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Abstract 

Quantification of the grain size distribution of sediments allows interpretation of 

processes of transport and deposition. Jutzeler et al. (2012) developed a technique to 

determine grain size distribution of consolidated clastic rocks using functional 

stereology, allowing direct comparison between unconsolidated sediments and rocks. 

Here, we develop this technique to characterize hydraulic sorting and infer transport 

and deposition processes. We compare computed grain size and sorting of 

volcaniclastic rocks with field-based characteristics of volcaniclastic facies for which 

transport and depositional mechanisms have been inferred. We studied pumice-rich, 

subaqueous facies of volcaniclastic rocks from the Oligocene Ohanapecosh Formation 

(Ancestral Cascades, Washington, USA), Pliocene Dogashima Formation (Izu 

Peninsula, Honshu, Japan), Miocene Manukau Subgroup (Northland, New Zealand) 

and the Quaternary Sierra La Primavera caldera (Jalisco State, Mexico). These 

sequences differ in bed thickness, grading and abundance of matrix. We propose to 

evaluate grain size and sorting of volcaniclastic deposits by values of their modes, 

matrix proportion (<2 mm; F-1) and D16, instead of median diameter (D50) and 

standard deviation parameters. F-1 and D16 can be uniformly used to characterize and 

compare sieving and functional stereology data. Volcaniclastic deposits typically 

consist of mixtures of particles that vary greatly in density and porosity. Hydraulic 

sorting ratios can be used to test whether inferred density of mixed clast populations 

of pumice and dense clasts are hydraulically sorted with each other, considering 

various types of transport under water. Evaluation of this ratio for our samples shows 

that most studied volcaniclastic facies are deposited by settling from density currents, 

and that basal dense clast breccia are emplaced by shear rolling. These hydraulic 
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sorting ratios can be applied to any type of clastic rocks, and indifferently on 

consolidated and unconsolidated samples. 

 

1. Introduction 

The interpretation of mechanisms of transport and deposition for detrital sediments 

has been in use for at least five decades, and relies on field characteristics, grain size 

and sorting (Friedman, 1962; Kuno et al., 1964; Passega, 1964; Visher, 1969; Buller 

and McManus, 1973; Glaister and Nelson, 1974; Garzanti et al., 2009). In addition, 

variations in grain size distribution, sorting and componentry of pyroclastic deposits 

with distance from source are important attributes used to constrain models of 

subaerial explosive eruptions and volcaniclastic density currents (e.g. Walker, 1971; 

Sparks et al., 1973; Sparks, 1976; Walker, 1983, 1984; Wilson and Walker, 1985; 

Carey, 1991; Bonadonna and Houghton, 2005; Dufek and Bergantz, 2007; Macedonio 

et al., 2008; Volentik et al., 2010; Alfano et al., 2011; Mackaman-Lofland et al., 

2014). Sorting and grading are two critical values from which inferences can be made 

on processes of transport and deposition. 

Furthermore, these grain-size based physical models of transport and deposition have 

not been applied to lithified and/or welded deposits, although these rocks are far more 

abundant on Earth than unconsolidated deposits. We apply the image analysis and 

functional stereology technique using predefined distribution functions (Proussevitch 

et al., 2007a; Proussevitch et al., 2007b) adapted for (consolidated) clastic rocks 

(Jutzeler et al., 2012) for assessing the grain size characteristics of subaqueous 

volcaniclastic facies, which are mostly lithified and commonly contain less fines than 

their subaerial analogues. In this paper, we refer to this technique as functional 

stereology as it implicitly combines statistical functions with earlier formulations of 
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stereological transformations (Sahagian and Proussevitch, 1998). The grain size 

distribution of the samples studied in this paper were calculated as following a log-

normal behavior, as does a large selection of natural object sizing categories 

(Proussevitch et al., 2007a; Proussevitch et al., 2007b). Following formulations from 

our previous work (Jutzeler et al., 2012), we use normal (Gaussian) continuous 

distribution for clast sizes in phi () units (Krumbein, 1936) as the predefined 

function, equivalent to log-normal distribution with respect to linear units (e.g. 

meters).  Assumed conformity of 2D (cross-section areas) and 3D (volumes) 

distribution functions will be researched in our future studies. 

Previous work on use of grain size distribution to infer depositional processes include 

Visher (1969) and Glaister and Nelson (1974), who proposed a classification of multi-

modal distributions based on the segmentation pattern of cumulative curves and 

histograms of grain size distribution on unconsolidated deposits. Their method was 

designed to discriminate among three major types of transport (traction, saltation, 

suspension), but could be applied only to certain types of detrital sediments (Sengupta 

et al., 1991), and has not been tested on volcaniclastic deposits. Wohletz et al. (1989) 

proposed the sequential fragmentation/transport model, which deconvolutes grain size 

distribution curves into sub-population modes, allowing inference on complex 

fragmentation and transport histories. 

The median and standard deviation of grain diameters in unconsolidated deposits are 

the parameters most widely used to infer transport and depositional processes for 

volcaniclastic deposits (Murai, 1961; Walker, 1971, 1983, 1984). Some of these 

parameters can be directly applied to clastic rocks, but fine components are, in most 

cases, not resolvable. There is a major issue in comparing median values, as they are 

dependent on the studied range, and are commonly wrongly applied to multimodal 
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distributions (Folk, 1980). We find the use of mode and D16 (Inman, 1952) as more 

meaningful parameters, and introduce F-1, the ratio of matrix (anything <2 mm). 

The mechanisms of transport for subaqueous volcaniclastic density currents are 

poorly understood in comparison to their siliciclastic homologues (Manville et al., 

1998; White, 2000; Manville et al., 2002; Freundt, 2003; Manville and Wilson, 2004; 

Allen and Freundt, 2006; Talling et al., 2012), as they commonly contain coarse clasts 

of varying density (pumice or scoria), which are much less dense than conventional 

dense (i.e. non to poorly-vesicular) clasts. Hydraulic sorting refers to sorting of clasts 

during transport in a fluid with non-negligible drag. The terminal velocity of a clast in 

motion in a fluid is dependent of the viscosity and density of the fluid, and of the size, 

bulk density and shape of the clast (e.g. Rubey, 1933; Clift et al., 1978; Komar and 

Reimers, 1978; Sallenger, 1979; Komar et al., 1984; Cashman and Fiske, 1991; Kano, 

1996; Crowe et al., 1998; Manville and Wilson, 2004; Dellino et al., 2005; Burgisser 

and Gardner, 2006). Hydraulic equivalence refers to the condition where clasts 

differing in size and density are deposited similarly (Burgisser and Gardner, 2006). 

In this paper, the grain size distribution of coarse (>2 mm) fraction of volcaniclastic 

rocks deposited under water is statistically reconstructed by image analysis and 

functional stereology, using photographs of outcrops and scans of rock slabs (Jutzeler, 

2012; Jutzeler et al., 2012). We explore grain size characteristics in terms of modal 

grain size distribution, matrix ratio, and statistical parameters such as median (D50), 

D16, and standard deviation. We propose the degree of hydraulic sorting of pumice 

with dense clasts to infer the original pumice vesicularity and test field-based 

interpretations of the main transport and depositional processes under water, including 

fall, saltation, and various types of rolling, adapting the equations of Burgisser and 

Gardner (2006) to underwater conditions. This research is novel in using simple ratios 
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to evaluate the subaqueous transport processes for consolidated or unconsolidated 

deposits composed of clasts with variable density. Our method can be applied to any 

clastic rock or sediment, using grain size data from various methods (e.g. sieving, 

laser diffraction, functional stereology), thus widely applicable in sedimentology and 

volcanology-oriented studies. 

1.1. Rock suites 

Image analysis and functional stereology were performed on a statistically significant 

sample suite comprising 85 volcaniclastic samples selected from different origins and 

from several localities. Most samples belong to the Pliocene Dogashima (Izu 

Peninsula, Japan) and Oligocene Ohanapecosh (Ancestral Cascades, USA) formations 

(Fiske, 1963; Cashman and Fiske, 1991; Jutzeler, 2012; Jutzeler et al., 2014a; Jutzeler 

et al., 2014b). Additional samples were collected in the Miocene Manukau Subgroup 

(Northland, New Zealand; Allen et al., 2007; Jutzeler, 2012) and in the Quaternary 

Sierra la Primavera caldera (Jalisco State, Mexico; Clough et al., 1981). The 

computed grain size data are based on 165 images and are combination of up to three 

size-nested datasets from outcrop photographs and rock slab scans taken at different 

magnifications (Jutzeler et al., 2012). Size-nesting in coarse (>2 mm) clast 

distributions is simpler than for µm-to-mm-sized vesicles in pyroclasts (e.g. Shea et 

al., 2010), because coarse clasts are commonly relatively homogeneously distributed, 

and their shape is relatively equant. In addition, we do not consider fine grains in this 

study. However, high-precision image analysis is complex, as clasts touch others, and 

clast types, fabric, and color vary substantially among samples. 

1.2. Clast componentry 

Clastic rocks may contain one or multiple types of clasts (>2 mm), matrix, interstitial 

pore space and cement. The clast types in the samples analyzed are grouped into two 
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categories for simplicity: 1) Pumice clasts, which contain ~60–90 vol.% vesicles; 

some have been compacted to form fiamme. “Deflattening” of the fiamme (Jutzeler et 

al., 2012) could not be carried out in these examples because the fiamme and pumice 

clasts coexist in some facies and the original pumice clast vesicularity is unknown. 

Fiamme only occur in some beds of the Ohanapecosh Formation and are assumed to 

not substantially modify these data. The density of waterlogged pumice clasts is 

assumed to range between 1,100 and 1,600 kg/m
3
, corresponding to 60–95 vol.% 

vesicularity of a waterlogged clast with density of 2,500 kg/m
3
 at dense rock 

equivalent. 2) Dense (non-vesicular) clasts and hydrothermally altered clasts; 

densities for these clasts is assumed to have been 2,500 kg/m
3
, corresponding to rocks 

of intermediate composition. 

1.3. Matrix cut-off 

The original texture of fine grained particles, typically <2 (>-1 ) in clastic rocks, is 

commonly destroyed or poorly preserved, or difficult to resolve. In eruption-fed 

volcaniclastic facies, sub-mm clasts generally have the same composition in the 

coarse clasts, and are likely to be a continuation of the coarse modal clast populations. 

Two millimeters is a critical boundary that separates sand from gravel, sandstone from 

breccia or conglomerate, ash from lapilli, and tuff from pyroclastic breccia in clastic 

deposits (Wentworth, 1922; McPhie et al., 1993; Blott and Pye, 2001; White and 

Houghton, 2006), thus 2 mm is used in this study to distinguish between clasts and 

matrix. Hereafter, we keep loose definition for grains and particles, which can be fine 

(<2 mm) or coarse (>2 mm). For simplicity all particles <2 mm, filling or void are 

called matrix in this study even though cement and porosity might also be present. 

Cement is a post-depositional, chemical and/or biochemical precipitate that may 

partly or completely fill the porosity left between particles that constitute the sediment 
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(matrix and/or clasts). In a rare case (Manukau Subgroup), cement could be separated 

from matrix, and this sample is clearly identified (Fig. 1). 

 

2. Quantification of textural characteristics in volcaniclastic beds 

2.1. Clast volume 

Stratigraphic logs are commonly based on visual estimates in the field, and reproduce 

the main textural characteristics including approximate mean and maximum grain 

size. The image analysis method (Jutzeler et al., 2012) quantifies clast and matrix 

volumes (Figs 1, 2). Data extracted from image analysis give a large choice of 

parameters on which to characterize and classify clastic aggregates. One of the most 

straightforward parameters is determining the volume of components, as volume is 

directly proportional to its area on a representative cross section (Reid, 1955), in 

contrast to object size distribution (Proussevitch et al., 2007b; Jutzeler et al., 2012). 

Volumes of components in clastic rocks can therefore be determined as: 

VTot ≅ AMatrix + APum + ADense  (1) 

where VTot is the total volume of the sample, AMatrix is the total area of grains <2 mm 

(and includes cement and porosity), and APum and ADense are the areas of pumice and 

dense clasts coarser than 2 mm, respectively. Using poorly consolidated sediments, 

such calculation is only valid where using a representative, non-eroded outcrop in 

which large clasts are not preferentially hanging out of the cliff face at the expense of 

poorly consolidated matrix (Jutzeler et al., 2012). The comparison of volume of 

coarse clasts with fine clasts and cement in a deposit can be used as proxy for the 

degree of sorting. Sorting is inversely proportional to the degree of packing of clasts 

(Jerram et al., 1996). We introduce the parameter F-1, which is the percentage of 

clasts <2 mm (or >-1 ) and/or void or cement in a deposit. 
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2.2. Grain size distribution 

The output from functional stereology code gives the grain size distribution density 

(Gi) in (m
3
)

-1
, calculated as average clast diameters in each size class (bin i). From 

Gi, the volume of clasts in (m
3
)

-1
 (Vi) can be calculated (Jutzeler et al., 2012). Modal 

values of volume Vi of pumice and dense clasts can be extracted from modal grain 

size distribution densities Gi (Figs 1d, 1e, 2d, 2e). The modal distribution of Vi 

represents the statistically most likely abundant grain sizes, thus this it is a meaningful 

measurement of the physical property (grain size) of the clastic rock. Moreover, it 

corresponds to the commonly estimated values of grain size in field and laboratory 

descriptions. Here, only modal Vi is discussed, because it is easier to represent and 

compare volumes than distribution densities.  

Image stereology computes Vi, which can be converted to weight percent, by adjusting 

Vi to the density of each clast type (Jutzeler et al., 2012). To simplify the conversion, 

the densities of pumice clasts versus dense clasts are taken to be homogeneous. Here, 

we use a density of 2,500 kg/m
3
 (0% vesicles) for dense clasts and 700 kg/m

3
 (72% 

vesicles) for air-filled pumice clasts, corresponding to common volcanic rock 

densities. Total clast weight percent is a combination of weight percent datasets for 

pumice and dense clasts which is then recalculated to 100% (Jutzeler et al., 2012). 

Significant values such as modes, D16, D50 (i.e. median, M), D84, and standard 

deviation  (i.e. sorting) were extracted from Gi, Vi and weight percent distributions 

with Gradistat (Blott and Pye, 2001), using the graphical measures of Folk and Ward 

(1957). Graphical measures are preferred to values from methods of moments, which 

give too much importance to the tails of the distribution (Folk, 1980), although both 

measures give very similar values using our dataset. 
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The median diameter M and standard deviation  of grain size distributions reflect 

the average grain size and degree of grain size sorting, respectively. Both median 

diameter and standard deviation are commonly computed for unconsolidated subaerial 

pyroclastic deposits and the data plot in fields relating to transport and depositional 

processes (Murai, 1961; Walker, 1971, 1983, 1984). However, such data should be 

used with extreme caution, because several conditions are needed to correctly 

calculate, correlate and interpret such data (see Discussion). As this study uses 

statistical measurements applied for particles >2 mm only, calculations using 

functional stereology shifts the median and standard deviation to overall lower values, 

which means samples appear to be coarser and better sorted than they are (Figs 1g, 

2g). Hence, such data remains informative only, and cannot be directly compared with 

conventional data that includes fine particles (e.g. Walker, 1983). 

2.3. Hydraulic equivalence and hydraulic sorting 

2.3.1 Hydraulic equivalence in subaqueous volcaniclastic deposits 

Hydraulic equivalence is the condition where particles of different size and density 

have similar terminal velocity during their sedimentation in a continuous fluid 

(Rubey, 1933; Clift et al., 1978; Cashman and Fiske, 1991; Kano, 1996; Manville et 

al., 2002; Burgisser and Gardner, 2006). The hydrodynamic properties of natural 

particles depend on multiple factors related to the particle, such as density, size, shape 

(~aspect ratio), surface roughness, as well as the type of ambient fluid (air, dusty gas, 

steam or seawater) and interactions with other particles (Manville et al., 2002; 

Manville and Wilson, 2004; Burgisser and Gardner, 2006; Alfano et al., 2011). 

Hydraulic sorting may be achieved in various conditions of sedimentation, where 

these hydrodynamic properties may be variably preponderant (Burgisser and Gardner, 

2006). For instance, a large and low-density pumice clast falling in a fluid will have 
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similar terminal velocity to a smaller but denser clast, 

however hydraulic sorting during shear rolling is chiefly not dependent of the density 

of both clast and ambient fluid (see below; Burgisser and Gardner, 2006). Although 

the grain size distribution of a clastic deposit reflects the diameters of clasts, it does 

not give much information on the circumstances of clast 

deposition. Instead, hydraulic sorting reflects whether 

or not constituents of a clastic aggregate were deposited 

together under hydraulic equivalence, and under which style of transport. This is a 

much better approach to understand the natural conditions of sedimentation. One way 

to produce hydraulically well sorted natural deposits is by the vertical fall of discrete 

grains at their terminal velocity (suspension settling). The type of fluid, with its 

specific viscosity, has great importance. The degree of waterlogging is defined by the 

relative volume of liquid water versus gas in the pore spaces of a pumice clast. From 

the equations of Clift et al. (1978), Cashman and Fiske (1991) proposed a hydraulic 

equivalence ratio of 5–10 to 1 for the diameters of waterlogged pumice clasts (1,100-

1,300 kg/m
3
) versus coarse dense clasts (2,500 kg/m

3
) during free fall in seawater. In 

contrast, a ratio of 2–3 to 1 characterizes grain diameters of coarse pumice clasts 

versus dense clasts in free fall in air. This difference indicates that, in this case, water 

is a better “sorting agent” than air (e.g. Cashman and Fiske, 1991; Manville et al., 

2002), because of its higher density. The range in these ratios reflects variation in 

clast densities, in particular the vesicularity and degree of waterlogging of the pumice 

clasts, as well as discrepancies from grain shape (Clift et al., 1978; Komar and 

Reimers, 1978; Cashman and Fiske, 1991; Alfano et al., 2011). In addition, where fine 

particles are in large concentrations, vertical density currents may form and travel 1 to 
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3 orders of magnitude faster than discrete particles settling from suspension (Wiesner 

et al., 1995; Carey, 1997; Manville and Wilson, 2004). 

In this paper, we follow the equation for terminal velocity (UT) as presented in 

Burgisser and Gardner (2006): 

Re3

4 2

D

T
C

gd
U




   (2) 

where Δρ in kg/m
3
 is the difference between the particle density (ρi) and the fluid 

density (ρf ), with Δρ = (ρi ‒ ρf) to account for Archimedes‟ force, g is the acceleration 

due to gravity (m/s
2
), d is the particle diameter (m), μ is the water viscosity (Pa·s), CD 

is the drag coefficient and Re is the dimensionless Reynolds number. Substituting: 



 dUTf
Re   (3) 

we obtain: 

fD

T
C

dg
U





3

4
   (4) 

This equation is appropriate for high Reynolds numbers, where CD ≈ 0.45 (Clift et al., 

1978; Crowe et al., 1998; Burgisser and Gardner, 2006). Sedimentation of clasts (>2 

mm) in water chiefly correspond to the range 750 < Re < 3.5x10
3
. From the above 

equation, assuming g/CD constant, particles with the same ratio of: 

i

f

fi
d












 




  (5) 

have the same UT or are „hydraulically equivalent‟. 

Styles of sedimentation in subaerial setting including settling from: a suspended-load 

during progressive aggradation, discrete vertical fallout, saltation, and saltation and 

packed rolling, can be approximated (Burgisser and Gardner, 2006) by: 
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PumPumDenseDense dd     , for Re >10
3
  (6) 

In contrast to gaseous environments, seawater density is not negligible. To estimate 

the hydraulic sorting by settling in water, we modify equation (6) into: 

Pum

fluid

fluidPum

Dense

fluid

fluidDense
dd












 














 








  , for Re >10

3
  (7) 

where ρDense is the density of dense clasts (~2,500 kg/m
3
), ρPum is the density of 

waterlogged pumice clasts (~1,100–1,500 kg/m
3
, which corresponds to 68–95 vol.% 

vesicles), ρfluid is the ambient fluid density (seawater; 1,025 kg/m
3
) and dPum and dDense 

are the diameters of pumice clasts and dense clasts, respectively.  

For deposition by collision-induced rolling, Burgisser and Gardner (2006) proposed: 

44

PumPumDenseDense dd          , for Re >10
3 

(8) 

In underwater conditions, a similar modification needs to be applied than for equation 

(7), with: 

44

Pum

fluid

fluidPum

Dense

fluid

fluidDense
dd












 














 








  ,   for Re >10

3
  (9) 

Under deposition by shear rolling conditions, clast density becomes negligible, and 

clasts are chiefly sorted by their size, giving (Burgisser and Gardner, 2006): 

PumDense dd    , for Re >10
3
 (10) 

, which is applicable to underwater conditions with no modification. 

Equations (6‒10) are valid only for relatively high Reynolds numbers (Re>10
3
) that 

correspond, at terminal velocity, to waterlogged pumice clasts larger than 5–8 mm 

(depending on their vesicularity) and dense clasts larger than 3 mm. This minimum 

grain size is compatible within most ranges of grain size populations studied here. The 

bulk density of pumice clasts depends on the volume, type, and density of the fluid 

that fills the vesicles (Manville et al., 1998; White et al., 2001; Manville et al., 2002). 
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The pumice clasts are considered to have been cold and entirely waterlogged, thus to 

contain no gas (air, magmatic gas). This assumption is reasonable, considering that 

hot pumice clasts are quickly waterlogged when put in contact with water (Whitham 

and Sparks, 1986; Allen et al., 2008), that >90 vol.% of the vesicles are connected in 

most pumice clasts (Klug et al., 2002), and that the increasing hydrostatic pressure 

with transport to deeper water results in the contraction and resorption of any 

remaining gas in the vesicle network. 

2.3.2. Hydraulic sorting ratios in subaqueous volcaniclastic deposits 

Hydraulic sorting can be determined within a graded facies, or between facies of 

subaqueous volcaniclastic deposits. Here, we propose a simple set of equations to 

assess the hydraulic sorting of clastic aggregate containing clast populations that have 

different bulk densities (e.g. pumice versus dense clasts). We propose the term of 

hydraulic sorting ratio for the parameter that indicates whether the grain sizes of 

pumice and dense clasts in natural samples are consistent with them being 

hydraulically equivalent, and apply the three types of conditions of sedimentation 

previously described, each of them having a specific hydraulic sorting ratio. 

Following equations (7), (9), and (10), respectively, we define three hydraulic sorting 

ratios (HSR), with: 

Dense

Dense

FluidDense
Pum

Pum

FluidPum
settling ddHSR 







 







 









   , for Re >10

3
  (11) 

, for sedimentation from settling from: suspended-load during progressive 

aggradation, discrete vertical fallout, saltation, and saltation and packed rolling. 

For sedimentation by collision-induced rolling, we propose: 

44

Dense

Dense

FluidDense
Pum

Pum

FluidPum
rollcoll ddHSR 









 









 









    , for Re >10

3
 (12) 
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Finally, for shear rolling, we propose: 

DensePumrollshear ddHSR         , for Re >10
3
 (13) 

A deposit is hydraulically sorted if the hydraulic sorting ratio equals 1. Values higher 

than 1 indicate that the pumice clasts are too coarse to be hydraulically equivalent to 

dense clasts in the same sample. Conversely, values lower than 1 imply that the 

pumice clasts are too small to be in hydraulic equivalence with the dense clasts. These 

parameters have the advantages over traditional grain size sorting data, from sieving 

and laser diffraction, of being related to the environment and style of deposition and 

to take the particle vesicularity into account, and of not being exclusively related to 

the diameter of the particles and average bulk densities. This calculation should give 

similar results to measurements using settling tubes or wave tanks, although our 

technique also analyses the componentry ratio and grain size distribution of each clast 

population, and allows inference of their wet density. 

The clast diameters dPum and dDense are best approximated by the value of the primary 

modes. The value of the main mode is preferred to the median, because the mode 

reflects the most abundant clast size, whereas the median is strongly dependent on the 

matrix minimum cut-off size and is less representative of the coarse clast population. 

The hydraulic sorting ratio of the secondary modes can be assessed in the same way, 

although the evaluation of hydraulic sorting between secondary modes becomes 

increasingly complex for multimodal populations. Because the original pumice clast 

vesicularity and degree of waterlogging may be difficult to assess, a range of densities 

are tested for graded deposits (Figs 1, 2): at one extreme, waterlogged pumice clasts at 

1,100 kg/m
3
 (very highly vesicular (95%), corresponds to 130 kg/m

3
 when dry) and 

1,500 kg/m
3
 (highly vesicular (68%), corresponds to 800 kg/m

3
 when dry). Dense 

(non-vesicular) clasts density is fixed at 2,500 kg/m
3
. 
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3. Application to field-based examples 

Results of facies analysis (Jutzeler, 2012; Jutzeler et al., 2014a; Jutzeler et al., 2014b) 

are used to test whether proportional volume and grain size distribution of coarse (>2 

mm) clasts in graded volcaniclastic beds indicate specific types of transport and 

depositional processes in a context of submarine volcanism. In particular, we analyze 

the most likely subaqueous transport mechanisms using the hydraulic equivalence 

signature in context of deposition from vertical settling, collision-induced rolling and 

shear rolling, through stratigraphy of thick, graded deposits. 

3.1. Subaqueous volcaniclastic facies 

The studied samples are chiefly composed of pumice clasts, and their content of fine 

clasts is variable; a large proportion of our samples are dominated by matrix (>50 

vol.%) and poor in dense clasts (<20 vol.%). From the dataset available, three broad 

subaqueous volcaniclastic facies could be identified on the basis of bed thickness, 

degree of sorting and matrix ratio. These facies include (Table 1) two very thick, 

graded facies that can be divided into matrix-rich (>50 vol.%; MR-thick) and matrix-

poor (<50 vol.%; MP-thick) types. The third facies is a thin to thick (<1 m), clast-

supported, well sorted and matrix-poor facies (MP-thin). The matrix ratio is used to 

discriminate between facies MR-thick and MP-thick, because the abundance of fine-

grained particles may be a good indicator of transport and depositional processes 

(Walker, 1971; White, 2000; Jutzeler, 2012; Talling et al., 2012), and is simple to 

assess from image analysis. The matrix-rich, very thick, graded facies (MR-thick) 

have overall the highest abundance of dense clasts, and commonly contains a basal 

dense-clast breccia sub-facies that is depleted in matrix (e.g. bed Cayuse 40; Fig. 2). 
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Graded beds are difficult to classify, because textural characteristics such as grain 

size, componentry and volume of matrix vary through the stratigraphy (Figs 1, 2). For 

the gradational facies, the matrix proportion is taken as the average over the deposit 

thickness. Thus, several samples of matrix-poor, very thick, graded facies (MP-thick) 

have an overall matrix-rich signature (Figs 1, 2), because they are the fine-grained 

sub-facies (generally the upper part of a normally graded bed) of overall matrix-poor 

beds (Fig. 1). Conversely, an overall matrix-rich, graded deposit that contains a minor 

basal, matrix-poor, clast-supported sub-facies is regarded as an overall matrix-rich 

facies. 

3.1.1. Matrix-rich, very thick, graded facies 

The matrix-rich, very thick, graded facies (MR-thick) includes examples from the 

Ohanapecosh Formation, the Dogashima Formation, and the Manukau Subgroup 

(Jutzeler, 2012; Jutzeler et al., 2014a; Jutzeler et al., 2014b). Typical examples 

comprise graded beds 57 and 61 in the Chinook Pass section, beds 40 and 42 in the 

Cayuse Pass section (Chinook Pass Member), and bed B-3 at Cougar Lake (Jutzeler et 

al., 2014b). These five beds in the Ohanapecosh Formation were interpreted as 

deposits from eruption-fed and resedimented subaqueous volcaniclastic density 

currents, and most likely to be related to subaerial, pumice-rich pyroclastic flows that 

entered water. 

3.1.2. Matrix-poor, very thick, graded facies 

The matrix-poor, very thick, graded facies (MP-thick) occur in the Dogashima 

Formation and the Ohanapecosh Formation (Jutzeler et al., 2014a; Jutzeler et al., 

2014b). The most typical example is the bed of grey andesite breccia (D2-2) overlain 

by white pumice breccia (D2-3) in Dogashima 2 (Jutzeler et al., 2014a). These two 

clast-supported facies were interpreted to have been simultaneously deposited from a 
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pumice-rich, subaqueous volcaniclastic density current derived from destruction of a 

subaqueous, hot, dense lava dome by a pumice-forming, explosive eruption (Tamura 

et al., 1991; Jutzeler et al., 2014a). 

3.1.3. Matrix-poor, thin to thick, clast-supported, well sorted facies 

The matrix-poor, thin to thick, clast-supported, well sorted facies (MP-thin) were 

sampled in the Manukau Subgroup, the Ohanapecosh Formation, the Dogashima 

Formation and the Primavera caldera (Jutzeler, 2012; Jutzeler et al., 2014a; Jutzeler et 

al., 2014b). This facies is exemplified by normally graded pumice-rich beds at 

Bethells Beach and Pillow Lava Bay in the Manukau Subgroup, New Zealand (Allen 

et al., 2007; Jutzeler, 2012), interpreted as deposited from subaqueous vertical settling 

through the water column. Although they are very thickly bedded, the samples from 

Sierra La Primavera caldera, interpreted as suspension settled giant pumice clasts 

(Clough et al., 1981), are also included in this third facies, because the interpreted 

transport process involved discrete settling of the pumice clasts in a confined 

environment (caldera lake) producing an abnormally thick and coarse deposit. 

3.1.4. Examples of graded beds 

Figures 1 and 2 show examples of outputs for graded beds in the Ohanapecosh 

Formation, the Dogashima Formation and the Manukau Subgroup. The modal grain 

size distribution density Gi and volume Vi show variations in grain size in the 

stratigraphy and consistently follows field estimates summarized as logs. Coarse 

clasts are generally bimodally distributed. The volume distribution within the fiamme-

bearing Ohanapecosh Formation includes uncertainties because of the unknown 

original porosity of the compacted pumice clasts. Hence, modal diameter of these 

compacted pumice clasts may generate smaller average diameter than the original 

clast size (Jutzeler et al., 2012). 
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3.2. Median diameter and sorting 

The grain size distributions of various types of subaqueous volcaniclastic deposits 

overlap on the standard deviation versus median plot (Fig. 3). The extreme coarseness 

of pumice clasts (>5 m) in matrix-poor, thin to thick, clast-supported, well sorted 

facies (MP-thin) in the Sierra La Primavera caldera gives extreme median values of ~-

9.5 . Examples of this facies do not show standard deviation values higher than 1.2, 

whereas this parameter reaches 1.6 in both of the very thick facies. 

We compare the value of standard deviation versus median from functional stereology 

of volcaniclastic rocks with data from sieving of subaerial unconsolidated pyroclastic 

deposits (Fig. 4). The exclusion of the matrix data in this study (weight percent data 

ranges -12 to -1 ) results in a bias to relatively coarse and well-sorted values (Fig. 

4a–d), compared to data on unconsolidated grain size populations determined by 

Walker (1983), who sieved pyroclastic deposits between -5 to 5 . The subaqueous 

volcaniclastic rocks dataset overlaps with subaerial plinian fall and fines-depleted 

pyroclastic flow fields of Walker (1983), which indicates good sorting and relatively 

coarse populations. Because the original raw data from Walker (1983) are 

unpublished, we use the sieving data of the ignimbrite units D and E of the Kos 

Plateau Tuff (KPT; Allen et al., 1999) as an approximation of pyroclastic flow 

deposits. This estimation is justified considering the total weight percent data (-4 to 

+5 ) of KPT ignimbrites fit in the coarse and well-sorted end of the pyroclastic flow 

field (Fig. 4b) in the standard deviation versus median plot of Walker (1983). KPT 

ignimbrite (sieving) and subaqueous volcaniclastic (functional stereology) data match 

each other when using the same cut-off in grain size (>2 mm). Particularly, the 

coarse-grained KPT ignimbrite data match the functional stereology field for matrix-

rich, very thick, graded facies (MR-thick; Fig. 4b). 
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The overlap between coarse-grained weight-percent data of KPT subaerial ignimbrite 

and matrix-rich, very thick, graded facies (MR-thick) gives additional confirmation 

that functional stereology data match results from the sieving technique (Jutzeler et 

al., 2012). There is a large overlap between median and standard deviation of coarse 

clasts in the three subaqueous volcaniclastic facies. Using coarse clasts only, it is 

difficult to distinguish between subaqueous deposits that are well sorted (matrix poor) 

or not (matrix rich). This contrasts with subaerial pyroclastic flow and fallout 

deposits, which occupy two distinct fields (Walker, 1971, 1983), although these 

values include fine clast data, allowing better characterization (Fig. 4). Matrix-poor, 

thin to thick, clast-supported, well sorted facies (MP-thin) have a much narrower 

range of standard deviation. Using median and sorting statistical parameters, the 

restriction of the grain size distribution to coarse clasts does not allow sufficiently 

accurate differentiation between the three types of subaqueous deposits of this study. 

3.3 F-1 and D16 

The fine grain boundaries in volcaniclastic deposits are commonly destroyed during 

diagenesis, consolidation and/or sediment compaction (Jutzeler et al., 2012). The fine 

grains may be very abundant in volcaniclastic deposits, and are commonly used for 

classification. Here, we propose alternative statistical and volumetric measurements 

that avoid precise information on the fine grain size populations. These parameters 

can be used to compare data from both sieving and functional stereology. 

F-1 represents the matrix ratio, corresponding to the volume ratio of <2 mm grains. 

Importantly, this ratio can be used as proxy for clast size sorting, because a large 

proportion of matrix in volcaniclastic rocks is a common indicator for poor sorting. 

On a cumulative curve, D16 corresponds to minimum clast diameter for 16 wt.% of the 

coarsest clasts. This statistical parameter was chosen as a balanced compromise: 1) 
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Most volcaniclastic deposits have at least 16% of clasts coarser than 2 mm, thus this 

parameter can be used widely. A bigger percentage (e.g. D50) is not adequate, because 

it is likely to include large proportion of clasts <2 mm. 2) D16 is representative of a 

relatively large range of the coarse grain distribution. A lower statistical value (e.g. 

D5, D10) would only be representative of the coarse tail of the deposit, which is poorly 

constrained by both sieving and functional stereology data, due to clast outliers that 

are not part of modes and thus are non-representative of the global grain size 

distribution.  

We plot F-1 against D16 for MR-thick, MR-thin and MP-thin (Fig. 5), and with 

sieving data from the KPT subaerial ignimbrite (Allen et al., 1999), which is used as 

proxy for subaerial pyroclastic flow deposits, although slightly finer grained than the 

average. The MR-thick, MP-thick and MP-thin data partly overlap, but show 

substantial differences in their range of F-1 and D16, which can be attributed to their 

sorting and overall coarseness, respectively. MR-thick and MR-thin fully overlap with 

data from deposits D and E of KPT, indicating the coarse clasts have similar clast size 

in both types of deposits. MR-thick and MR-thin are relatively coarser grained than 

KPT data, which can be explained by the possible bias of field sieving where very 

coarse deposits cannot be easily sieved. 

3.4. Hydraulic sorting ratio in pumiceous clastic rocks 

The hydraulic sorting ratios for three main depositional processes are evaluated 

following equation (8), (12) and (13) for all samples of the three volcaniclastic facies 

in this study, as well as for basal dense-clast breccia of graded facies MP-thick and 

MR-thick. 

3.4.1. Hydraulic sorting ratio in graded facies 
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The hydraulic sorting ratio of coarse components in most of the intervals in the graded 

bed at Bethells Beach in the Manukau Subgroup (Fig. 1f) is very close to 1 for 

relatively low vesicularity pumice (60 vol.% or 1,600 kg/m
3
 wet density), reflecting 

very good hydraulic sorting in context of settling. However, the hydraulic sorting ratio 

by settling drops in the finer grained, poorly sorted uppermost part, probably due an 

increase of shear during last stage of deposition, as seen with a very good hydraulic 

sorting ratio for shear rolling. In contrast, the deposit at Pillow lava Bay is difficult to 

interpret, as its hydraulic sorting is not consistent in the stratigraphy, and settling and 

shear rolling are contenders as sedimentation processes. In addition, the dense clasts 

are mudstone, which may have a lower density than assumed. 

The Dogashima Formation shows a relatively even trend of hydraulic sorting that 

approximates sorting by settling, considering pumice clasts are relatively high wet 

density (1,600 kg/m
3
). However, this trend is cut by several intervals that show poor 

hydraulic sorting by settling, and where shear rolling is much more likely, reflecting 

abrupt changes in the conditions of sedimentation (e.g. units 2, 3e-top1, and 5a; Fig. 

1f). In particular, bed 3e in the Dogashima 2 unit shows good hydraulic sorting by 

settling. This bed was originally interpreted as water-settled fallout from a submarine 

eruption umbrella plume by Cashman and Fiske (1991). Reappraisal of the 

Dogashima Formation using detailed stratigraphy and facies analysis (Jutzeler, 2012; 

Jutzeler et al., 2014a) led to the conclusion that this locally well-hydraulically sorted 

bed in Dogashima 2 was deposited from a seafloor-hugging density current that was 

locally inflated and turbulent due to interaction with a complex topography. 

Furthermore, gradational to sharp contacts of basal dense andesite breccia that 

contained hot clasts at deposition with overlying pumice breccia (units 2 to 4) implies 

deposition from an eruption-fed subaqueous volcaniclastic density current derived 
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from the collapse of a submarine magmatic-volatile-driven explosive eruption column 

(Jutzeler et al., 2014a). Such mechanism of deposition is matched by hydraulic sorting 

ratios showing that most of the sequence was deposited by settling (from a density 

current, considering stratigraphic relationships), with deposition of its basal dense 

andesite breccia (unit 2) by shear rolling. The low hydraulic sorting in units 3e-top1 

and 5a, due to coarse dense clasts and fine pumice clasts (Fig. 1 e), is likely related to 

local current unsteadiness, or complex style of sedimentation.  

In the Ohanapecosh Formation (Fig. 2), the hydraulic sorting ratios of MR-thick 

facies in the Ohanapecosh Formation are mostly less than 1, which indicates that the 

dense clasts are too coarse to be in hydraulic equivalence with pumice clasts. Apart 

from Cayuse 42 bed and top part of Chinook 61 bed, which shows good hydraulic 

sorting by settling, the poor hydraulic sorting of the MR-thick facies in the 

Ohanapecosh Formation suggests transport processes in which coarse clasts were not 

efficiently sorted by water during their settling, such as in high-concentration 

subaqueous volcaniclastic density currents that possibly had a weakly cohesive 

component (Jutzeler et al., 2014b). However, the good organization and grading of 

these beds precludes deposition from highly cohesive submarine debris flows. The 

low hydraulic sorting ratios may also partly be attributed to compaction of pumice 

clasts into fiamme (Jutzeler et al., 2012), artificially decreasing the grain size of the 

former pumice clasts. However, the hydraulic sorting ratio is too low to be exclusively 

caused by post-depositional compaction. 

Several basal beds show low to very low hydraulic sorting ratios. At the base of the 

sequence in Dogashima (units 2, 3a), the lower section of fine pumice breccia (unit 

5a, Dogashima), the basal dense-clast breccia of Cayuse 40 bed, Chinook 57 and 61, 

and Cougar Lake B3 (Figs 1, 2), dense clasts are much coarser than pumice clasts, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
24 of 46  

resulting in a very low hydraulic sorting by settling, but overall matching hydraulic 

sorting by shear rolling. These basal beds probably record deposition from a density 

current in which coarse dense clasts were transported by shear rolling at the base of 

the flow. Traction carpets can develop in the lower part of density currents (e.g. Sohn, 

1997) and generate clast-supported basal sub-facies in which the coarsest and densest 

clasts are prominent due to depositional conditions. 

3.4.2. Compiled hydraulic sorting ratios 

The three types of hydraulic sorting ratio (settling, shear rolling, and collision rolling) 

from all waterlain deposits are compiled into Figure 6. This compilation allows 

inference on the major style of sedimentation in volcaniclastic settings. The hydraulic 

sorting ratios by settling show that a reasonably large amount of MR-thick, MP-thick 

and MP-thin deposits are reasonably hydraulically sorted with respect to settling (Fig. 

6a-c), particularly where pumice density is relatively high (1,400-1,600 kg/m
3
). In 

contrast, the basal dense-clast breccias are clearly not hydraulically sorted by settling 

from a density current, but show very good affinity with shear rolling (Fig. 6g). 

Hydraulic sorting by shear rolling also shows good affinity with our samples. This 

may indicate that some traction occurs during deposition of volcaniclastic density 

currents, however it is likely related to the small difference between both equations, 

resulting in shear rolling curves being relatively close to settling curves (Figs 1f and 

2f). For collision rolling, our calculations show that whatever the pumice clast 

density, a very small amount of the studied facies were hydraulically sorted through 

this mechanism of deposition (Fig. 6d-f), strongly suggesting it is not represented in 

our samples. 

 

4. Discussion 
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4.1. Applications of functional stereology to subaqueous volcaniclastic facies 

The quantification of grain size distributions of volcaniclastic facies is greatly 

extended by using combined techniques of image analysis and functional stereology, 

developed in Jutzeler et al. (2012). Clast types and their relative volume can be 

determined by image analysis for any clastic deposit, unconsolidated or not, on the 

condition that the image shows a sufficiently even surface. Componentry and grain 

size grading of the coarse components can be assessed by sampling the same unit at 

various stratigraphic levels. From data extracted by image analysis, the grain size 

distribution of each clast type (e.g. pumice and dense clasts), as well as total clasts, 

can be determined by functional stereology. 

The limitation of the technique to grain sizes coarser than 2 mm uniquely arises from 

the state of preservation of the samples. For instance, the grain size distribution of 

welded ignimbrites that contain well preserved matrix shards could ideally be 

calculated following the functional stereology approach, assuming the clast shapes 

can be simplified to a common geometry (Sahagian and Proussevitch, 1998). 

The modes of Vi give an accurate description of the volumetric grain distribution of a 

clast population. Modes correspond to physical characteristics of aggregates, the most 

common grain sizes in a population, which are easier to visualize than the median. 

Extraction of modes from consolidated samples allows quantification of textural 

features such as grading (Figs 1d, 2d). Multiple modes in the grain size distribution of 

a clastic sample may record a complex history of fragmentation, transport and/or 

deposition (Wohletz et al., 1989). 

4.2. A new, simple way to evaluate dominant underwater transport processes 

The measurement of the proposed hydraulic sorting ratios gives new, valuable 

information on the mechanisms of transport and deposition of clastic deposits under 
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water. Our proposed three hydraulic sorting ratios, adapted to sedimentation under 

water from equations of Burgisser and Gardner (2006), provide tools to identify the 

best-fitted or dominant transport and sedimentation mechanisms. Deviations from the 

ideal hydraulic sorting ratios can be source of multiple causes, such as clasts having a 

wide range in vesicularity, source-controlled variations in the sediment supply 

(componentry, grain size), and complexities related to deposition mechanisms, 

including deposition of material from several levels in a stratified flow, interaction 

with topography, density stratification, and variations in fine particle concentration, 

momentarily modifying the flow rheology. 

The use of the hydraulic sorting ratios on graded outcrops provide useful quantitative 

information to assess the modification of flow behavior through time at a single 

locality. For instance, the main sequence at Dogashima, and the beds Cayuse 40 and 

42 and Chinook 57 in the Ohanapecosh Formation (Figs 1, 2) show graded facies MR-

thick facies with basal dense-clast breccia emplaced by shear rolling, and overlain by 

pumiceous facies that show good hydraulic sorting under settling conditions; traction 

facies occur at the top (unit 4 at Dogashima, Cayuse 42). This sedimentation sequence 

matches classic examples (Postma et al., 1988; Talling et al., 2012) where initial 

deposition of coarse, dense clasts occurs from the basal dense-clast-rich part of a 

density current (that can develop into a traction carpet), and is progressively replaced 

by depositional settling from the main body of the density current at the boundary 

layer. Turbulence decreases in the uppermost part of the density current, where 

traction may develop. 

4.3. Implications for transport and depositional processes 

All studied water-lain pumiceous volcaniclastic deposits occupy a different field than 

subaerial pyroclastic flow deposits on the standard deviation versus median diagram 
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(Fig 4a). This effect is due to the much lower cut-off (+5 ; 
1
/32 mm) in sieved data 

used by Walker (1983) compared to the cut-off used in this study (-1 ; 2 mm). Using 

the same cut-off (Fig. 4b), the coarse grained fraction (-6 to -1 ; i.e. >2 mm) of the 

KPT sieving data overlap the field of matrix-rich, very thick, graded facies (MR-

thick), and different types of deposits cannot be distinguished. 

In the various subaqueous deposits examined, a better hydraulic equivalence by 

settling is found between the main modes of pumice and dense clasts if waterlogged 

pumice density spans 1,400–1,600 kg/m
3
 than 1,200 kg/m

3
. This relationship suggests 

(1) efficient waterlogging of the pumice clasts before their final deposition in water, 

which is likely considering the increasing confining pressure with increasing water 

depth during sedimentation; and (2) these submarine pumice were not exceedingly 

highly vesicular (60-75%; corresponding to 1,400–1,600 kg/m
3
 waterlogged), which 

is reasonable. This inference is of critical importance in assessing the sources of 

pumice clasts deposited subaqueously. 

Hot pumice clasts are efficiently waterlogged when quenched on contact with water 

(Whitham and Sparks, 1986; Allen et al., 2008), and can be deposited under water 

from subaqueous volcaniclastic density currents derived from subaerial pyroclastic 

flows that entered water (Whitham and Sparks, 1986; Freundt, 2003), or from 

subaqueous explosive eruptions (Allen and McPhie, 2009; Jutzeler et al., 2014a). 

Waterlogging of cold air-filled pumice clasts can require years (e.g. Whitham and 

Sparks, 1986; White et al., 2001; Jutzeler et al., 2014c).  

4.4. Issues in using the median for grain size analyses 

The median and standard deviation (Inman, 1952; Folk, 1980) are commonly used to 

compare the grain size distribution of different clast populations, and to discriminate 

the mode of emplacement of unconsolidated subaerial pyroclastic deposits (Moore, 
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1934; Murai, 1961; Walker, 1971; Walker and Croasdale, 1971; Walker, 1983, 1984). 

The median and standard deviation values were chosen for their simplicity in 

representing variations in grain size distributions and ease of calculations, both of 

which were important in the pre-computer era. However, the use of these parameters 

is commonly accompanied by two major statistical problems, rendering comparison of 

deposits unreliable. The two statistical problems are discussed below. 

First, the median and standard deviation are meaningful only for monomodal and 

distributions (Folk, 1980). However, bi-modal and higher order poly-modal 

distributions are very common in pyroclastic deposits, and reflect poor sorting and 

diverse fragmentation, transport and/or depositional processes (e.g. Wohletz et al., 

1989; Orsi et al., 1992). Both juvenile and non-juvenile clast populations can be 

responsible for secondary modes in the total grain size distribution (Walker, 1972, 

1983; Wohletz et al., 1989; Carey and Houghton, 2010). Thus, the overall grain size 

median cannot identify discrete physical processes. Furthermore, some deposits may 

give the exact same values of median and standard deviation while these are evidently 

very different by distribution modes expressed in terms of mean values. We give two 

examples: (1) A monomodal distribution with a mode at 0  will have the same 

median as a bimodal distribution with same-magnitude modes at -3 and +3 ; (2) A 

same sample will return different values of the median and standard deviation if the 

grain size distribution is calculated in the range -5 to +5  or over the range -5 to +3 . 

Second, modern techniques (e.g. laser diffraction; Evans et al., 2009) extend 

identification of the grain size to much finer clast diameters than sieving, but can be 

limited by maximum grain size it can detect. Comparison of the median and standard 

deviation of grain populations from datasets based on different cut-off grain sizes 

and/or on different techniques should not be attempted, because the actual range in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
29 of 46  

grain sizes and class size grading (bin sizes) are different in each given technique, 

instrument, or sieve set. 

Therefore, we strongly argue that the use of the mode (i.e. the diameter of the most 

abundant grain size) to compare grain size distributions is more robust statistically. 

The main (primary) mode should broadly correspond to the visual (naked eye, hand 

lens) average grain size widely used during preliminary assessment of a deposit, and it 

makes sense to extend the use of such parameter to more in-depth studies. The main 

mode should be used to characterize the grain size of a deposit. All secondary modes 

(and eventual outsized coarse clasts) are crucially important to fully describe the grain 

size distribution of a sample, because these are likely caused by additional physical 

processes (i.e. fragmentation and/or sorting). F-1 and D16 are adequate to be used 

together with the modes to characterize volcaniclastic deposits. 

4.5. Comparison of sieving and functional stereology datasets 

Direct comparison of weight percent data from sieving and functional stereology is 

possible, but the thresholds of detection, especially for the fine-grained clasts, limit 

the scope of comparison with parameters such as median diameter and standard 

deviation. To compare sieving and functional stereology outputs in graphs of standard 

deviation versus median of Walker (1983) is difficult with data from this study, 

because particles <2 mm could not be separately identified from the clastic rocks. In 

addition, Walker‟s (1983) complete sieving dataset is not published, which precludes 

comparison of the coarse tails of his grain size distributions with our dataset. 

However, data from units D and E of the KPT ignimbrites (Allen et al., 1999), used as 

a proxy for pyroclastic flow deposits, match the field of matrix-rich, very thick, 

graded facies (MR-thick). Many of the samples analyzed by functional stereology and 

by sieving (e.g. Walker and Croasdale, 1971) contain two modes of coarse clasts (>2 
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mm) and it is likely that the matrix also includes one or more modes per sample. 

Consequently, because of the polymodal nature of the deposits, the median and 

standard deviation of all these data can only be compared qualitatively with 

unconsolidated subaerial equivalents. 

We propose modes, F-1 and D16 as parameters to characterize volcaniclastic deposits, 

because detailed information on fine particles is not taken into account. These values 

can be extracted from both sieving and functional stereology data, are fully 

compatible, and do not need detailed textural data from the fine grain fractions. 

 

5. Conclusions 

We applied image analysis and functional stereology developed in Jutzeler et al. 

(2012) to clastic rocks of the Ohanapecosh Formation (Ancestral Cascades, 

Washington, USA), Dogashima Formation (Izu Peninsula, Japan), Manukau 

Subgroup (Northland, New Zealand) and the Sierra La Primavera caldera (Jalisco 

State, Mexico). This technique enables determination of textural features that 

conventional sieving methods are unable to retrieve on consolidated samples, such as 

clast and matrix volume, and grain size distribution. Matrix ratio, grain size modes, 

and several statistical parameters were extracted from the grain size distribution of 

(consolidated) pumiceous volcaniclastic rocks deposited in a subaqueous 

environment. 

Modes, F-1 and D16 values allow characterization of the various subaqueous 

volcaniclastic facies, and these parameters can be directly compared with sieving data.  

We define three types of hydraulic sorting ratios, which quantifies how well a deposit 

is sorted hydraulically in three main types of transport and deposition, taking fluid 

density, clast size, and clast density into account. This ratio is especially relevant to 
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coarse clastic deposits containing different clast sizes and clast densities, such as 

pumice clasts versus dense clasts. The substantial amount of waterlain pumiceous 

volcaniclastic facies in this study (n=85) shows that clast with mixed densities were 

mainly deposited from settling processes, including from density currents or vertical 

settling. Minor influence from shear rolling cannot be excluded in many cases, and it 

is preponderant in dense clast basal breccias. Indeed, several density current deposits, 

such as at Dogashima (Japan) and in the Ohanapecosh Formation (USA), show a 

classic sedimentation sequence where initial deposition of dense clasts occurs at the 

base of the flow, possibly in a traction carpet, and is progressively replaced by 

deposition from settling from a subaqueous density current. Turbulence decreases in 

the uppermost part of the deposit, where traction may develop. 

The relatively good hydraulic sorting by settling of pumice and dense clasts in most 

studied water-lain pumiceous deposits implies that the pumice clasts were cold and 

relatively dense (1,400–1,600 kg/m
3
) at deposition, thus fully waterlogged, which was 

naturally achieved by contraction of any trapped gas in the clast porosity in response 

to increasing hydrostatic pressure during gravity-driven transport in water. 
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Figures  

Figure 1 

Image analysis and functional stereology on water-lain, graded, pumice-rich, 

volcaniclastic beds in the Dogashima Formation (Japan; MP-thick) and the Manukau 

Subgroup (New Zealand; MP-thin). a) Stratigraphic logs from field estimates. 

Stratigraphic logs show average grain size as black vertical line; outsized clasts reach 

out of the log; two vertical lines are used where dense and pumice clasts have distinct 

grain sizes; b) Clast, matrix and cement volume percent from image analysis; c) 

Volumetric componentry extracted from functional stereology data; d) Modal grain 

size distribution density per  (Gi) from functional stereology. Outsized coarse clasts 

do not form modes, thus are not represented; e) Modal volume per  (Vi) from 

functional stereology. Outsized coarse clasts do not form modes, thus are not 

represented; f) Three types of hydraulic sorting ratios at two end-member bulk wet 

densities for pumice clasts (gradient from plain to pale color for 1,200 kg/m
3
 to 1,600 

kg/m
3
, respectively); g) Standard deviation () versus median (M) values for 

samples from locations progressively up stratigraphy (arrows); analyzed grain size 

range is -12 to -1  (4 m to 2 mm). HSR, hydraulic sorting ratio. 

Figure 2 

Image analysis and functional stereology on water-lain, graded, pumice-rich 

volcaniclastic beds in the Ohanapecosh Formation (United States; MR-thick). a) 
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Stratigraphic logs from field estimates. Stratigraphic logs show average grain size as 

black vertical line; outsized clasts reach out of the log; two vertical lines are used 

where dense and pumice clasts have distinct grain sizes; b) Clast, matrix and cement 

volume percent from image analysis; c) Volumetric componentry extracted from 

functional stereology data; d) Modal grain size distribution density per  (Gi) from 

functional stereology. Outsized coarse clasts do not form modes, thus are not 

represented; e) Modal volume per  (Vi) from functional stereology. Outsized coarse 

clasts do not form modes, thus are not represented; f) Three types of hydraulic sorting 

ratios at two end-member bulk wet densities for pumice clasts (gradient from plain to 

pale color for 1,200 kg/m
3
 to 1,600 kg/m

3
, respectively); g) Standard deviation () 

versus median (M) values for samples from locations progressively up stratigraphy 

(arrows); analyzed grain size range is -12 to -1  (4 m to 2 mm). HSR, hydraulic 

sorting ratio. See Fig. 1 for key. 

Figure 3 

Standard deviation () versus median (M) of weight percent of water-lain samples 

of pumice-rich volcaniclastic facies MR-thick, MP-thick and MP-thin, from 

functional stereology of coarse clasts (-12 to -1 ; 4 m to 2 mm). Samples from the 

Dogashima Formation, the Ohanapecosh Formation, the Manukau Subgroup and 

Sierra La Primavera caldera (Table 1). a) Pumice clast density are plotted as dry (700 

kg/m
3

, or 72% vesicles) for comparison with subaerial samples; b) Dense clasts with 

fixed density of 2,500 kg/m
3
; c) Total clasts by combination of pumice and dense 

clasts datasets, taking the respective volume and vesicularities of pumice and dense 

clast classes into account; d) Contour of the total clasts datasets from (c). 

Figure 4 
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Standard deviation () versus median (M) from functional stereology (this study) 

and published sieving data. a) Coarse clast sizes (-12 to -1 ; 4 m to 2 mm) from 

functional stereology of subaqueous volcaniclastic facies MR-thick, MP-thick and 

MP-thin (Fig. 3; Table 1) are compared with statistical percentage fields of 1% (short 

dash) and 4% (long dash) of total clast sizes by sieving at -5 to +5  (32 mm to 0.031 

mm) of various types of unconsolidated subaerial pyroclastic deposits (Walker, 1983); 

b) Sieving and functional stereology data with different minimum cut offs in grain 

size. Sieving data of units D and E (subaerial ignimbrite) of the Kos Plateau Tuff 

(KPT; Allen et al., 1999) match the coarse, well-sorted part of Walker‟s (1983) field 

for subaerial pyroclastic flow deposits. When a minimum cut-off at -1  is applied, 

coarse-grained sieving data of units D and E of the KPT match fine-grained functional 

stereology data of subaqueous volcaniclastic deposits. 

 Figure 5 

F-1 (i.e. matrix ratio) versus D16, using full range of grain sizes (no cut-off). D16 

corresponds to 16 wt.% of the coarsest clasts of each sample, and entirely consists of 

clasts coarser than 2 mm. a) Fields for MR-thick, MP-thick and MP-thin facies from 

functional stereology data partly overlap. b) Units D and E (subaerial ignimbrite) of 

the Kos Plateau Tuff (KPT; Allen et al., 1999) as proxy for subaerial pyroclastic flow 

deposits, largely overlap MR-thick and MP-thick facies. 

Figure 6 

Frequency histogram of the three hydraulic sorting ratios between pumice and dense 

clasts for MR-thick, MP-thick and MP-thin and basal dense-clast breccia for water-

lain volcaniclastic facies. a-c, deposition by settling, varying the pumice density; d-f, 

deposition by collision rolling, varying the pumice density; g, deposition by shear 
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rolling. Pumice clast density varies as a function of vesicularity ratios. Densities 

(kg/m
3
) of pumice clasts, ρP; dense clasts, ρD; and seawater, ρw. 

 

Tables 

Table 1 

Three comprehensive facies of volcaniclastic rocks analyzed by functional stereology, 

from four waterlain successions: the Dogashima Formation (Japan), the Ohanapecosh 

Formation (USA), the Manukau Subgroup (New Zealand) and Sierra La Primavera 

caldera (Mexico) (Fiske, 1963; Clough et al., 1981; Cashman and Fiske, 1991; Allen 

et al., 2007; Jutzeler, 2012; Jutzeler et al., 2014a; Jutzeler et al., 2014b). 
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Table 1 

Facies  
name 

Number of  
samples 

Facies 
characteristics 

Interpreted 
transport 

Formation/ 
Sub-Group 

MR-thick 46 
Matrix-rich, very thick, 
graded facies 

Subaqueous 
volcaniclastic density 
current 

Ohanapecosh, 
Dogashima, 
Manukau 

MP-thick 25 
Matrix-poor, very thick, 
graded facies 

Subaqueous 
volcaniclastic density 
current 

Dogashima 1 and 2, 
Ohanapecosh 

MP-thin 14 
Matrix-poor, thin to 
thick, clast-supported, 
well sorted facies 

Subaqueous vertical 
settling 

Manukau, 
Ohanapecosh, 
Primavera caldera 
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Highlights: 

Functional stereology is efficient to interpret sedimentation mechanisms 

Simple hydraulic sorting ratios allow inference on styles of deposition 

Transport and deposition mechanisms can be evaluated from pumiceous rocks 

Modes are more adequate than median to characterize sediment grain size 
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