anthropogenic emissions of reactive N compounds have a direct 

42 and manifold impact on N cycle. The released compounds undergo numerous sequences of transformations in 

43 the atmosphere and water as well as soil ecosystems until they are immobilized or de-nitrified to nitrogen gas 

44 (N2); this system of processes is termed as N cascade (Galloway et al. 2003). The indirect impact of human 
45 activities further complicate the cycle of N species through affecting metabolic processes of animals, plants, and 

46 a large variety of microorganisms. Depending on the lifetime of various N compounds - from hour to hundred 

47 years - their environmental impacts can range from local direct damage to climate change (Galloway et al. 2003; 

48 Moldanová et al. 2011). 

49 Due to the complexity of N cycle many transformation processes and influencing factors have not been 

50 completely explored yet. However, it is essential to monitor them to determine the rate of pollutant emissions 

51 and the harmful effects in current and future context. There are some synthesis studies of N cycles on continental 

52 and global scale (Erisman et al. 2003; 2010; Galloway et al. 2003; Vitousek et al. 1997); nevertheless, the 

53 uncertainty in estimation of N-balance and emissions from vegetation remains high because of the relatively 

54 sparse number of available, appropriate (both lab and field) measurements. 

55 The N-balance of non-intensively managed ecosystems is dominantly determined by atmosphere- 

56 surface exchange processes. For non-fertilized grasslands, atmospheric deposition is the main source of N 

57 (Machon et al. 2011), but we also have to consider the N fixation by legumes (Ammann et al. 2009). On the 

58 other hand, a significant amount of N compounds is emitted by the biosphere. For some compounds (e.g. for 

59 ammonia) the exchange is bi-directional (e.g. Sutton et al. 2001; Zhang et al. 2010). In this case the sum of 

60 deposition and emission rates is called as net flux. 
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61 Several N compounds (e.g.: nitrogen dioxide (NO2), nitric acid vapor (HNO3), ammonium (NH +) and 

62 nitrate (NO 
–
) ions in fine and coarse mode of particle phase) have only negative flux (deposition) from 

63 atmosphere to the ecosystems, i.e. they are not released by soil and vegetation (Watt et al. 2004; Wesely and 

64 Hicks 2000). Atmospheric gases and particles are deposited in two ways to the surfaces, partly by precipitation 

65 (wet deposition) during cloud formation and below cloud scavenging, and partly by turbulent flux onto the plants 

66 and soil surface (dry deposition) (Erisman et al. 2005). In general, the rate of dry are wet deposition in grasslands 

67 is in the same magnitude in Hungary (Kugler et al. 2008; Machon et al. 2011). 

68 N compounds are emitted partly by soil and stomata of plants. Nitrogen has different forms in soil with 

69 wide-range of oxidation number from NH +
 (–3) to NO3

–
 (+5). Nitrification and denitrification processes 
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fundamentally affect the soil N-balance (Robertson and Groffman 2007), through producing intermediate gases 

as nitric oxide (NO), nitrous oxide (N2O) and elemental N2. All of those can be emitted to the atmosphere. By 

vegetation N compounds are emitted dominantly as ammonia gas (NH3) (Horváth et al. 2005; Massad et al. 
2010). Ammonia emission from soil can be observed as well but only for alkaline soils. The role of NH3 gas in 

the troposphere, the dynamics of exchange (Massad et al. 2010), as well as its role in N load and in nutrient 
supply and other aspects of NH3 in ecosystems are well known (Sutton et al. 2008; 2011). 

Trace gas exchange within surface-biosphere-atmosphere system strongly depends on meteorological 
conditions (Nagy et al. 2007), concentrations, as well as characteristics of ecosystem and soil physical, chemical 

and biological properties (Horváth et al. 2008; Meixner and Yang 2006; Smith et al. 2003; Sutton et al. 2011). 

For this reason investigation of N-exchange processes above different ecosystems is important and necessary. 

Over grassland ecosystems our knowledge is quite comprehensive concerning these processes; however, there are 

still some remaining uncertainties e.g. the contribution of N compounds to the whole N budget for a given 

ecosystem and how the contribution varies in response to external natural and anthropogenic drivers, such as 

changing climate and land management (Skiba et al. 2009). 

Several European integrated research programs (e.g. GRAMINAE, GreenGrass, NOFRETETE and 

NitroEurope) (Pilegaard et al. 2006; Soussana et al. 2007; Sutton et al. 2001; 2007) have been dealing with the N 

turnover of various terrestrial ecosystems. N flux measurements have been carried out by different scientific 

communities at many different sites from different points of view (e.g. air pollution, greenhouse effect, water 

pollution, nutrient load, biodiversity etc.) (Hicks et al. 2011; Sutton et al. 2007; 2011; INI; and EU initiatives 

like NinE and COST Action 729), while there are just a sparse number of total N-balance estimations on 

landscape scale involving all major sources and sinks. 

For detailed investigation of the biosphere-atmosphere exchange of different N compounds including 
plot measurements over different types of ecosystems and for modeling of N fluxes from plot to continental 

scale, the EU Framework 6
th 

Integrated Project (NitroEurope – www.nitroeurope.eu, Sutton et al. 2007) was 
started in 2006 coordinating the N researchers across Europe. One of the grassland stations with intensive 
measurement program of the NitroEurope network was established in central Hungary, on the Hungarian Great 
Plain, in Bugacpuszta. 

Our task in the project was to determine the N-exchange between the atmosphere and semi-natural 

grassland in a semi-arid continental climate representative for the Hungarian Great Plain, in central Hungary, 

based on measurements of N-fluxes, taking into account also their dependence on climatic conditions and on the 

possible feedbacks to soil/vegetation dynamics. In addition, we employed the DNDC (DeNitrification 

DeComposition) model to estimate soil fluxes of N-gases. This paper summarizes the results of the five year 

measurement record of the N-exchange, taking into account all of the significant N species. 

The current study is not the first one dealing with N-turnover above Bugacpuszta. In Horváth et al. 

(2010) solely the measured soil NO and N2O fluxes were published for 2002-2004. Machon et al. (2010) 

reported a preliminary net nitrogen balance based only on one year observation record. In Machon et al. (2011) 

preliminary results for the whole nitrogen balance were reported including wet and dry deposition and soil 

emission focusing mostly on weather induced variability of nitrogen exchange. 

The main aim of our work was to determine the surface-atmosphere N-balance balance over the grassland 

on the basis of measured and/or modeled upward and downward N-fluxes. In addition, we attempted to 

give a rough estimation for the total nitrogen balance, including the effect of grazing. 

 
2. Materials and methods 

 
2.1 Site of investigations 
 
The selected location was Bugacpuszta (46.69 °N, 19.60 °E, 113 m a.s.l.) in the Hungarian Great Plain, between 

the rivers Danube and Tisza. This semi-natural, semi-arid, sandy grassland is one of the most characteristic 

landscape types in Hungary; therefore, the area is protected and part of the Kiskunság National Park. 

The climate is semi-arid temperate continental, where the mean annual temperature is 10.7 °C and the 

average yearly precipitation (1989–2006) is 550 mm. The region has Chernozem-type sandy soil (according to 

http://www.nitroeurope.eu,/
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the World Reference Base (WRB) classification, see www.fao.org) with high sand (79%) and low clay (13%) 

contents in the upper 10 cm soil layer. The total carbon, organic carbon, total nitrogen content and pH in the soil 
extracted by KCl solution in the 0-10 cm layer are: 7.0% (SD=3.2); 6.3% (SD=3.2); 0.69% (SD=0.32) and 7.7 

(SD=0.36), respectively. The same parameters in the 0-60 cm layer are: 4.1% (SD=1.2); 3.2% (SD=0.88); 0.32% 
(SD=0.09) and 8.2 (SD=0.27), respectively. The area was never ploughed around at least 200 m away from the 

measurement plot. Except grazing the soil has been undisturbed. The plant association is semi-arid sandy 

grassland (Cynodonti Festucetum pseudovinae) dominated by Festuca pseudovina, Carex stenophylla, Salvia 
pratensis and Cynodon dactylon. During their evolution, endemic plant and animal species (e.g. Hungarian Grey 

Cattle) have developed extraordinary strategies to survive heat and drought. The plant community is sensitive to 
physical or chemical disturbances. For this reason, the area is a nature reserve and management is not allowed. 

The only exception is the traditional extensive grazing by a herd of the ancient Grey Cattle breed at an average 

grazing pressure of 0.5–0.8 stock ha
−1 

in the grazing season (220 days in each year), which has been going on for 

centuries in dynamic equilibrium with the grass ecosystem (Machon et al. 2010). 

 
2.2 DNDC (denitrification-decomposition) modeling 

 
2.2.1 Description of the model 

 
Ecological models like DNDC can predict the rate of processes and fluxes in different scales. These models are 

also applicable to support climatic or land use scenarios for the future planning. One of the main aims of 

biogeochemical models is to simulate C and N exchange and cycles. DNDC, a process-based biogeochemical 

model (Li et al. 1992a;b) was used in this study to calculate soil fluxes of all important gaseous N forms 

including NO, N2O, NH3, and N2 that are difficult to determine by field or laboratory measurements. Advantage 

of the model is the online access (www.dndc.sr.unh.edu/); it has been used by many research groups all over the 

world (Giltrap et al. 2010; Hsieh et al. 2005; Levy et al. 2007; Smith et al. 2010). The model has been 

continuously developed and modified (e.g. Brown et al. 2002; Neufeldt et al. 2006; Saggar et al. 2007; Xu-Ri et 

al. 2003); therefore, a lot of experiences of operation are available in the literature. 

Ecological drivers, like i) soil properties (soil texture, density, slope, field capacity, wilting point, clay 
– +
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temperature, precipitation, and global radiation), iii) vegetation characteristics (crop type, plant, and harvest time, 

details of crop phenology), iv) and farming management as tillage, fertilizers, manure, weed, irrigation, grazing 

pressure, and type (cattle, horse, sheep) with start and end date of grazing etc. as daily input parameters are 

required to simulate trace gas fluxes. These are mainly determined by soil climate and soil processes such as 

denitrification, nitrification, mineralization, decomposition etc. (Li 2007). 

Vertical profiles of soil parameters as well as trace gas fluxes are calculated based on these input data. 
Firstly, DNDC predicts daily soil temperature, moisture, redox potencial (Eh), pH, and substrate concentration, 

and then uses these to drive nitrification, denitrification, CH4 production/oxidation, and other relevant 

geochemical or biochemical reactions. Most parts of the model run at a daily time step except the soil climate 

and denitrification submodels which run at an hourly time step. Output parameters from the model runs are daily 

soil profiles of temperature, moisture, Eh, pH, and concentrations of total soil organic carbon, nitrate, nitrite, 

ammonium, urea, ammonia, as well as daily fluxes of CO2, NO, N2O, CH4, and NH3. 

For parameterization and validation of the model the meteorological (global radiation, min., max., and 

average air temperature, precipitation) and the botanical (plant species composition, areal coverage of plant, 

functional group e.g. legumes) datasets were gained by field observations of Szent István University (SzIU). The 

site-specific soil information (texture, pH, clay fraction, organic C content, bulk density etc.) was provided by 

the Research Institute for Soil Science and Agricultural Chemistry (RISSAC) of the Hungarian Academy of 

Science (HAS). Sensitivity analyses were also performed to identify main input model parameters responsible 

for the majority of changes in soil emission (for more details see Machon et al. 2010). 

The model treats nitrogen inputs from atmospheric deposition, fertilizer usage as well as nitrogen 
fixation and accounts for soil (in)organic turnover, allowing the calculation of leaching of nitrogen as well as 

gaseous emissions. The model consists of two components (Li 2000). 

The first component consists of three different submodels. 

a) Soil climate submodel. It simulates soil temperature and moisture profiles based on soil physical 

properties, weather, and plant water use in one dimension. The soil is divided into horizontal layers, water fluxes 

and heat flows which are determined by soil texture and the gradients of soil moisture potential (for water fluxes) 

and soil temperature (for heat flows). 

b) Crop growth submodel. It simulates crop biomass accumulation and partitioning of biomass into 

grain, stalk, and roots based on thermal degree days and daily N and water uptake. If N or water stress occurs, 

crop growth will be suppressed. Biomass partitioning is determined by the physiological parameters stored in the 

crop library files. 

http://www.fao.org/
http://www.dndc.sr.unh.edu/
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c) Decomposition sub-model. It simulates daily decomposition, ammonification, ammonia volatilization 

and CO2 production by soil microbes. The submodel calculates turnover rates of soil organic matter at a daily time 

step. In the DNDC model SOC resides in four major pools: plant residues or litter, microbial biomass, humads, 

and passive humus. Each pool consists of one or more sub-pools with different properties. The daily 

decomposition rate for each sub-pool is regulated by pool size, its specific decomposition rate or fraction lost per 

day, soil clay content, N availability, soil temperature and moisture, and effective depth of the soil profile. The 

effects of cropping practices on C and N dynamics are also considered in the model. The effect of soil properties 

such as soil temperature, clay fraction and water content is modeled using reduction factors that constrain 

decomposition rate from the maximum in non-optimum conditions. Nitrogen mineralized during decomposition 
+ 



190 enters the inorganic nitrogen pool as NH4  , where it accumulates, or is nitrified to NO3 (with gaseous losses as 
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NO and N2O), or is removed via plant uptake, leaching, transformation to NH3 and volatilization, or adsorption 

onto clay minerals. Soluble carbon levels, which fuel both nitrification and denitrification, are related to the 

fraction of carbon released by the decomposition of litter, labile humus, and dead microbial biomass that is re- 

assimilated in microbial biomass each day. 

The second component consists of three submodels as well (Li et al.1992 a;b; Li 2000; 2007). 

a) Nitrification submodel. It tracks growth of nitrifiers and turnover of ammonium to nitrate. 

Nitrification rate is calculated as a function of ammonium concentration, nitrifier population, temperature and 

pH. 
b) Denitrification submodel. It operates at an hourly time step to simulate denitrification and the 

production of nitrite (NO 

), nitric oxide (NO), nitrous oxide (N O), and dinitrogen (N ). based on soil redox 

potential and dissolved organic carbon (DOC) concentration. The rates for each step in the denitrification 
reduction sequence are a function of soluble C, soil temperature (or Eh for frozen soils), soil pH, N-substrate 

availability, and denitrifier biomass. As the soil dries following a rain event, the denitrifying part of each model 
layer decreases with soil water content. The growth and the death of denitrifier populations are simulated, which 

enables consumption of DOC, NO 

, NO , NO, and N O. The hourly time-step denitrification sub-model in 

DNDC is activated by three conditions which increase soil moisture and/or decrease soil oxygen availability: 

rain or irrigation events, flooding (as in irrigated rice agriculture), and freezing temperatures. Air temperature 

below 5 ºC is assumed to freeze the soil and thus, inhibit oxygen diffusion into the soil. An oxidation-reduction 

potential (Eh) is calculated depending on soil organic matter content as a proxy for oxygen consumption and 

denitrification rate is computed by using Eh as a multiplication factor. For any initiation of denitrification the 
211 initial status of the available NO3 and soluble carbon pools is provided by the decomposition submodel. 
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c) Fermentation submodel. 

Classical laws of physics, chemistry, and biology, as well as empirical equations generated from 

laboratory studies, have been employed in the model to parameterize each specific geochemical or biochemical 

reaction (Li 2000). 

During the model calibration (according to the test runs) we modify some default settings and also 

redefine some preliminary field data such as atmospheric CO2 and NH3 concentration, atmospheric N deposition, 

soil texture parameters (e.g. clay fraction, SOC profile etc.), crop biomass/yield and grazing time. To adjust the 

fluxes of N gases there was no direct approach, so it could be done only by modifying crop or soil parameters to 

alter the biogeochemical processes. After the refinement with calibration all parameter were fixed and with the 
final setting we ran simulations (different time period than the calibration period) in plot scale and compared 

directly with the field measurement (measurement had also a local scale footprint). 

The model can be run in two modes: in plot and regional scale. In the last decade this widely used 

model was calibrated and validated by field measurements by many research groups (e.g. Beheydt et al. 2007; 

Brown et al. 2002; Butterbach-Bahl et al. 2004; Cai et al. 2003; Jagadeesh et al. 2006; Pathak et al. 2005; Smith 

et al. 2002). The entire model links C and N biogeochemical cycles and the basic ecological drivers. 

 
2.2.2 Sensitivity test of the model 

 
We ran different simulations to examine the main input parameters and the relevant processes (mentioned above) 

responsible for the majority of the change in soil emission. Analyses were done by varying one input factor within 

commonly observed range, while keeping all the other input conditions at a constant value (without exhaustive 

explanation the input variables can be seen in Table 1). Variation of these parameters results in slight differences 

in the total soil nitrogen fluxes; however, they significantly affect the share of different nitrogen compounds 

(NH3, NO, N2O, and NO2) in total emission (Table 1). 

According to our results, there are relationships between emitted trace gases and meteorological 
conditions. In the case of temperature exponential relationship can be assumed because thermal reaction rate 

generally exponentially increases with the temperature. Overall, the model is sensitive to the changes of 

meteorological parameters. Some soil properties were also varied. Parallel simulations were performed by 

changing initial parameters e.g. pH, clay fraction, SOC (soil organic carbon). We concluded that the model is 
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sensitive to clay content, pH as well as microbial processes and variations in surface carbon content (Table 1). 

During sensitivity analysis we examined the effect of variation in land management. DNDC is able to consider 

various land use practices, e.g. use of organic or inorganic fertilizers, irrigation, cutting and grazing by cattle, 

horses, sheep, etc. We varied the number of cattle per hectare and the grazing time. Grazing seems to have a 

strong effect on ammonia emission, while other N-gas emissions are not significantly affected. 

The model is also sensitive to the vegetation properties: for instance, grass classification determines the 

yearly amount of dry matter. Additionally, plants also affect other processes, like decomposition of organic 

compounds, and affect the C/N ratio or the microbial activities. The sensitivity analysis has shown the most 

critical input parameters which have to be measured accurately. 

 
2.3 Measurement of plant/soil C/N content 
 
Total carbon and nitrogen content in soil and plant samples were analyzed by EuroVector EA 3000 type elemental 

analyzer based on dynamic flash combustion principle. The lowest absolute detection limit is 0.2 µg in 

1 g sample. Analyses were preformed at the laboratory of Hungarian Forest Research Institute. 

 
2.4 Measurement of wet nitrogen deposition 

 
Wet depositions of ammonium and nitrate ions were determined based on concentration measurements by 
spectrophotometry (indophenol-blue) and ion chromatography methods, respectively in daily wet-only 
precipitation samples. Relative error (precision) of both analytical methods was below 5% while the minimum 

detection limit (MDL) was 0.05 mg N L
–1

. The estimated bulk error of the concentration measurements and 
precipitation sampling was around 10%. Fluxes can be calculated as follows: 

 

Fwet   c  pd , (1) 

where Fwet is the deposited nitrogen in the precipitation (mg N m
−2 

day
−1

), c is the concentration of ammonium 

or nitrate in the precipitation (mg N L
−1

) and pd is the amount of daily precipitation (L m
−2 

day
−1

). 

Meteorological parameters like precipitation, air temperature, soil temperature, and soil moisture were 

also measured at the station. 

 
2.5 Determination of dry nitrogen deposition based on the inferential method 
 
24-hour sampling by the three-stage filter pack method by EMEP (1996) was used to determine the 

274 concentrations of NH3 gas, HNO3 vapor, NH +, and NO − particles. Concentrations of nitrate/nitric acid and 
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ammonium/ammonia (c) were measured by ion chromatography and spectrophotometry (indophenol-blue 

method), respectively. For all components the bulk relative error (precision) of sampling and measurements was 

around 10% and the detection limit (MDL) was 0.1 μg N m
−3

. Concentration of NO2 was monitored by a 

HORIBA APNA 350 instrument (detection limit: 0.2 μg N m
–3

, precision: <5%). 

Dry deposition fluxes Fdry (mg N m
−2 

day
−1

) of nitrogen components mentioned above were determined 
by the inferential method according to Eq. (2) based on the measured concentration c of the given compound (μg 

N m
–3

) using inferred deposition velocities vd (mm s 
−1

) from the literature (Table 2): 
 

Fdry   f  vd  c , (2) 

 
where f is a conversion factor among different length, mass, and time units. Deposition velocities of nitric acid 

vapor and ammonia gas were estimated from measurement of Horváth et al. (1992; 2005) (see Table 2) where 

the climate, soil characteristics and grass surface were similar as to our site. The deposition velocity of NO2 

above grass varies between 0.4 and 2.8 mm s
−1 

caused by climate dependence, annual and diurnal variations at 

different sites. Yearly mean deposition velocity (1.35 mm s
−1

) was adopted and used based on the literature data 

of Hesterberg et al. (1996): 1.1 to 2.4 mm s
−1

; Horváth et al. (2005): 0.4 mm s
−1

; Marner and Harrison (2004): 

0.8 to 2.5 mm s
−1

; Yamulki et al. (1997): 0.67 mm s
−1

; and Watt et al. (2004): 2.77±0.17 mm s
−1

. 

Limited number of dry deposition velocity values can be found for nitrate and ammonium particles in the 
literature. Mean particle diameter can be a good approximation for estimation of vd due to the dependence of 

deposition velocity on particle size. As the rate of sedimentation (deposition by gravitation) is proportional to the 

size the ammonium has lower deposition velocity rate than nitrate, in accordance with the deposition velocities 
recommended by Borrell et al. (1997) and Gallagher et al. (2002) for nitrate and ammonium ions, respectively 

(Table 2). 

 
2.6 Soil nitrous oxide flux measurements by static chambers 
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Soil N2O flux was measured by weekly samplings during non-freezing periods (between 2006 and 2010) using 8 

parallel static soil chambers (A=0.25 m
2
; h=5 cm) (Christensen et al. 1996; Clayton et al. 1994; Horváth et al. 

2006). The installation of the chambers, the sampling protocol and the concentration measurement by GC-ECD 

were described earlier in Machon et al. (2010). To eliminate the effect of non-linearity caused by saturation 

effect during sampling (Stolk et al. 2009) some pilot measurement were done to justify the linearity of 

concentration changes in the static chambers. Above the sandy soil linear concentration changes were observed 

in the first 30 minutes of the enclosure period. The relatively constant atmospheric background concentrations 

(320 ppb) were sampled immediately after closure. The detection limit was determined taking into account a 

minimum 10% change in concentration during sampling from the initial background values. According to this 

criterion, the calculated detection limit of fluxes is 1.3 μg N m
−2 

h
−1

. 

Flux was determined according to Horváth et al. (2008): 

 

313 F   
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314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 

338 

339 
340 
341 
342 
343 
344 

m  ch 

 
where FN2O is the flux (μg N m

−2 
hour

−1
), 2 is a  conversion factor from ppb unit into μg N m

−3 
(being two N in 

the N2O molecule), ΔC is the difference in mixing ratios (nL L
−1 

or pbb) in chambers at the end and the start of 
samplings, t=30 min: the time of samplings, AN is the relative atomic weight of N (14 g), Vch the volume of 

chambers (m
3
), 60 is the time conversion factor from minutes to hours (min/hour), f=1.090 is a dimensionless 

correction factor taking into account the residual pressure in the evacuated tubes after evacuation, Vm is the 

temperature dependent molar volume of ideal gases (m
3
), and Ach is the surface area (m

2
) of soil covered by 

chambers. 
Results of the statistical analysis showed that the non-systematic bulk error (coefficient of variation) of 

sampling and analysis was always below 10%. It was estimated by 10-10 parallel chambers in the field using t=0 
samples where accumulation of soil emitted N2O is zero and the background mixing ratio is measured in 

chambers (≈320 ppb). Taking into account that the average accumulation rate is of 30%, the estimated error is in 
the same magnitude for samples taken in t= 10; 20 and 30 min. 

 
2.7 Soil nitric oxide flux measurements by dynamic chambers 

 
Soil emission of NO has been determined by the dynamic chamber method as described in Horváth et al. (2006). 

The installation of the chambers, the sampling protocol and the concentration measurement by Horiba 

APNA/APOA 350 instruments were described earlier in Machon et al. (2010). 

Chemical correction of rapid reaction of NO with ozone (NO+O3→NO2+O2) was taken into account. 

NO flux was estimated according to Meixner et al. (1997). Under steady-state conditions the mass balance 
equation for NO can be written as follows (the photolysis rate of NO2 inside the dark chambers was estimated to 

be zero): 

 

Ff   Fm  Fbl   Fgp   0 , (4) 

 
where Ff is the soil flux, Fm is the difference between fluxes entering and leaving the chamber, Fbl is the term for 
the wall effect which was negligible because of the relatively short residence time (40 s) of the gas mixture in the 
chamber, and Fgp is the loss of NO due to the chemical reaction with ozone. After solving Eq. (4) soil flux of NO 

(Ff , μg N m
−2 

hour
−1

) can be calculated as: 

 

345 
 

F   NO 
 

  NO 
 

 f  f  
Q 


 
k  NO  O  f  

V 
, (5)

 

f          1  2       3    1 

346 

out  in A  out  out  A 

347 
348 
349 

where Q is the flow rate (1.5×10
−3 

m
3 

minute
−1

), A is the area of the chamber (20×10
−3 

m
2
), [NO]out and [NO]in 

are the mixing ratio of NO in the air (ppb or nL L
−1

) leaving and entering the chamber, respectively, while 

 

350 
 

351 

f   
AN 

Vt 

 

, (6) 

352 
353 

where AN is the relative atomic weight of N, Vt is the molar volume (m
3
) of air at the given temperature, f2=60 is 

the conversion term from minutes to hours (min/hour). V is the volume of the chamber (m
3
), and k is the reaction 
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rate constant: k = 1.8×10
2
×exp (−1400/T) (ppb

−1 
hour

−1 
or L nL

−1 
hour

−1
), after Seinfeld and Pandis (1998), 

where [O3]out is the mixing ratio of ozone (nL L
−1

) leaving the chamber. 
Soil emissions of N2 and NH3 have not been measured because of practical reasons (field measurements 

would have been difficult and/or expensive). 
 
 

 
3.1 Measured wet deposition of inorganic and organic N 

363 Based on the 5 year measurement average NO – and NH +
 content of the precipitation were 2.84 and 0.78 mg L–1
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(0.64 and 0.61 mg N L
–1

), respectively (Table 3). The average share of ammonium and nitrate in the total 

inorganic N wet deposition is balanced in the average of 5 years (51% and 49%, respectively), but ratios vary 

significantly in different years. 

It has to be noted that generally not negligible amount of organic nitrogen is also deposited by the 

precipitation (Cape et al. 2001). The difference between total N and inorganic N concentrations gives the 

dissolved organic N (DON) but the approach has some analytical artifacts. DON may take approximately 20%- 

30% of the total N deposition in precipitation although it is generally not included in N deposition estimates 

(Cornell et al. 2003). Annual average of DON in precipitation correlates better with ammonium than with nitrate 

and has seasonal pattern suggesting an agricultural source (Cape et al. 2004). 

In some areas (e.g. in United Kingdom) the share of organic N in precipitation can be 24-40% in the 

total wet deposition (Cape et al. 2004), while in other regions (e.g. Soroe in Denmark) this ratio is only 9 % 

(Skiba et al. 2009). Within the NitroEurope Integrated Project organic nitrogen content of our precipitation 

samples collected between October 2008 and February 2009 were analyzed in CEH (Centre for Ecology and 

Hydrology, Edinburgh). Based on the results (Neil Cape, CEH, Edinburgh personal communication) the organic 

N fraction in Bugac samples is around 16% of the total N content in the rainfall (Fig. 1). Because of the high 

uncertainty mostly caused by the short sampling period this value was not considered in our N-balance 

estimation. 

 
3.2 Inferred dry deposition fluxes of nitrogen compounds 

 
The share of different nitrogen compounds in dry deposition calculated by the inferential method can be seen in 

Table 3. Reduced and oxidized forms contribute 55% and 45%, respectively as an average during the 

observation period (5 years). These results agree with other European measurement sites (Skiba et al. 2009), 

although they found slightly larger differences among years. Dry deposition is dominated by ammonia and nitric 

acid (Table 3). It can be also noticed that the contribution of the deposited N gases (NH3, HNO3, and NO2) is 83- 
+ - 389 
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89%, while the aerosol particles (NH4  , NO3 ) takes only 11-17% of the total amount of dry nitrogen downward 
flux. The multi-year variation in share among dry deposition of N-forms derives solely from the year-by-year 
variation in atmospheric concentrations of pollutants according to Eq. (2) taking into account the constant 

inferred dry deposition velocity. 

 
3.3 Measured soil emission flux of NO and N2O 

 
The multi-year average of the soil N2O flux measurement (Table 3) is 0.67 kg N ha

–1
year

–1 
although there are 

large differences among years. This value is close to the mean emission (0.93 kg N ha
–1

year
–1

) determined 

during a survey by nine European grassland measurement sites (Flechard et al. 2007). The observed lower N2O 

emission levels can be explained by the differences in rainfall, by the low N-input, and by differences in water- 

management features of the area of our measurements. 

Precipitation is highly responsible for changes in the microclimate of soil, influencing the metabolisms, 

changing the favoring circumstances to (de)nitrification processes. The optimum range of wetness for 

denitrification at our site is 40-50% WFPS (Machon et al. 2011). In “regular” or dry years of 2006-2009 with an 

average precipitation of 480 mm and a soil moisture of 32% mean soil N2O flux was 0.38 kg N ha
–1

year
–1 

in 

contrast with 2010 when soil moisture was within the optimum range (43%) caused by doubled precipitation 

(967 mm) and the N2O emission increased nearly by a factor of 5. As a consequence, lower soil humidity in 

2006-2009 influenced the soil processes through water stress and indirectly affected the nutrient uptake by plants 

and the cycle of N. The annual mean temperatures in 2007-2010 were 0.5 °C warmer than the long term average 

mainly caused by the mild winters (soil generally was not frozen). 

There are some flux estimations by DNDC model for European grasslands in the literature. Average 

emission of N2O from grasslands was estimated by DNDC at 1.0 kg N ha
–1

year
–1 

(Levy et al. 2007). This figure 

is higher but it is in relatively good agreement in order with our measured and annual average values, if we 

consider that the well aerated and dry sandy soil is not favorable for anaerobic denitrification producing N2O. 
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The multi-year mean NO emission was around 1.1 kg N ha
–1

year
–1

. Soil emission of NO exceeds that of 

N2O in each year (4-5 times higher in the drier years 2006-2009) with the exception of highly precipitated year 

2010. It is in accordance with the fact that denitrification process producing N2O is more effective in wet soils in 
contrast with NO production (Davidson 1991). In 2006-2009 the soil moisture content of the well-ventilated dry 
soil is close to the optimum for NO formation that is around at 20-30% WFPS for Bugac soil (Machon et al. 

2011). Due to the properties of sandy soil (i.e. easy aeration in contrast to clay rich soils), generally nitrification 
dominates, favoring the formation of NO. The soil becomes anaerobic after rain events, thus significant emission 

peaks of N2O and N2 by denitrification can be observed or modeled only for short periods. The rate of N2O/N2 

production depends on WFPS (water-filled pore space) controlled by the amount of precipitation. 

Within the NitroEurope IP cooperation program different soils from Europe, including soil from Bugac 
station, were analyzed by incubation technique using oxygen and nitrogen isotopes. With this technique O- 
exchange between water and intermediate forms of the N-transformations during metabolism, and the change of 

isotope ratio could be measured (Kool et al. 2007; 2009a). By this methodology they described that NH 
+ 

especially in our soil can be the source for nitrous oxide production instead of NO3
– 

i.e. in our soil nitrifier 

denitrification is an alternative N2O formation pathway (Kool et al. 2009b and 2010). This alternative metabolic 

process, i.e. the nitrifier denitrification of ammonia by oxidizing bacteria may control the formation of N2O. This 

biochemical pathway can be a contributor to the majority of N2O production at our measurement site, thus N2O 

can also be produced at lower humidity levels in soil, resulting in a secondary peak in the range of lower wetness 
(20-30% WFPS) (Machon et al. 2011). 

Comparing our N2O+NO fluxes to another NitroEurope managed grassland site in Switzerland 

(Ammann et al. 2009) we can see that although the main drivers of soil processes are quite different (e.g. the clay 

fraction is 40% there and the amount of yearly precipitation at Swiss site was two times higher) the soil fluxes of 

N2O and NO were at the same level (<1 kg N ha
–1

year
–1

). 

 
3.4 The net atmosphere-surface flux based on measurements 
 
The summary of atmospheric deposition and soil emission rates can be seen in Table 3. There are large 

variations in deposition and emission fluxes among years especially due to different meteorological conditions. 

In the year of 2010 annual precipitation was 967 mm; significantly higher than long-term (1989-2006) average 

(550 mm). Years 2007 and 2009 were slightly arid with 446 mm and 486 mm of precipitation, respectively. 

Comparing both years to the long term seasonal pattern it can be concluded that the deficit in the yearly 

precipitation generally occurred in spring and summer. In 2008 the yearly precipitation (567 mm) reached the 

regular level, whilst the annual mean temperature was a bit higher than the long term average. All of these 

variations in meteorological parameters show that the conditions were different in every year. 

Analyzing the deposition dataset it is assumed that ratio of dry to wet deposition of nitrogen is 

influenced by the amount of yearly precipitation because of the generally observed linear relationship between 

wet deposition and precipitation rate. The ratio of dry to wet deposition varied within the range of 1.5-2.3 

between 2006 and 2010. 

The share of different N-gas soil emissions is influenced year-by-year by different atmospheric 
concentrations and weather conditions such as precipitation or soil/air temperature at our measurement site. Both 
soil N-fluxes and ratio of N2O/NO soil emission varies in a wide range and we can observe that meteorological 

conditions affect soil processes in larger extent than the rate of dry or wet deposition. Consequently, the ratio of 
total deposition and soil gas emission (NO+N2O) varies between 6 and 13 year-by-year and the magnitude of the 

deposition is higher approximately by one order of magnitude than soil emission. The measured N net flux 

between the atmosphere and the surface at the study site ranged between –9.4 and –13.3 kg N ha
−1

year
−1 

as the 
sum of the measured deposition and emission terms. Depending on the year 2–10% of the deposited N returns to 
atmosphere in the form of greenhouse gas N2O and 5-13% of it in the form of NO. 

 
3.5 Modeled soil fluxes 

 
For validation of the DNDC model we compared the simulated NO and N2O soil flux data and C/N ratio with 

measured values (see Figs. 2, 3 and Tables 4, 5). At our measurement site there were N2O flux measurements in 

2002-2004 in the framework of the GreenGrass project on a fortnightly sampling basis (Horváth et al. 2010). So, 

together with our current measurements, we can compare the simulation results with almost a whole decade of 

measured dataset of N2O flux (Table 5). Comparison for a shorter period was published by Hidy et al. (2011). 
Monthly fluxes modeled and measured by static/dynamic chambers show a slight agreement (r=0.74 for 

N2O and r=0.83 for NO at the probability level of p<0.01). In winter months the agreement is worse caused by a 

number of reasons: e.g. in winter smaller number of sampling was taken due to snow or frost, or the model 

probably does not predict well the emissions around 0 °C (e.g. rain or snow, soil layers are frozen or not etc). 



9  

473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 

 

The significant proportion of the annual N2O emission is produced during winter at low soil temperature. The 

thawing events (when the upper soil layer is not frozen) can cause large emission peaks (Müller et al. 2002). 
It can be seen (Fig. 3) that DNDC model systematically underestimates the NO emission peaks. Though 

the simulation was not able to capture the measured emission peaks, trend of the monthly emissions gives a 

relatively good agreement. Model simulations of daily soil N2O fluxes follow well the emission immediately 

after the rain events. In contrast, by conducting weekly measurements we have probably missed some N2O 

emission peaks. Comparing the data of Table 4 it can be concluded that simulation (with a given uncertainty) 

gives good estimation for C/N ratios in each year. 
Seasonal changes in N2O and NO soil fluxes can be observed both for measured and modeled values 

(Figs. 2, 3). In summer months the microbial activity of both nitrification and denitrification is increasing with 
the soil temperature. Most of the measurement period between 2006 and 2009 can be characterized by aerobic 

condition favoring nitrification; therefore, measured soil flux of NO was generally higher than N2O flux. It can 

be explained partly by the fact that the sandy soil dried out within a short time after the rain events. That is, the 
effective time for denitrifier bacteria community, preferring anaerobic condition, was shorter than in soils with 
higher water-retaining capacity. On the other hand, in extreme wet soils, loss of nitrous oxide is decreasing; 

reduction goes on to molecular nitrogen (N2). Weather conditions (heat or water stress) prevented keeping the 

optimum soil condition for nitrous oxide production in extended periods of the observation. 

The emission peaks in the simulation correlate with temperature, and reflect the rain events. After rain 
the denitrification processes can produce an N2O emission peak due to the anaerobic period. In winter time, the 

soil surface used to be frozen for the cold period and the produced trace gases are stored in the unfrozen subsoil 
(Müller et al. 2002). For this reason the first thawing events results in high emission peaks for N2O (Priemé and 

Christensen, 2001; Müller et al. 2002). In spring of 2007 N2O emission peak was missing as we expected 

because the mild winter (soil was not frozen) so the phenomenon mentioned above was not occurred. 

Soil emissions of N2 and NH3 have not been measured because of practical reasons. Hence, validation of 

the model for these parameters was not possible due to the lack of measurement. However, taking into 
consideration the relatively good agreement (especially in yearly rate) between modeled and measured fluxes for 
NO and N2O, we can make a rough estimation (assuming a similar relationship) for N2 and NH3 fluxes, 

emphasizing that uncertainty of these values are higher than for other components. 

Based on model results it can be concluded that the rate of annual soil N emissions including all of 

gases (N2, NH3, NO, N2O) varies within a relatively narrow range, with an average of 2.1 (SD=0.44) kg N ha
–1 

year
–1 

in Bugac station. There are significant differences between the shares of different N-components in the 
given year, which was influenced by change in meteorological variables and soil physics. 

It can be observed that in years with extremely dry and hot summer (2003 and 2009) the model 
significantly underestimated the N2O fluxes. It can be explained by the fact that biosphere is adapted to these 

conditions (drought-tolerant species); on the other hand, biosphere (through life processes) try to moderate the 
extreme environmental conditions, which is difficult to model due to the complexity of the system. All 

ecological models are based on simplifications therefore we can not eliminate the deviations caused by 
simplifications. Overall, there is a relatively good correlation between the simulated and measured fluxes. 

It should be emphasized that the three-dimensional heterogeneity of the ecosystem (even on meter scale) 

was the main reason why the measurements were taken at several places simultaneously. The microbial activity 

often responds much quicker to the environmental changes, such as biomass, but the biomass remains an 

important character. The major simulated trace gas emissions and short-term events are often driven by 

meteorological extreme events (heat and water stress, freezing-thawing), drying/rewetting (nitrification- 

denitrification), and management (grazing/cutting/fertilization etc). 

On the basis of multi-year simulation DNDC model underestimates the emissions of N2O and NO but 

the standard deviation of the measured data are much larger than the simulated values. The modeled annual 

emission level of N2O is 0.55 kg N ha
–1

year
–1 

(which gives slight agreement with our measurements). This value 

is lower by one order of magnitude compared to the 5.6 kg N ha
–1

year
–1 

average value calculated by the IPCC 
method determined for many European areas (Boeckx and van Cleemput 2001). In the IPCC method the 
cultivated arable lands are also included, where the N2O emission is generally higher caused by the crop N- 
fertilization. 

 
3.6 Estimated effect of leaching, biological N-fixation, and grazing 
 

The surface run-off and N-leaching are strongly dependent on slope, soil type, depth of the groundwater 

level, precipitation etc. as ecological drivers. On a flat area surface run-off practically does not occur. The 

groundwater level is about 6 m deep, and the sandy surface tends to dry out quickly, thus the nitrate 

measurement from soil moisture were usually unsuccessful due to the soil water content in soil is often below 

20%, therefore the nitrate leaching is probably negligible. While in Bugac N-leaching was neglected for an 
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extensively managed (fertilized) grassland site in Swiss Central Plateau it was estimated to be 3.5 kg N ha–1year– 
1 
in the period of 2002-2009 (Ammann et al. 2009). 

The biological N-fixation by plants (BNF) is not negligible because of the 8-17% share of legumes 
observed according to our surveys in different years; however, we were not able to determine the N-fixation by 

direct measurement. Biological nitrogen fixation for natural grasslands ranges within 2.3-3.1 kg N ha
–1

year
–1 

estimated by Butterbach-Bahl et al. (2011). As to the N-fixation by legumes the European outlook is the follows: 

although the measurement of N-fixation by 
15

N isotope technique is not resolved everywhere yet, according to a 

preliminary study the estimated N-fixation is less than 1–2 kg N ha
–1

year
–1 

at most of the sites of NitroEurope 
project (Skiba et al. 2009) except Oensingen (Switzerland) where a higher value was calculated since the 

legumes ratio is 48%. 

Based on land cover ratio of the legumes (8-17%) the estimated average N-fixation by plants at Bugac 

site is around 2.9 kg (1.9-3.9) N ha
–1 

year
–1 

(personal communication of Christof Ammann, Agroscope 
Reckenholz-Tanikon ART, Swiss Federal Research Station, Zürich, Switzerland). This value was considered in 
our N-exchange estimation (see next chapter). Nevertheless, the main N-input of our grassland is the dry and wet 

depositions (altogether 11–15 kg N ha
–1

year
–1

). 

The research area is usually grazed by a herd of gray cattle for about 220 days yearly with 0.5-0.8 LU 

ha
–1 

(500-800 livestock unit in 1074 ha) grazing pressure. The Hungarian Grey Cattle breed is protected for 
genome conservation and propagation for other farms; hence there is no extensive meat or milk producing and 
consequently the number of animals is relatively constant. We estimated the output and input of nitrogen by 
grazing on the basis of literature and simulated data. Waldrip et al. (2013) reported an average of 162 (SD=50) g 

N day
1

LU
1 

nitrogen uptake by grazing. Using this figure the N content of grazed grass is 21.6 ± 9 kg N ha
-1 

year
-1

. Based on DNDC simulations (Table 4) the annual average of the removal by grazing is 21± 5 kg N ha
1 

which shows good agreement with the calculated data. 
With grazing nitrogen temporarily leaves ecosystem and it is partly supplied back with excreta except 

the amount of nitrogen built into the bodies of cattle. Waldrip et al. (2013) estimated 119 (SD=38) g N day
1

 

LSU
1 

excreted nitrogen. The calculated N uptake at our site using this figure is 15.8±5 kg N ha
1

year
1

. Another 
calculation of Skiba et al. (2009) estimated of 16 kg N ha

–1
year

–1 
as N input by excretion at Bugac site. 

 
3.7 Total N-balance including measured, modeled, and estimated data 

 
The net surface atmosphere balance can be seen in Fig. 4. In the lack of direct measurements of soil N2 and NH3 

emission we can make a rough estimation for the orders of magnitude of these processes. Hence, we used the 
modeled emission fluxes to compare the soil emission to the N-uptake including deposition and biological 
fixation (Fig. 4). All of soil emission rates are derived from DNDC modeling. Total N-balance in Fig. 4 does not 
involve the effect of grazing and excreta. 

For estimation of net balance of nitrogen including BNF and the effect of grazing and excreta these data 

were delivered as it was described in section 3.6 (Table 3). The net budget shows negative balance (input terms 

exceed the outputs) but we have to take into consideration the large uncertainty in estimation of the effect of 

grazing. We can only state with caution that the ecosystem has a surplus of nitrogen or it is close to the 

equilibrium. Probably the excess (if any) is mineralized and stored in the soil in inorganic form. This might be 

supported by the increase in total nitrogen content in the 0-30 cm layer between 2006 and 2010: 0.28; 0.33; 0.37; 

0.38; 0.34%. According to a previous study (Sophie Zechmeister-Boltenstern, BOKU, personal communication) 

574 
575 
576 
577 

the mineralization rate is 194 μg NH 
+

 

 
3.8. Climatic and ecological effects 

g1
 week

1
 related to dry weight of soil. 
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Based on that global warming potential of N2O is 298 times higher than that of CO2 on 100-year time 

horizon (IPCC 2007), both measured and simulated yearly N2O emissions range between 71-849 and 108-409 kg 

CO2-eq. ha
−1

year
−1

, respectively during the period examined. 

Temperature and precipitation mainly affect the formation of N2O and NO, and the seasonal fluctuation 

of their soil emission. In the measurement period the soil flux of N2O was less than 1 kg N ha
–1

year
–1

. The 

forecasted potentially drying climate in the Hungarian Great Plan can lead to reduced N2O emission, which may 
mean a potential negative feedback on greenhouse effect. On the other hand, Pintér et al. (2008) and Barcza et al. 
(2009) argued that grass can turn into a net CO2 source in extreme dry years like 2003 and 2007 as a positive 

feedback for climate change. Though the impact of these two phenomena is opposite we should not neglect 

them, considering that the ratio and the strength of both processes are unknown. In addition, in Hungary the area 
of the surface covered by the temperate grass is large and will be growing with increasing aridity of climate. 

The residence time of N in intensively managed grassland is potentially lower than at untreated 

grasslands. Soil nitrogen pool depends on the consumption and exchange of both living roots and bacteria which 

are competitors for the same nutrients. Function of plant physiology (plant N-uptake demand), plant growing, 
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microbial metabolism are highly affected by air and soil temperature and water deficit etc. Plant association of 
Bugac becomes open grassland if it is exposed many times to naturally induced droughts. So plants also induce 
effect on soil N transformation. The selection of herbivore is important, because every species have plant 

preferences. The optimum number of animals (0.5-0.8 ha
–1

) is also required to preserve the treeless condition and 

the diversity of plant species through small disturbance. With overgrazing the nitrogen can be mobilized faster in 
the soil due to manure and urine and may lead faster biochemical processes. The compaction of the upper soil 
layer due to animal trampling can cause airless condition (decreasing porosity). This may increase the 
denitrification activity, which can lead to increased N losses. 
 

 
4. Conclusions 
 

Based on measurements and model simulations we quantified the extent of dry and wet N deposition 

with soil N-gas fluxes originated from microbiological processes in different years for semi-arid, semi-natural, 
extensively grazed grassland. The ammonia dry deposition is the main N-source (35-40%) of the area. The dry 

deposition of nitric acid vapor (20-25%) and wet deposition of ammonium and nitrate ions (30-35%) have also 

relatively large influence in the different years. The average modeled N-gas emission (2.1±0.4 kg N ha
–1

year
–1

) 

of the area is lower by one order than deposition rate. Both the rate of nitrogen load and soil emission are less 

than at other European sites due to the low atmospheric deposition, lack of intensive management, and 
fertilization. Bugac (nature reserved, undisturbed area) seems to be representing background levels of fluxes 

caused by the absence of local air pollution or N-sources (fertilizers etc). This statement is in accordance with 

the work of Skiba et al. (2009), where various N deposition and emission values were overviewed for different 
grasslands and other sites. 

The calculated yearly N-balance (net flux) between the atmosphere and the surface ranged between –9.4 

and –14 kg N ha
−1

year
−1 

as the sum of the measured deposition and emission terms: –11.2 to –15.1 and 0.9-2.9 

kg N ha
−1

year
−1

, respectively, between 2006 and 2010 (without BNF and effect of grazing). 
If we take into account the biological nitrogen fixation and the effect of grazing (effects of both grazed 

plant and excreta) the net nitrogen balance varies within –6.6 and –11 kg N ha
−1

year
−1

. It seems - taken into 
account the high uncertainty in calculation of grazing effect - that sources of nitrogen exceed the sinks; the 
surplus is probably mineralized in the soil. 

We applied and validated the DNDC model first time in Hungary (built up a database of the air, soil and 

other parameters and using the measured data of Bugac). Soil trace gas emissions are strongly controlled by soil 

organic carbon and soil mineral N-content, and by soil temperature and moisture. 

Using the DNDC model we are able to give N-gas flux prediction for those lands where measurements 

are missing and we are able to simulate fluxes of parameters and soil processes where field or laboratory 

measurements are difficult or expensive. This provides some support for future use of the DNDC model in 

regional mode for scaling up the soil fluxes for different ecosystem types or give climate scenario estimation up 

to country scale. 
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Table 1: Summary of the sensitivity test of DNDC 

 

 
Parameters 

Fluxes 

N2O NO N2 NH3 

(kg N ha
–1 

year
–1

) 
Original run 0.76 0.96 0.10 0.69 

+1 °C 0.44 1.05 0.05 0.74 
+2 °C 0.08 1.13 0.01 0.79 
–1 °C 1.30 0.87 1.32 0.63 
–2 °C 1.35 0.79 1.07 0.59 

125% precipitation 0.83 1.10 0.10 0.73 
75% precipitation 0.63 0.84 0.10 0.63 

+10% SOC 0.95 1.04 0.14 0.69 
–10% SOC 0.62 0.88 0.08 0.69 

+10% clay content 0.68 0.98 0.08 0.69 
–10% clay content 0.89 0.94 0.13 0.68 

+ 0.5 pH 0.51 0.84 0.06 0.88 
– 0.5 pH 0.96 1.04 0.14 0.58 

Microbial activity index = 0.5 0.27 0.67 0.02 0.61 
Without grazing 0.78 0.90 0.10 0.17 
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Table 2: Yearly average data for inferential estimation of dry fluxes 

 

N–form  Average 

concentration 

Mean deposition 

velocity 

(μg N m
–3

) (mm s
–1

) 

HNO3  0.26     27
a 

NO2 1.77  1.35
b
 

NO 
-
 

+
 

0.52 5.0
c
 

d
 

NH4 1.07 0.87 

NH3 1.29 9.9
a
 

 

aHorváth et al. (1992; 2005) 
bHesterberg et al. (1996); Horváth et al. (2005); Marner and 

Harrison (2004); Yamulki et al. (1997); Watt et al. (2004) 
cBorrell et al. (1997) 
dGallagher et al. (2002) 
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Table 3: Annual sum of N-exchange between the biosphere and the atmosphere and the main physical parameters 

 

2006 2007 2008 2009 2010 mean 

Exchange processes 
–
 

(kg N ha
–1

year
–1

) 

Wet deposition of NO3 

Wet deposition of NH 
+

 

–2.26±0.11 –2.04±0.10 –2.19±0.11 –2.15±0.11 –2.34±0.12 –2.19±0.11 

–1.12±0.06 –2.17±0.11 –3.01±0.15 –2.35±0.12 –3.43±0.17 –2.42±0.88 

Total wet deposition –3.38±0.17 –4.21±0.21 –5.20±0.26 –4.50±0.23 –5.77±0.29 –4.61±0.92 

Dry deposition of HNO3 –1.57±0.16 –1.73±0.17 –2.64±0.26 –2.35±0.24 –2.95±0.29 –2.25±0.59 

Dry deposition of NH3 –4.18±0.21 –4.54±0.23 –5.32±0.27 –4.27±0.21 –3.79±0.19 –4.42±0.57 
–
 

Dry deposition of NO3 –1.01±0.05 –0.62±0.02 –0.83±0.04 –0.86±0.04 –0.72±0.04 –0.81±0.15 

Dry deposition of NH4
+ 

–0.35±0.02 –0.23±0.01 –0.27±0.01 –0.30±0.02 –0.32±0.02 –0.29±0.05 

Dry deposition of NO2 –0.75±0.04 –0.45±0.02 –0.80±0.04 –0.79±0.04 –0.95±0.05 –0.75±0.18 

Total dry deposition –7.86±0.37 –7.57±0.35 –9.86±0.62 –8.57±0.55 –8.73±0.59 –8.52±0.89 

Total deposition –11.2±0.54 –11.8±0.56 –15.1±0.88 –13.1±0.78 –14.5±0.88 –13.1±1.68 

Soil emission of N2O 0.18±0.02 0.15±0.02 0.57±0.06 0.63±0.06 1.80±0.18 0.67±0.07 

Soil emission of NO 1.63±0.16 0.79±0.08 1.19±0.12
a 

1.18±0.12 0.78±0.08 1.11±0.35 

Total soil emission (NO+N2O) 1.81±0.18 0.94±0.10 1.76±0.18 1.81±0.18 2.58±0.26 1.78±0.58 

Total soil emission
c 

(NO+N2O+NH3+N2) 2.21 1.48 1.99 1.67 2.91 2.08 

Net flux (surface-atmosphere) –9.39±0.72 –10.9±0.66 –13.3±1.1
b 

–11.3±0.96 –11.9±1.14 –11.3±1.4 

Net flux
c 
(surface-atmosphere) –9.66 –11.7 –14.0 –12.7 –11.6 –11.9 

Biological nitrogen fixation –2.9±1.0 –2.9±1.0 –2.9±1.0 –2.9±1.0 –2.9±1.0 –2.9±1.0 

Output by grazing 22±9.0 22±9.0 22±9.0 22±9.0 22±9.0 22±9.0 

Input by excreta –16±5.0 –16±5.0 –16±5.0 –16±5.0 –16±5.0 –16±5.0 

Net balance (inc. BNF and grazing)
c 

-6.6±9.0 -8.6±9.0 -10.9±9.0 -9.6±9.0 -8.5±9.0 -8.8±9.0 

 
Physical parameters 2006 2007 2008 2009 2010 mean 

Temperature Tair (°C) 10.1 11.1 11.0 11.2 11.0 10.9±0.4 

Temperature Tsoil (°C) 10.2 11.5 11.1 11.4 10.9 11±0.5 

Precipitation p (mm) 524 446 467 486 967 578±219 

Soil wetness WFPS (%) 34.6±12 33.6±17 30.2±14 27.9±9.7 43±12 33.9±5.7 

 
aNo data for technical reason, calculated from the mean NO emission for 2006–2007 and 2009 
bEstimated from the average of 2006–2010 
c
Soil flux estimated by DNDC modeling 



 

Year C/N ratio in soil
a C/N ratio in plant

b C in N in Grazed Grazed 
   plant plant C N 

 

 
 
 
 
 

 
Table 4: Measured and simulated C and N content in plant and soil and yearly grazed C and N estimated by the 

model 
 
 
 

 
 

measured 
 

simulated measured 

(%) 

 

simulated  
 

simulated 

(kg ha
–1

year
–1

) 

 

2006 13.9 12.5 20.7 19.3 522 27 398 22 
2007 13.0 12.5 21.2 19.1 458 24 302 17 
2008 12.5 12.6 21.1 18.9 624 33 405 23 
2009 14.9 12.6 20.5 18.9 435 23 270 15 
2010 17.3 12.6 19.5 19.0 805 42 487 27 

Average 14.3 12.6 20.6 19.0 568 30 372 21 
SD 1.80 0.10 0.80 0.20 151 7.8 87 5.0 

aaverage of 0–15 and 15–30 cm depths 
b
average of the below and above ground biomass 



 

 
 
 
 
 

 
Table 5: Comparison of the measured and simulated (DNDC) soil N-fluxes 

 
Year  

measured 
N2O 

simulated 
NO N2 

measured simulated simulated 
NH3 

simulated 
Total 

simulated 
   (kg N ha

–1 
year

–1
)   

2002 0.86 0.48 – 0.76 0.41 0.55 2.20 
2003 0.80 0.64 – 0.50 0.45 0.37 1.96 
2004 0.74 1.00 – 0.62 0.38 0.45 2.45 
2005 – 0.43 – 0.67 0.31 0.43 1.84 
2006 0.18 0.38 1.63 1.12 0.37 0.36 2.21 
2007 0.15 0.23 0.79 0.57 0.39 0.29 1.48 
2008 0.57 0.52 0.42 0.59 0.46 0.42 1.99 
2009 0.63 0.24 1.18 0.47 0.68 0.28 1.67 
2010 1.80 1.04 0.78 0.70 0.66 0.50 2.91 

Average 0.72 0.55 0.96 0.67 0.46 0.41 2.08 
SD 0.51 0.29 0.46 0.19 0.13 0.89 0.43 



 

 
 

Fig. 1: Distribution of organic and inorganic nitrogen in the precipitation 
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Fig. 2: Measured and simulated flux of N2O (a) and their monthly correlation (b) 
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Fig. 3: Measured and simulated flux of NO (a) and their monthly correlation (b) 
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Fig. 4: Contribution of different N-forms to the N-budget in each year based on measurement and 

simulation (negative sign mean deposition and vice versa). 
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