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Abstract
To generate the most diverse phylogenetic dataset for the flaviviruses to date, we deter-

mined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which

10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunc-

tion with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolu-

tionary and biogeographic history in unprecedented detail and breadth. Based on the

presumed introduction of yellow fever virus into the Americas via the transatlantic slave

trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary

history, shows that different Culex-spp. associated flaviviruses have been introduced from

the Old World to the NewWorld on at least five separate occasions, with 2 different sets of

factors likely to have contributed to the dispersal of the different viruses. We also discuss

the significance of programmed ribosomal frameshifting in a central region of the polypro-

tein open reading frame in some mosquito-associated flaviviruses.

INTRODUCTION
The flaviviruses constitute a fascinating group of diverse arboviruses that exhibit uniquely clear
correlations between phylogenetic relationships and virus-vector-host interactions [1–4]. The
genus Flavivirus includes an unusually large number of taxonomically recognised species
(more than 50 at the present time, of which more than 40 are human pathogens) with a global
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distribution. The genus also includes a large and increasing number of unclassified or “tenta-
tive” species. Pathogenic mosquito- and/or tick-borne flaviviruses cause a variety of clinical
diseases in a wide range of vertebrate species. These disease syndromes include mild/severe fe-
brile illness, “flu-like” syndromes with a rash, or in other cases severe encephalitis or haemor-
rhagic disease. Dengue with / without warning signs and severe dengue, is the most devastating
arboviral disease in tropical and, increasingly, sub-tropical areas of the world (300 to 400 mil-
lion cases each year) [5]. Yellow fever virus and Japanese encephalitis virus also considerably
contribute to the human flavivirus disease burden. Other flavivirus diseases, including West
Nile encephalitis, Usutu encephalitis, Zika fever, Bagaza encephalitis and duck egg drop syn-
drome, are recognised as “emerging diseases”.

Flavivirus ecological networks are varied, complex, and poorly understood. Importantly,
most of the natural pathogens are transmitted by arthropods (i.e. they are “arboviruses”). How-
ever, flaviviruses with no known vector (NKV), or that infect only insects (i.e., insect-specific
flaviviruses—ISFVs), have also been identified. This remarkable diversity is associated with
broad genetic variability, complex mechanisms of pathogenesis and intriguing virus/vector/
host associations.

The taxonomy of the flaviviruses is constantly being updated to reflect newly-identified vi-
ruses and advances in analytical methods. Interestingly, the first mammalian viruses to be iden-
tified included 4 arboviruses, three of which were flaviviruses: louping ill virus, yellow fever
virus and dengue virus [6]. This has had a deep and long-lasting influence on the development
of virological research and more specifically, on taxonomy [7] and phylogeography.

With the publication of many new complete genomic flavivirus sequences [3,8] and the data
generated in the current study, it is now timely and appropriate to re-examine the phylogenetic
relationships in the context of flavivirus vector-host relationships, evolution and
biogeographical characteristics.

The concept that the phylogenetic relationships of the tick-borne flaviviruses (TBFV) may
correlate with their epidemiology, disease association and biogeography was first proposed in
1996 with the publication of the clinal evolution concept of the tick-borne encephalitic flavivi-
ruses [9]. These relationships were then corroborated and extended by the inclusion of the
mosquito-borne and non-vectored flaviviruses [1] but analyses were still based on a limited
number of recognised flaviviruses and only partial gene sequence data (44 species based on the
envelope gene). Subsequent analyses [3,8,10,11], using more extensive datasets improved our
understanding of these virus-vector-host relationships in the context of their evolution and dis-
persal [2,12]. Additional flaviviruses including Lammi virus [13], N’goye virus [14], Alkhumra
haemorrhagic fever virus [15], Usutu virus [16], New Mapoon virus [17], and Marisma mos-
quito virus [18] have subsequently been discovered. Together with the increasing numbers of
documented species and strains of ISFV, that do not appear to be arboviruses [19–23], these
discoveries have shed new light on our perception of the evolution and taxonomy of this
complex genus.

Based on the flavivirus arthropod vectors and vertebrate hosts, current phylogenies recog-
nise three major groups in addition to the ISFVs [1,3,8,10,13]: the tick-borne, mosquito-borne,
and no known-vector flaviviruses (TBFV, MBFV and NKV respectively). The TBFV are sub-
divided into pathogenic flaviviruses primarily associated with Ixodes spp., and apathogenic fla-
viviruses associated with Ornithodorus spp. ticks that primarily feed on or parasitize, seabirds.
The mosquito-borne flaviviruses (MBFV) are sub-divided into those primarily associated with
Culex spp. (ornithophilic) mosquitoes and those primarily associated with Aedes spp. (mam-
malophilic) mosquitoes. In contrast, the viruses with no known vectors (NKV) are divided into
those primarily associated either with rodents or bats. These specific lineage NKVs are defined
in the text as NKVSL. In addition, the three viruses (Sokoluk, Entebbe bat and Yokose virus)
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are exceptional in that they diverged with the MBFV but arthropod vectors have not been
associated with these viruses. In other words, they diverged within the MBFV—Aedes spp.-
associated clade but appear to have lost this mosquito association [10]. These NKV are defined
in the text as NKV-like.

For further clarity, we will also distinguish ISFVs which are very divergent from the other
members of the genus Flavivirus by referring to them as ISFVSL. Finally, we will distinguish re-
cently discovered viruses such as LAMV, which fall phylogenetically within the MBFV group
but appear to infect only insects, as ISF-like.

The genus Flavivirus also includes 2 highly divergent genetic lineages not associated with
any recognized group in the ninth report of the International Committee on Taxonomy of Vi-
ruses (ICTV) [7], represented by Tamana bat virus [TABV] [11] and Ngoye virus [14]. Recent-
ly, another highly divergent lineage, Mogiana tick virus [MGTV], was isolated in Brazil [24].

Whilst early interpretations of the evolutionary and taxonomic relationships within the
genus Flavivirus have proved informative, they were restricted to some extent by the lack of
complete genomic sequence data, and robust analytical methods. As a result, it has not yet
proven possible to resolve the issue that phylogenies based on complete genomes and, separate-
ly, the NS3 gene show different branching characteristics from those based on the NS5 gene,
despite a lack of evidence for recombination within the respective data sets [10,11,25]. In this
manuscript we report the genomic sequences of fourteen flaviviruses, for which previously
only limited data were available. Based on these more comprehensive datasets, we attempt to
resolve hitherto unanswered questions relating to the flaviviruses, and explore frame shift char-
acteristics. Additionally, we identify viruses that appear to have been introduced from the Old
World into the NewWorld, estimate the likely times prior to the present that these introduc-
tions occurred, and discuss factors that probably contributed to the global dispersal of
these viruses.

MATERIALS ANDMETHODS

Viruses
MBFVs included in the study were all subcultured at least once in C6/36 cells. Batu cave virus
[BCV], Jutiapa virus [JUTV], Phnom Penh bat virus [PPBV] and Sokuluk virus [SOKV] were
amplified in the mammalian cell-line BHK21 and Sitiawan virus [STWV] was amplified in
Vero cell cultures. STWV virus was kindly provided by Dr. Yuji Kono as inactivated nucleic
acid in RNA-Now lysis buffer.

Nucleic acid preparation
Viral RNA was either extracted using the BioRobot EZ1 (Viral RNAMini kit: Qiagen) or
RNA-Now (Biogentex) using the manufacturer’s recommendations. Reverse transcription was
carried out using Taqman Reverse transcription reagents (Applied Biosystems) under standard
conditions with random hexamers as primers.

Polymerase chain reaction (PCR) in the conserved region of the genome
PCR was targeted at the E, NS3 and NS5 gene-conserved regions using consensus degenerate
primers [8,26–28]. Sequences for the NS3 gene region were obtained using NS3-FS
(5’-GGIGTIYTICAYACIATGTGGCAYGTIAC-3’)/NS3-FR (5’-TKICKICCIAYICKICCICK-
ICKYTGIGCNGY-3’) primers in first round PCR, followed by nested PCR using X1
(5’-YIRTIGGIYTITAYGGIWWYGG-3’)/X2 (5’-RTTIGCICCCATYTCISHDATRTCIGT-3’)
primers, with standard conditions and a hybridisation temperature of 45°C.
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Sequencing strategy
Specific primers were designed from the 3 conserved region sequences defined above and long-
range PCR was conducted to complete the sequencing of gap between the E to NS3 genes, and
NS3 to NS5 genes, using the cMaster RTplusPCR system (Eppendorf) [3]. A long PCR product
sequencing protocol (LoPPs) was employed to sequence amplicons [29,30].

PCR amplification of the 5’ and 3’ end of coding sequences
The 5’-terminal region of the genome sequence was obtained using an E-gene specific reverse
primer and a forward degenerate primer in the 5’UTR designed using an alignment of available
5’ UTRs of Culex-spp. associated flavivirus sequences (5’-CULEX-S1: 5’-AGwiGTTCryCT-
GyGTGArCT-3’; position 1–21 of the Japanese encephalitis virus genome). Semi-nested
PCR with a second inner virus-specific primer was also used when necessary. The 3'-terminal
region of the genome was obtained using a similar strategy with virus-specific forward
primers in the NS5 region and a reverse degenerate primer in the 3’UTR (3’UTR-MOS:
5’-GGTCTCCWMTAACCTCTAG-3’).

Sequencing was conducted with the primers used for amplification, or with M13 primers
after cloning in a pCR2 cloning vector (Invitrogen).

Complete polyprotein open-reading frame (ORF) sequences, excluding the partial untrans-
lated regions (UTR) regions obtained by this protocol were used for further analyses.

Next Generation Sequencing (NGS)
Resequencing of seven of the eleven new complete polyprotein ORF sequences (AROAV,
CPCV, ITV, KOUV, NTAV, TMUV and YAOV) was performed using the Ion PGM Sequenc-
er (Life Technologies SAS, Saint Aubin, France) [31] and a random reverse transcription-
amplification protocol. Reads, of minimum length 30 nucleotides, were trimmed using CLC
Genomic Workbench 6.5 (QIAGEN Company), with a minimum of 99% quality per base and
mapped to reference sequences previously obtained by the Sanger method. Parameters were set
such that each accepted read had to map to the reference sequence for at least 50% of its length,
with a minimum of 80% identity to the reference.

BCV, JUTV and PPBV sequences were obtained using the same NGS method and de
novo assembly.

Sequence analysis
Sequences were refined using Sequencher 4.8 (Gene Codes, Ann Arbor, MI) and combined
with other flavivirus sequences available in the Genbank database, to obtain a dataset including
a representative of at least one sequence for each species available as full polyprotein ORF for
the genus Flavivirus. Genbank accession numbers of sequences used for the analysis are noted
after each virus abbreviation on Fig. 1 (tree). Complete polyprotein ORF amino acid align-
ments were generated using both Clustal W2 [32,33] and MUSCLE [34] available at the EMBL
server (http://www.ebi.ac.uk/Tools/) and refined manually, for comparison. Nucleotide align-
ments were then deduced using amino acid (AA) alignments as a template using the TranAlign
software available via the EMBOSS server (http://emboss.bioinformatics.nl/cgi-bin/emboss/
tranalign). The effect of removing regions of ambiguous alignment via the GBlocks algorithm
[35] using less stringent parameters was also investigated.

Amino acid phylogenetic trees were reconstructed using Markov chain Monte Carlo
(MCMC) analysis implemented in MrBayes v3.1.2 [36]. The analysis was performed using the
WAG substitution model with gamma distributed rate variation among sites and using default
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Fig 1. Bayesian phylogeny of the ORF ‘global genus’ amino acid dataset.Only posterior probabilities of 0.9 are included. The tree is midpoint rooted.
Bar, 0.3 substitutions per site.

doi:10.1371/journal.pone.0117849.g001
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priors. Five independent Markov chains were run for 10 million generations, with the first 10%
of samples discarded as burn-in. Stationarity was confirmed based on effective sample sizes
>400 using Tracer v1.4.1 [37]. A maximum clade credibility tree was summarised using
TreeAnnotator which annotates all nodes with posterior probability support values. A range of
nucleotide analyses was also conducted (both including and excluding third codon positions).

Secondary RNA structures were investigated using the RNAfold webserver (http://rna.tbi.
univie.ac.at/cgi-bin/RNAfold.cgi) and pknotsRG [38]. Synonymous site conservation was ana-
lysed as described previously [39].

Bayesian inference of a time-measured evolutionary history
A second data set of polyprotein ORF flaviviruses was compiled by excluding the highly diver-
gent sequences of all ISFVs and including additional sequences of YFV that were isolated from
either the NewWorld or the Old World. An amino acid alignment was produced using Clustal
W2 and regions of ambiguous alignment were removed using the GBlocks algorithm with
standard parameters.

A time-measured evolutionary history was inferred using MCMC analysis implemented in
BEAST [40]. Based on model testing using Prottest, we used the LG substitution model [41]
with gamma distributed rate variation among sites in conjunction with a relaxed uncorrelated
lognormal molecular clock model [42] and a Bayesian skygrid tree-prior [43].

Time-calibration of the evolutionary history was based on the recognised slave-trade intro-
duction of YFV to Brazil [12,44,45]. Specifically, based on estimates from www.slavevoyages.
org, we constrained the common ancestor of the American YFVs to have existed before 1860,
and the divergence from the West-African YFVs to have occurred after 1561. The divergence
of the South American YFV from the African YFV strains represents the upper boundary for
the introduction. Therefore, this node is assumed to be younger than 449 years. The common
ancestor of all South American YFV strains represents the lower boundary for the slave trade
introduction, and this node is therefore assumed to be older than 150 years. Given the long
evolutionary time-scale and the fact that we performed our analysis at the amino acid level to
allow the estimation of relatively deeper divergence times, instead of resorting to potentially
saturated nucleotides, and to avoid a potential disconnect between short-term and long-term
evolutionary rates [46], we did not consider sampling time differences when estimating the
timed history.

We also incorporated a two-state discrete diffusion model for the Old World and New
World locations in our analyses and jointly estimated the ancestral geographical states with the
evolutionary history [47]. The BEAST analysis was run for 20 million generations and diagno-
sized using Tracer. Trees were summarized using TreeAnnotator and visualized using FigTree
(Fig. 2).

Biogeographical data
Available ecological data, geographical dispersal patterns, host association and pathogenicity
for all mosquito-borne flaviviruses were retrieved from the CRORA viral database (Centre col-
laborateur OMS de Reference et de Recherche sur les Arbovirus, Institut Pasteur de Dakar, Af-
rica http://www.pasteur.fr/recherche/banques/CRORA/) and the International Catalogue of
Arboviruses [48]. Three viruses tentatively assigned to the genus Flavivirus, TABV [11], Ngoye
virus [14] and Mogiana tick [24] virus were not included in analyses because they are genetical-
ly too divergent to be incorporated without ambiguities using currently-available methods
[10].
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Fig 2. Maximum clade credibility tree summarized from the Bayesianmolecular clock analysis. All nodes attained maximal probability support except
for those indicated by a * (posterior probability< 0.95). The node age uncertainty is indicated using 95% highest posterior density (HPD) interval bars in blue.
Old World and NewWorld ancestral states are indicated by black and red branches/nodes respectively. Nodes of interest are listed A to N as referred in
the text.

doi:10.1371/journal.pone.0117849.g002
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RESULTS
Using our sequencing strategy, we obtained complete coding sequence for 10 Culex-spp. asso-
ciated flaviviruses (Aroa virus [AROAV], Naranjal virus [NJLV], Cacipacore virus [CPCV],
Koutango virus [KOUV], Yaounde virus [YAOV], Stratford virus [STRV], Israel turkey
meningoencephalomyelitis virus [ITV], Ntaya virus [NTAV], Tembusu virus [TMUV] and
STWV. Additionally, the remaining non-vectored viruses (NKV-like) in the MBFV group, viz.,
SOKV and 3 NKVSL flaviviruses BCV, JUTV and PPBV were sequenced. With the addition of
these new sequences, and by taking into account other recently-published data [49–52], we
have produced the most comprehensive review and phylogeny of flavivirus full polyprotein
ORF sequences and phylogeographic information to date.

Phylogenetic analysis
Fig. 1 presents a phylogenetic tree based on all the sequence data yielding the highest posterior
probabilities out of all analyses performed. The tree is based on amino acid sequences aligned
using ClustalW2. There are high levels of support at all nodes (with a posterior probability�
to 0.98 for all nodes, with the exception of one node intra WNV lineage 2 at 0.6 and one node
intra DENV-3 strains at 0,5). Clades suggested by this analysis correspond to the recognised
virus-vector-host groups defined above and previously [1].

TBFVs
The phylogenetic relationships of the TBFVs agree with previous studies [3] and are not elabo-
rated upon further in this manuscript.

NKVs
The inclusion of the complete polyprotein ORF sequence for SOKV corroborates and extends
previous suggested groupings for the three NKV-like bat-associated viruses, namely Entebbe
bat virus [ENTV], Yokose virus [YOKV] and SOKV which cluster within the Aedes-associated
mosquito-borne virus clade. These three NKV-like viruses represent the ICTV “Entebbe bat
virus group” [7] and form a basal lineage for the YFV group and the Edge Hill virus [EHV]
group. In addition, our analysis confirms that this NKV-like group of viruses currently sits in
the clade that contains Aedes spp. MBFVs with a robust branching pattern supported by high
posterior probabilities.

Sokoluk virus was isolated in 1970 from Vespertilio pipistrellus bats in Kyrgyzstan [53]. Ac-
cording to the 9th report of the ICTV [7] SOKV is a member of the Entebbe bat virus group,
and appears to be a strain of the species ENTV. Entebbe bat virus is an African virus isolated
from the insectivorous migratory bat species Tadarida (Chaerephon) limbata. It therefore
seems reasonable to propose that SOKV probably emerged in Africa and dispersed to Asia via
transmission across areas of overlapping bat habitats. Importantly, ENTV and SOKV have
been shown to replicate in C6/36 mosquito cells in vitro [54] whereas the recognised NKVSL

that form a genetically distant clade (Rio bravo [RBV], Montana myotis leukoencephalitis
virus [MMLV], etc.) do not replicate in mosquito cells [55]. This observation together with the
phylogenetic position of these viruses in the MBFV clade is consistent with the idea that the
transmission or maintenance cycles of YOKV, ENTV and SOKV (or ancestral representatives
of these viruses), may have involved mosquitoes in the past.

The addition of the complete ORF sequences of BCV, JUTV and PPBV corroborates and ex-
tends our knowledge regarding the poorly-described NKVSL group. Apoi virus (a Japanese virus
isolated from Apodemus spp. and Clethrionomys spp.) constitutes a separate group which

Phylogeny of Flaviviruses

PLOS ONE | DOI:10.1371/journal.pone.0117849 February 26, 2015 8 / 30



appears to have diverged earlier from the other viruses, which are distributed into two groups
that include viruses isolated from rodents and bats respectively [25]. Bat-associated viruses con-
stitute 2 sub-groups including MMLV and RBV, PPBV and BCV, respectively. Rodent-
associated viruses are represented by Modoc virus and JUTV in our analysis. The other represen-
tatives of rodent and bat NKVs were not included in this analysis due to the absence of complete
ORF sequences.

MBFVs
Using partial genome sequence-based phylogenies, the MBFVs were previously divided into 2
major groups reflecting their vector associations (i.e., Aedes- and Culex-associated groups), the
principal vertebrate host and associated diseases [1]. Our analysis, based on complete ORF se-
quence data, confirmed this division of MBFVs into 2 major epidemiologically distinct vector
groups, i.e., those primarily associated either with Culex spp. or Aedes spp mosquitoes. Howev-
er, additional ISFV-“like”MBFVs became available for phylogenetic analysis. Lammi virus
[LAMV] was isolated from A. cinereusmosquitoes in Finland [13], Ilomantsie virus [ILOV]
was isolated from Ochlerotatusmosquitoes in Finland (Huhtamo et al., submitted paper), Mar-
isma mosquito virus [MMV] from O. caspius in Spain [18], Donggang virus [DGV] from
Aedesmosquitoes in China (Unpublished data, GenBank acc. Number: NC_016997),
Chaoyang virus [CHAOV] from A. vexans nipponii in Korea [56] and in China (Article pub-
lished in Chinese, GenBank acc. Number: FJ883471), Nounané virus [NOUV] from Uranotae-
nia spp. mosquitoes in Ivory Coast [57] and Barkedji virus [BJV] from Culex perexiguus in
Israel [58] and Senegal (Unpublished data, GenBank acc. Number: EU078325). The mosquito
vector was originally unknown for CHAOV (China) and BJV (Senegal) but these viruses have
also been recently described in other locations [58]. Thus, based on this more recent evidence
the probable vectors for CHAOV and BJV are Aedes and Culex species respectively.

These viruses form two distinct groups (Fig. 1) that diverge from the two previously recog-
nised groups Aedes spp.-associated and Culex spp.-associated MBFV. Moreover, the branching
pattern of the tree implies that they emerged after the Aedes spp.-associated virus lineage but
before the Culex spp.-associated virus lineage. Currently, they sit in the major clade of Aedes-
associated viruses and represent an integral part of the evolutionary continuum amongst the
MBFVs. These two groups of Eurasian viruses, containing LAMV, ILOV, DGV and CHAOV
and the African virus group containing BJV and NOUV, appear to replicate only in mosquito
cells, possibly with transitory replication in vertebrate cell lines [13,57]. This is compatible with
2 independent events during which these MBFVs lost their ability to infect vertebrate cells. Re-
cently, Nanay virus was isolated from Culex ocossa in Peru [59]. This virus was only partially
sequenced in the E and NS5 gene but it seems to be closely related to NOUV, leaving the ques-
tion of a potentially more widespread dispersal of this new ISFV-like virus in the NW. This is
not surprising, in view of other papers which reported the widespread distribution of ISFV and
the huge extent of undersampling.

Aedes-associated flaviviruses (Fig. 1) include the dengue virus [DENV] group, the yellow
fever virus [YFV] group, the EHV group, and the Kedougou virus [KEDV] group. Results from
our analyses are in accordance with the most recently published studies [8].

The complete ORF sequences of 10 Culex spp.-associated flaviviruses were determined and
included in the phylogenetic tree (Fig. 1). Thus, all viruses currently known to fall within this
group have now been characterized.

CPCV
CPCV is a bird-associated virus, isolated in Brazil from the blood of the black-faced antbird.
This virus has never been found in mosquitoes. However, this could reflect insufficient
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sampling of field materials. In the most recent phylogenies (Fig. 1), CPCV always roots the JEV
group with a posterior probability of 1. Recently, it was isolated in Brazil from a human pre-
senting clinically with leptospirosis and/or yellow fever-like illness [60].

YAOV, KOUV andWNV
YAOV and KOUV represent ancestral lineages of WNV in the phylogenetic tree (Fig. 1).
YAOV has been isolated in Africa in the Cameroon, Central African Republic, Congo, Senegal
and Ivory Coast from birds, mammals and both Culex and Aedesmosquito species and has
never been identified as a human pathogen [61]. In contrast, KOUV was isolated in Senegal
from rodents (Tatera kempi andMastomys sp.) and also from a human following a laboratory
infection [48].

The sequences of two viruses isolated in Eastern Europe and Russia, namely Rabensburg
virus (RABV) and Krasnodar virus (KRDV) respectively, from a pool of Culex pipiensmosqui-
toes and Dermacentor marginatus ticks, were also included in the phylogenetic analysis because
they are related to, but show significant divergence, fromWNV [62,63]. In addition, the Indian
lineage WNV strain India 804994 isolated from a human, was included in the analysis [64].

The phylogeny (Fig. 1) supports previous suggestions [65] that WNV has an African origin,
as the African YAOV roots the WNV group.

MVEV and ALFV
Other members within the JEV serocomplex including JEV, Usutu virus [USUV], Murray Val-
ley encephalitis virus [MVEV] and Alfuy virus [ALFV], form a strongly supported sister group
to these viruses, all sharing a common ancestor with CPCV. Notably, the 2 Australian viruses
MVEV and ALFV share the same ecological niche and are considered to be a single species [7],
with ALFV being a strain of MVEV. In common with other JEV serocomplex viruses, MVEV
and ALFV have been isolated birds and mosquitoes. MVEV causes hundreds of human cases
of encephalitis annually in Australia. In contrast, there is only one unconfirmed case of mild
polyarticular disease (in 1987) doe to ALFV [48]. Previous studies in laboratory animals
showed that ALFV is less neuroinvasive than MVEV following peripheral challenge [66].

ITV and BAGV
Within the recognized Ntaya virus group [7], we have determined the polyprotein ORF se-
quences of NTAV, ITV, TMUV and STWV. ITV and Bagaza virus [BAGV] are bird-associated
viruses that cause encephalitis in poultry and wild birds. Both of these viruses appear to have
their evolutionary origins in Africa, although ITV is a frequent cause of avian disease in Israel
and BAGV was recently identified as the aetiological agent of bird fatalities in birds in southern
Spain [67,68]. BAGV was also isolated in India and human exposure was implied by detection
of BAGV neutralizing antibodies in 15% of the human population [69]. No human exposures
have been reported for ITV.

During the preparation of this manuscript, the sequences of 5 strains of ITV were reported
[70]. The authors suggested that ITV and BAGV should be considered a single species with 2
different clades representing “old isolates” and “recent isolates”. The sequence presented in our
analysis is an isolate from 1959, included in the clade of “old isolates” (Fig. 1) and is 6% diver-
gent at the nucleotide level from all other ITV and BAGV sequences.

TMUV, STWV and DEDSV
TMUV, STWV and the recently described duck egg drop syndrome virus [DEDSV] [51] and
layer flavivirus (unpublished data, Genbank acc nb.: JF926699) are also closely related southern
Asian strains, mainly isolated in Thailand, China and Korea, but they are phylogenetically
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distinct from ITV and BAGV [71–73]. They also cause severe disease pathologies in domestic
birds (chicken, duck, etc.) but have not been associated with human disease.

NTAV
NTAV was originally isolated in Uganda. During the preparation of this manuscript, the se-
quence of another strain of Ntaya virus was reported [74]. The strain provisionally designated
IPD/A was collected in the Cameroon region of Africa in 1966. This virus differs by only 0.08%
in nucleotide sequence when compared with the original strain that was sequenced in our
study (Fig. 1). Positive human serological evidence in many regions of Africa confirms that
NTAV does infect humans [74].

AROAV group
With determination of the ORF sequences of AROAV and NJLV, the sequences of all viruses
recognised to date within the AROAV group are now known. Both AROAV and NJLV were
isolated from sentinel hamsters in South America (Venezuela and Ecuador respectively). NJLV
has also been isolated from Culex spp., mosquitoes.

Bussuquara virus [BSQV] and Iguape virus [IGUV] are 2 other representatives of this group
and have been respectively isolated in sentinel monkeys and sentinel mice, in Brazil. As shown
in Fig. 1, NJLV and BSQV form a sister group, as do AROAV and IGUV. These 4 viruses have
all been isolated from mammals and each has its own ecological and biological niche. With the
exception of BSQV which causes symptoms in humans that include fever, headache and ar-
thralgia, other members are not known to be human pathogens.

STRV and KOKV
With the complete ORF determination of STRV in this study, all of the recognised viruses
known to date in the KOKV group have now been sequenced. Interestingly, STRV has only
been isolated from Aedes vexansmosquitoes whereas KOKV was also isolated from Culex
annulirostris [48], both in Australia and Papua New Guinea. STRV is not known to cause
human pathology, whereas serological evidence in humans has been reported for KOKV and
occasionally it is responsible for acute polyarthritic disease (3 cases) with fever, headache and
lethargy [75]. Additionally, the KOKV group also appears to include 2 new members designat-
ed TS5273 and New Mapoon virus [NMV] (CY1014). New Mapoon virus is included with
complete polyprotein ORF sequence in Fig. 1 [17,76].

ISFVSL

During the past decade, many new ISFVSL have been isolated and their sequence data are con-
sistent with the concept that they should be classified as a fourth major group of flaviviruses.
Moreover it was recently observed that the ISFVSL could be sub-divided into 2 sub-groups: Ste-
gomyia (Aedes) associated viruses and Culex associated viruses based on all inferred phyloge-
nies. With the addition of recent discoveries such as Nakiwogo virus (NAKV) isolated from
Mansonia [20] and Palm Creek virus (PCV) isolated from Coquillettidia [77] the ISFVSL group
is becoming increasingly complex. Indeed the phylogeny now shows a potential third and/or
fourth sub-group that includes NAKV and PCV. This is not surprising considering that the
likely mosquito vectors of the two viruses, Coquillettidia andMansonia spp., are considered by
morphological data to be sister groups (Harbach & Kitching, 1998). Also, these viruses are sig-
nificantly undersampled and more vector distribution studies and virus discovery would help
to clarify their phylogenetic status.

Phylogeny of Flaviviruses

PLOS ONE | DOI:10.1371/journal.pone.0117849 February 26, 2015 11 / 30



A timed evolutionary perspective for Old to NewWorld introductions
From a phylogeographic point of view, the evolutionary origins and dispersal patterns of many
of the flaviviruses can be tentatively deduced by considering their association between phyloge-
netic clustering and geographic location, knowledge of historical anthropological patterns,
host/vector associations and estimated times from the present, of divergence from a common
ancestor. For example, all the Culex-spp. associated virus clades are rooted by Old World
Aedes-spp. associated viruses.

To provide formal support for these observations, we performed a separate Bayesian phylo-
genetic analysis under a relaxed molecular clock model. A summary of this analysis is repre-
sented by the maximum clade credibility tree, which has strong branching support for most of
the clades; all nodes had high posterior probabilities (> 0.95) except those labelled with a star
(�). Time-calibration for the tree, was based on the principle that YFV was introduced from
the Old World into the NewWorld during the slave-trade [12,44,45]. Although this provides
only a single calibration point in the evolutionary history, it allows us to position other relative
divergence times (Fig. 2). In this tree, viruses included in the highly divergent ISFV groups
were removed to avoid the extrapolation of divergence times too far into the past, based on a
relatively recent calibration.

In Fig. 2, the black nodes and branches indicate that the ancestral viral lineage was inferred
to have existed in the Old World (OW) as opposed to the red nodes and branches for the New
World (NW) virus lineages. Mean divergence time estimates and 95% credibility intervals
(translucent light blue bars) are shown for each node in the tree. The phylogenetic estimate
identifies, with high confidence, 11 independent nodes that represent introductions of mosqui-
to-borne virus lineages (identified as A to E, F1–5 and G1–2) from the OW to the NW (Fig. 2).
Table 1 summarizes the credible intervals for each node (or 95% HPD interval) and the
median estimate.

Estimated times of divergence that belong to the “current time”, i.e., the past 500 hundred
years were authenticated against historical facts relating to the slave trade and introduction of
yellow fever virus into the Americas [78].

Similar estimates for divergence between OW ancestral DENV and NW strains (150 to 450
years ago) are also consistent with the concept of human introduction of these viruses into the
NW via the Slave trade and other commercial exchanges (nodes F1 to F5—Fig. 2).

The divergence between Far eastern/Siberian TBEV and European TBEV is estimated to
have occurred 1087 [1610–649] years ago (node I—Fig. 2)[79] and, the divergence between Eu-
ropean TBEV and LIV/SSEV occurred about 572 [844–328] years ago (node K—Fig. 2). The
estimates for LIV are consistent with historical records of the dispersal patterns of this virus in
the British Isles [80].

The first outbreak of WNV in North America occurred in August 1999 in New York
(http://www.cdc.gov/mmwr/preview/mmwrhtml/mm4838a1.htm). The virus was most likely
introduced from North Africa [81]. In the OW, the eastward dispersal of WNV, probably via
migratory birds and/or shipping, seems to have occurred many years earlier leading to the ap-
pearance of Kunjin virus (KUNV) in Australia. Fig. 2 (node A) shows that KUNV diverged
fromWNV approximately 277 [475–137] years ago. This corresponds quite closely with the
dates of the early emigrants from the British Isles to Australia. The shipping routes included
stopovers in Africa, during which KUNV, or an ancestral lineage, could have gained access to
the ships via infected mosquitoes. The virus could then have been carried from Africa to Aus-
tralia in these mosquitoes on the ships that transported the British emigrants.

In the Old World, Powassan virus (POWV) is found in Russia [82] and since the ancestral
lineages of this virus are also OW viruses, it is reasonable to assume that POWV originated in
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the OW [12,83]. However, POWV is also found in the NW in Canada and the United States of
America, although no other related tick-borne encephalitic viruses have been found in the New
World. The ancestral lineage of POWV in the NW has diverged to produce 2 lineages [79,84]
namely the current POWV lineage and a variant that adapted to deer ticks, currently referred
to as deer tick virus (DTV). This is depicted in Fig. 2 as node H, where the ancestral lineage is
displayed in black on the assumption of an OW origin.

There has been considerable discussion concerning the significance of these observations
[79] and the hypothesis that POW was introduced into North America using the Beringian
land bridge that connected Asia and North America between 15,000–11,000 years ago has re-
cently been used to estimate modelling the temporal origin and evolution of flaviviruses (see
the discussion section)[85].

Based on the phylogenetic and phylogeographic evidence, we deduce that mosquito-borne
flaviviruses, corresponding to those identified at nodes A to E, F1–5 and G1–2 (Fig. 2), origi-
nated in the OW and were introduced into the NewWorld 11 times. This does not preclude
the possibility that in some cases ancestral African lineages may have dispersed to the NW be-
fore emerging as the currently recognised viruses. According to the TMCRA, these 11 events
can be divided into two categories, those that have an estimated TMRCA that overlaps with the
period of commercial trading by ships crossing the Atlantic Ocean, approximately during the
past 500 years (YFV, node G1–2; DENV 1–4, node F1–5; WNV, node A—Fig. 2) and those for
which the estimated TMRCA pre-dates this period of trading (AROAV group, node E; ILHV
group, node D; SLEV, node C; CPCV, node B—Fig. 2).

On the other hand, the TMRCA estimates for the other 6 NW lineages suggest that these
viruses potentially could have been introduced to the NWmore than one thousand years be-
fore the initiation of historic commercial and slave trading across the Atlantic Ocean
(AROAV group (5700–13000; Fig. 2 node E); ILHV group (4100–9500; Fig. 2 node D); SLEV

Table 1.

Virus Interval low Nodes of divergence with the common ancestor Interval high Fig. 2 nodes

WNV NY99 and KUNV 137 277 475 A

CPCV 3217 5239 7453 B

SLEV 4356 6928 9806 C

ILHV group 4107 6801 9496 D

AROAV group 5703 9351 13013 E

DENV-1 gen3 NW / OW 157 321 515 F1

DENV-3 gen3 NW / OW 89 186 311 F2

DENV-2 gen As-Am NW / OW 74 148 250 F3

DENV-2 gen Am NW / OW 245 450 664 F4

DENV-4 gen2 NW / OW 115 225 377 F5

YFV split OW / NW 281 385 450 G1

YFV NW 150 199 277 G2

DTV and POWV 308 601 1025 H

FE and Sib TBEV group and Europe TBEV group/LIV 649 1087 1610 I

GGEV/TSEV group and rest of Europe TBEV/LIV 465 783 1133 J

Europe TBEV and LIV 328 572 844 K

LIV and SSEV 195 369 569 L

TBEV Neud and TBEV Hypr 57 141 254 M

Bat's NKV split NW /OW 4370 7421 10414 N

Rodent's NKV split OW /NW 6065 9580 13750 O

doi:10.1371/journal.pone.0117849.t001

Phylogeny of Flaviviruses

PLOS ONE | DOI:10.1371/journal.pone.0117849 February 26, 2015 13 / 30



(4400–9800; Fig. 2 node C); CPCV (3200–7500; Fig. 2 node B); NW bat NKVSL (4400–10400;
node N) and NW rodent NKVSL (6100–13800; node O). These estimate are less accurate, due
to the relatively short term calibration date we have used for YFV as reference, and could be
thousands or even more years in the past. All apparent virus migrations during this period are
referred to as having occurred “before the slave trade”.

Node E of Fig. 2 displays a TMRCA of 9400 years, which represents the common ancestor
of the NW Aroa virus (AROAV) and Kokobera virus (KOKV) groups, i.e. groups of viruses
that dispersed respectively westward to the NW and eastward to Australia, in the OW.

A similar pattern was observed at node D (TMRCA 6800 years before the present). The
ILHV group emerged presumably in Africa and dispersed westward to the NW. On the other
hand, the BAGV group remained in Africa, eventually emerging in Europe and the Middle
East, whereas the TMUV related ancestral lineages emerged and dispersed eastward into Asia
(node D—Fig. 2).

On the other hand, the JEV/USUV/ALFV/MVEV group shares a common ancestor with a
TMRCA of about 2000–3000 years before the present, implying that an ancestral lineage dis-
persed eastwards out of Africa and appears to have dispersed to south East Asia before emerg-
ing as JEV and then dispersing widely, throughout Asia [86].

Nodes N and O in Fig. 2 identify the no known vector NKVSL viruses. In common with the
arboviruses, there are distinct lineages in the OW and NW (coloured black and red respective-
ly). The TMRCA of the OWNKV, Apoi virus (APOIV), which was isolated from rodents in
Japan, pre-dates all the other recognised NKVSL, and the MRCA of this lineage diverged to pro-
duce descendant NKV and arthropod-borne virus lineages. This leaves open the possibility
that the association of flaviviruses with tick and mosquito vectors may have been an acquired
trait from a non-vectored ancestral virus [25]. Nodes N and O indicate that the NKVs were in-
troduced to the NW on at least two independent occasions. Based on the TMRCA predictions,
the NKV diverged over a period of 4000 to 14,000 years ago. It has been suggested (Varelas-
Wesley & Calisher, 1982) that these NKVs could have been introduced into the Americas dur-
ing the Miocene/Pliocene period, possibly by migrating rodents and/or bats. This idea is con-
sistent with the TMRCA predictions presented in Fig. 2. Nevertheless, the alternative
possibility that these NW viruses emerged in the OW and were introduced more recently via
rodents into the NW, following the development of trading via ships between the OW and the
NW should not be ruled out. Two African viruses Dakar Bat and Bukulasa bat virus are not in-
cluded in this analysis as only partial sequences for these viruses are currently available.

A search for sequence elements associated with ribosomal-1
frameshifting
Many viruses harbour sequences that induce a proportion of translating ribosomes to shift-1 nt
and continue translating in the new reading frame to produce a 'transframe' fusion protein
[87]. Where functionally utilized, this is referred to as programmed-1 ribosomal frameshifting
(-1 PRF). The eukaryotic-1 frameshift site typically consists of a 'slippery' heptanucleotide se-
quence fitting the consensus motif X_XXY_YYZ, where XXX represents any three identical nu-
cleotides; YYY represents AAA or UUU; Z represents A, C or U; and underscores separate
zero-frame codons. In the tandem slippage model, the P-site anticodon re-pairs from XXY to
XXX, whereas the A-site anticodon re-pairs from YYZ to YYY, thus allowing for perfect re-
pairing except at the wobble position. Certain deviations from the canonical XXX of the slip-
pery site are tolerated in the P-site, including UCC in some members of the JEV serogroup,
GGU in cardioviruses and some luteoviruses, GUU in equine arteritis virus (family Arteriviri-
dae), and GGA in many ISFVs besides insect nidoviruses of the familyMesoniviridae and some
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umbraviruses and dianthoviruses. The efficiency of frameshifting depends on the identity of
the slippery site nucleotides but is typically less than 1% in the absence of additional stimulato-
ry elements. Thus, most known instances of eukaryotic-1 frameshifting are stimulated (typical-
ly to a level between 1% and 50%) by the presence of a 3' stable RNA secondary structure, such
as a pseudoknot or stem-loop, that is separated from the slippery heptanucleotide by a 'spacer'
region of 5–9 nt.

Sequence elements associated with-1 PRF were previously described in the JEV serogroup
viruses for JEV, WNV, USUV, MVEV and ALFV [88,89](Fig. 3a). In these viruses, -1 PRF oc-
curs (with an estimated efficiency of 20–50%) when ribosomes are positioned on the codons
encoding the 8th and 9th amino acids of NS2A. When PRF occurs, ribosomes translate a 43-
codon ORF in the-1 reading frame relative to the polyprotein ORF and then terminate. The re-
sulting 52 amino acid 'transframe' polypeptide is not cleaved at the NS1|NS2A cleavage site
and thus frameshifting results in the production of a C-terminally extended version of NS1,
known as NS1'. Our study extends the range of viruses that possess this frameshift site to in-
clude CPCV, YAOV and KOUV. The overlapping ORF displayed a constant length (43 co-
dons) for all viruses within the JEV serogroup, with the exception of SLEV which lacks the
frameshift site.

A nucleotide alignment of the putative stimulatory elements responsible for the-1 PRF is
presented in Fig. 3b. The slippery heptanucleotide Y_CCU_UUU (highlighted in orange on
Fig. 3b) is absolutely conserved for CPCV, YAOV and KOUV as with other members of the
JEV group except for SLEV. Predicted 3' RNA stimulatory elements are highlighted in Fig. 3b.
KOUV retains the canonical stable 3' pseudoknot structure that stimulates-1 PRF in other JEV
serogroup flaviviruses (Fig. 3a) [89]. In YAOV, however, a stem-loop structure was predicted
instead of a pseudoknot (Fig. 3c). The CPCV sequence also lacks the potential to form the ca-
nonical JEV serogroup pseudoknot. In this case, however, several possible alternative structures
could be predicted and, in the absence of experimental analysis or comparative genomic infer-
ence, it remains unclear which structure (if any) might be functionally relevant for CPCV.

Analysis of nucleotide conservation at synonymous sites within alignments of related flavi-
virus sequences has previously been successful in identifying additional coding ORFs overlap-
ping internal regions of the polyprotein ORF and accessed via-1 PRF [88,90]. Due to the
sequence constraints imposed by simultaneous coding in two overlapping reading frames, be-
sides maintaining functional frameshift-stimulatory elements, such sites (if functionally impor-
tant and phylogenetically conserved) are associated with greatly increased nucleotide
conservation at synonymous sites in the polyprotein reading frame relative to the genome aver-
age. To investigate the potential presence of frameshifting in other flaviviruses, we constructed
sequence alignments of selected flavivirus clades, and analyzed conservation at synonymous
sites as described previously [39]. A selection of these analyses is presented in Figs. 4 and 5.

Most flaviviruses exhibit enhanced synonymous site conservation at the 5' end of the poly-
protein ORF. This is presumably associated with non-coding elements such as functional RNA
structures involved in replication and/or translation enhancement [91–96]. Several flavivirus
clades also exhibit localized regions of statistically significantly enhanced synonymous site con-
servation in internal regions of the polyprotein ORF, notably the JEV serogroup, the ISFVs, the
CHAOV-LAMV-DGV-ILOV clade (Fig. 4), and the WESSV-SEPV clade (Fig. 5).

In the ISFVs (CxFV-QBV clade shown in Fig. 4), enhanced synonymous site conservation is
apparent in the NS2A/2B-encoding region; this corresponds to a long overlapping ORF that is
accessed via-1 PRF [90]. Many more ISFV sequences are now available, and the overlapping
ORF is conserved in all except for the cell culture adapted original isolate of CFAV (GenBank
acc. M91671) [23]. The overlapping ORF ranges from 270 to 293 codons in CxFV, QBV,
PCV, NAKV and Cx theileri flavivirus, and 253 to 257 codons in KRV, CFAV, HANKV, AEFV
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and Ochlerotatus caspius flavivirus. The frameshift site generally appears to be G_GAU_UUY
(Y = U or C), with notable exceptions appearing to be G_UUU_UUU in NAKV and
A_AAU_UUU_UUC (potential tandem shift sites) in PCV.

In the CHAOV-LAMV-DGV-ILOV clade enhanced synonymous site conservation is ap-
parent in the region encoding NS2B. This is associated with a conserved G_GAU_UUU

Fig 3. Frameshift stimulatory elements in viruses of the JEV serogroup. (a) Previously identified frameshift site (Y_CCU_UUU; Y = C or U; orange) and
3'-adjacent stable pseudoknot structure responsible for stimulating-1 PRF in the NS2A-encoding region of JEV and related flaviviruses. Stems 1 and 2 of the
pseudoknot are indicated in blue and red respectively. (b) The shift site and pseudoknot are preserved in the newly sequenced KOUV but not in YAOV or
CPCV. Substitutions that preserve the base-pairings in stem 1 (blue) or stem 2 (red) of the pseudoknot are indicated in pale blue and orange respectively. In
YAOV, a simple stem-loop (brown) was predicted at an appropriate spacing from the shift site to act as a stimulator of-1 PRF. CPCVmaintains the shift site
but multiple possible 3'-proximal structures (not shown) could be predicted. SLEV sequences lack a suitable shift site at this genomic location. (c) Predicted
frameshift stimulatory elements (shift site and 3'-adjacent stem-loop) in YAOV.

doi:10.1371/journal.pone.0117849.g003
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slippery heptanucleotide and a 3'-adjacent predicted stem-loop structure that stimulates-1 PRF
in dual reporter assays and whose functionality is supported by compensatory substitutions
(i.e. paired substitutions that preserve the predicted base-pairings) [52,90]. Here, the putative
frameshift ORF has variable length (107 codons in LAMV and CHAOV, 71 codons in ILOV,

Fig 4. Synonymous site conservation analysis for selected flavivirus clades. Alignments of 249 JEV serogroup, 49 NTAV/TMUV clade, 89 DENV, 6
DGV/LAMV clade and 29 CxFV/QBV clade polyprotein ORF sequences were analyzed for synonymous site variability as decribed previously (Firth et al.,
2011 PMID 21525127). The accession numbers of all sequences used in the analysis are available on request. Red lines indicate the probability (p-value) of
obtaining not more than the observed number of synonymous substitutions, in a 25-codon sliding window, under a null model of neutral evolution at
synonymous sites. Dashed grey lines indicate an approximate 5% false positive threshold after correcting for multiple tests (i.e. ~136 x 25-codon windows in
the ~3400-codon polyprotein ORF). Statistically significant peaks in synonymous site conservation are indicative of overlapping functional elements, either
coding or non-coding. Genomemaps are shown for each clade. UTR lengths may be uncertain for less well-studied clades. Known and predicted
overlapping ORFs accessed via-1 PRF are shown in pink. The predicted overlapping ORF in the DGV/LAMV clade is much shorter in DGV than in other
members of the clade; the long form of the ORF is indicated. Note that p-values can not be directly compared between different clades because the statistical
significance (i.e. p-value) of observed reductions in synonymous site variabilty depends on the diversity of the specific sequence alignment being analyzed.

doi:10.1371/journal.pone.0117849.g004
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but only 6 codons in DGV)[52], perhaps explaining why the conservation peak does not extend
throughout the 107-codon ORF annotated on the genome map in Fig. 4.

A dramatic and statistically significant peak in synonymous site conservation in an internal
region was observed in one other clade of flaviviruses—the WESSV-SEPV clade (Fig. 5). This
could represent an overlapping non-coding RNA element or yet another-1 PRF site. Inspection
of the sequences corresponding to the conservation peak revealed a conserved slippery hepta-
nucleotide, G_GUU_UUU [the same shift site that is utilized for-1 PRF in cardioviruses and
some species of luteovirus, besides both-1 and-2 PRF in porcine reproductive and respiratory
syndrome arterivirus [97–99]], and the potential for a 3'-adjacent stem-loop to form at the ap-
propriate spacing potentially to act as a stimulator of-1 PRF (Fig. 6). In this case the overlap-
ping ORF has just 7 codons, with the termination codon embedded within the predicted stem-

Fig 5. Synonymous site conservation analysis for selected flavivirus clades. Alignments of 6 UGSV/BOUV clade, 6 WESSV/SEPV clade, 56 YFV, and
144 POWV/TBEV clade polyprotein ORF sequences were analyzed for synonymous site variability as decribed previously (Firth et al., 2011 PMID
21525127). The accession numbers of all sequences used in the analysis are available on request. Red lines indicate the probability (p-value) of obtaining
not more than the observed number of synonymous substitutions, in a 25-codon sliding window, under a null model of neutral evolution at synonymous sites.
Dashed grey lines indicate an approximate 5% false positive threshold after correcting for multiple tests (i.e. ~136 x 25-codon windows in the ~3400-codon
polyprotein ORF). Statistically significant peaks in synonymous site conservation are indicative of overlapping functional elements, either coding or non-
coding. Genomemaps are shown for each clade. UTR lengths may be uncertain for less well-studied clades and are omitted for the UGSV/BOUV clade due
to lack of sequence data. Known and predicted overlapping ORFs accessed via-1 PRF are shown in pink. Note that p-values can not be directly compared
between different clades because the statistical significance (i.e. p-value) of observed reductions in synonymous site variabilty depends on the diversity of
the specific sequence alignment being analyzed.

doi:10.1371/journal.pone.0117849.g005
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loop structure. Frameshifting here would result in a greatly truncated version of the NS2A pro-
tein with a distinct 7 amino acid C-terminal end encoded by the short overlapping ORF.

A statistically significant peak in synonymous site conservation was also observed in the
NS3-encoding region of TBEV and related flaviviruses (Fig. 5). However this was not thought
to represent a PRF site, first, because the degree of conservation was relatively modest com-
pared to what is typically observed at a PRF site, and, second, because we were unable to identi-
fy a canonical PRF-compatible shift site at this genomic location in these viruses. Instead, it
appears to correspond to a small conserved RNA stem-loop structure.

Internal frameshift sites and/or overlapping ORFs were not predicted using these methods for
other flavivirus groups such as SLEV, YFV and DENV. It should be noted, however, that the syn-
onymous site conservation analysis would not necessarily detect cases of frameshifting where
there is not an overlapping ORF subject to purifying selection and where the frameshift stimula-
tory elements comprise just a few codons (e.g. primary sequence rather than secondary structure
stimulators) and/or are located in the nascent peptide rather than the RNA sequence. Also these
analyses do not yet provide statistically useful results for all flavivirus clades (e.g. where there is
insufficient sequence divergence within a clade and too much sequence divergence between phy-
logenetically adjacent clades to observe the effects of purifying selection at synonymous sites).

DISCUSSION
As phylogenetic methods have developed and more complete genome (ORF) sequence data
have become available, increasingly robust analyses and interpretations of the flaviviruses have
become possible. For example, we now know that the African virus, Kadam virus (KADV), sits
at the root of the TBEV lineages and KADV diverged from a common ancestor of the seabird
tick-associated viruses (Fig. 1).

Our phylogeny strongly supports the NS3 branching pattern of divergence defined previ-
ously [10,11,25] in which the TBFVs and NKVs share a common ancestor. The analysis con-
firms previous suggestions that the Culex-associated flaviviruses evolved from ancestral Aedes-
associated viruses [8,12]. However, the recent discovery of several new viruses included in the
ISFV-like group, now reveals the possibility of two potentially new virus groups, viz., the

Fig 6. Predicted frameshift stimulatory elements in WESSV and SEPV. Frameshifting is predicted to
occur on a conserved G_GUU_UUU heptanucleotide (orange) in the NS2A-encoding region, stimulated by a
3'-adjacent stem-loop structure. The-1 frame stop codon is indicated in red. TheWESSV RefSeq NC_012735
is shown; nucleotide differences in the SEPV RefSeq NC_008719 are indicated in blue.

doi:10.1371/journal.pone.0117849.g006
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LAMV group and the NOUV group. They are geographically very widely dispersed but the
mechanisms for their dispersal are unknown. Currently exclusively OW viruses found in Af-
rica, Europe or Asia have been characterised. However, with the addition of the newly isolated
Nanay virus in Peru [59], which is closely related to NOUV, the ISFV-like group now seems to
extend to the NW and this will need to be re-visited when genomic sequences of NW isolates
become available.

These recently-discovered apparently non-pathogenic mosquito-associated viruses (LAMV
and NOUV group) are phylogenetically closely-related to human pathogenic viruses, such as
DENV, YFV, WNV, JEV. However, they do not appear to replicate in vertebrate cells
[13,52,57] a property which to date has precluded the possibility of isolating such viruses from
field material by intracerebral inoculation of newborn mice. Possibly, they represent indepen-
dent lineages of viruses that, like the NKV, have lost a particular genetic trait not required for
their long-term survival.

Within the MBFVs, three NKV-like viruses, ENTV, SOKV and YOKV, have not been asso-
ciated with any known vector. Nevertheless, they are genetically closely related to the YFV and
EHV groups, have only been found in the Old World, and are associated with migratory bats.
YOKV and SOKV were both isolated in Asia but appear to have their ancestral roots in Africa,
as do many of the related viruses in the EHV group. Thus, flaviviruses seem able to lose or ac-
quire a variety of genetic traits as illustrated by acquisition of the requirement for a tick or mos-
quito vector and therefore becoming arboviruses, loss of ability to infect vertebrate cells,
exemplified by LAMV and NOUV, loss of the requirement for vector transmission illustrated
by the ENTV group and originally proposed by Mattingly in 1960 [100] and supported by
Kuno and Chang [101], inability to infect vertebrate cells, as illustrated by the ISFVs and acqui-
sition of a frameshift as typified by the JEV serogroup viruses (discussed in detail later).

No known vector flaviviruses specific lineage (NKVSL)
In contrast with the MBFV and TBFV groups, the NKVSL group remains poorly described.
Based on the phylogenetic and TMRCA data, viruses within this group have been introduced
to the NW on at least two separate occasions and these introductions may have occurred thou-
sands of years ago. Estimations for the time of divergence between these OW and NWNKVSL

ranged between 4000 to 14000 years ago (Fig. 2 nodes N and O). Despite the recognised large
errors in TMRCA estimates, they all pre-date, by thousands of years, the recognised commer-
cial trading period across the Atlantic Ocean that commenced 400–500 years ago. Therefore,
viruses could have dispersed to the NW from the OW thousands of years before transoceanic
trading was taking place. The possible mechanisms of dispersal remain a mystery. It is now es-
tablished that OW human populations (presumably of both Asian and European origin) be-
came established in the Americas during the period of TMRCA estimates, and possibly even
before these estimated times. The question arises, during such migrations is it likely that in-
fected animals could have been transported (e.g., rodents). The arrival of viruses in the NW
could alternatively have occurred via the gradual dispersal of OW rodents and migratory bats.
On the other hand, these transoceanic dispersions might have occurred after the development
of trading between the OW and the NW.

Insect-specific flaviviruses (ISFVs)
Until about ten years ago, only one ISFV, cell fusing agent virus (CFAV), was recognised. Cur-
rently, at least 9 genetically distinguishable ISFVs have been isolated and their sequences deter-
mined. This group of mosquito- and potentially sandfly-borne viruses is an extremely
genetically diverse group with a divergence of up to 61% at the amino acid level. This compares
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with the genetic distances between the three current genera in the family Flaviviridae. More-
over, they infect only invertebrate hosts and DNA forms of ISFV genomes are generated during
infection of cell cultures [26]. Integrated DNA sequences have been identified in mosquito ge-
nomes and isolated DNA forms have been detected in field samples [18,26,102,103]. Currently,
there is no clear indication of the biological significance of these DNA forms amongst ISFVs.
We therefore propose that the distinct differences of the ISFVs justify their inclusion as a sepa-
rate genus in the family Flaviviridae. These viruses are also interesting because similar ISFVs
have been isolated from mosquito species that inhabit different ecological niches, raising the
question how might this occur? Possible mechanisms of virus transfer between mosquito spe-
cies include the diffusion of viruses between larvae at sites shared by different mosquito species,
or biting midges could become infected when taking blood meals from infected mosquitoes
[104–108] and they could then act as vectors of the virus if they subsequently feed on different
mosquito species.

A perspective on Old World to NewWorld flavivirus introductions
It is recognised that YFV and DENV were transported frequently to the Americas from Africa
on the ships that transported slaves across the Atlantic Ocean during the centuries of slave
trading [44,45,78,109–111]. Based on this assumption, we estimated divergence times and an-
cestral OW/NW relationships to provide a deeper understanding of the evolution and dispersal
patterns of flaviviruses. Since virus evolution characterised by lineage-specific and non-con-
stant substitution rates (Pettersson 2014), it would be unwise to assert that a single calibration
point can produce precise estimates for both short/recent times, and long/deep times. Not sur-
prisingly, our estimates, based on a calibration point from the recent historical period and in-
volving mosquito-borne viruses, differ significantly from those of Pettersson and Omar—
whose calibration point was derived from a more distant historical time period and involved a
tick-borne virus. An important consequence of the latter calibration is the hypothetical origin
of mosquito-borne flavivirus diversification during the last glaciation period, whilst the former
calibration suggests that the major part of mosquito-borne flavivirus diversification which in-
volves human epidemiology, occurred after the end of the most recent major Ice Age [12].

Our choice was to use an ‘independently confirmed’ historical hypothesis [44] and to ex-
clude from analysis highly divergent viruses for which genomic and biological information re-
mains scarce (insect specific viruses, Tamana bat virus, Ngoye virus, Mogiana tick virus. . .).
Therefore, based on these assumptions our estimates are more accurate for the recent historical
period than for the deepest nodes of the trees, and for mosquito-borne viruses than for tick-
borne or no-known vector flaviviruses.

Our results demonstrate that such movement of arboviruses from Africa to the Americas is
not unique to YFV and DENV. The ancestral history presented in Fig. 2 provides clear indica-
tions that multiple introductions of viruses have occurred from the OW to the NW during rela-
tively recent millenia. All of the Culex-associated viruses that circulate in Europe, Asia,
Australia and/or the Americas, appear to have their evolutionary roots in Africa. Given the
OW diversity of flaviviruses and the comparatively lower number of NW viruses, this analysis
attempts to formalise a parsimonious argument for an ‘Out-of-Africa’ history. Unless there is a
matching, but largely unsampled flavivirus diversity in the NW, this remains the most plausible
interpretation of their phylogenetic distribution.

Given that we rely on a single, relatively recent calibration to estimate old divergence times,
we do not consider our estimates to be a precise historical record of flavivirus evolution, but it
does allow us to distinguish 2 major temporal periods during which flaviviruses may have been
introduced from the OW into the NW. All historical and phylogenetic data are consistent with
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the concept that there was a recent period of 400 to 500 years during which African viruses
such as YFV and DENV were transported on slave and commercial ships across the Atlantic
Ocean to the Americas, [12,44,45,78,111,112] which is why we base our estimates on this for
the divergence time estimation. This “recent evolutionary period” includes viruses that have
gradually emerged during the past few decades viruses (e.g., WNV, HIV, SARS, CoV, HepC
virus, USUV, MERS CoV) and are still being dispersed via human movement and
commercial transportation.

Based on published estimates for the times of divergence in the tree [9,44,113,114] it also ap-
pears that these introductions to the NewWorld may have occurred gradually over the period
of time corresponding to the movement of humans from Africa to the NewWorld during the
four or five hundred years of the Slave trade. Support for the concept that DENV can be includ-
ed with YFV also comes from the known presence of the American genotype dengue viruses in
South America that have African ancestral lineages. These viruses were presumably also trans-
ported to the Americas over the same range of time as the introduction of yellow fever viruses
[12] and even more recently as slave trading was finally abolished [115]. It has been recorded
that febrile syndromes and even haemorrhagic fever, clinically compatible with dengue fever,
were diagnosed clinically in southern parts of North America over a long period of time
[111,116,117]. The most recent and persuasive example of an OW introduction to the NW was
the spectacular appearance of West Nile virus (WNV) in New York in August 1999 [118].
Since the first cases of WNV encephalitis in birds and humans were discovered in the area of
the Bronx zoo and relatively close to a major international airport, it is considered possible that
WNV was inadvertently introduced into North America either via infected birds or mosquitoes
transported to the New York area by air transport [12,65,119].

Fig. 2 also identifies 4 examples of other flaviviruses (CPCV—node B; SLEV—node C;
ILHV group—node C; AROAV group—node E) that have been introduced from the OW to
the NW. However, the TMRCA for these introduced viruses predates the period of slave trad-
ing, by thousands of years and will be referred to as “ancient period” viruses.

If we consider the possibility of a more ancient introduction of viruses, i.e. between 4000 to
14000 years ago, we have to consider the possibility that ancestral viruses emerged in the OW
and were then introduced into the NWmany years before the slave trade period, possibly by
birds, rodents, bats, arthropods and/or humans. The tree shows that introductions to the NW
were multiple and independent. The first introduction is represented in Fig. 2—node E for the
AROAV group. Except for BSQV, these viruses have only been isolated from rodents. The
TMRCA for this node is 5700 to 13000 years ago. An ancestral virus present in the OW could
have been introduced into the NW via rodents or migratory birds and then adapted to other
species such as rodents. Other predicted introductions are presented in Fig. 2 nodes-C, B and
D for ILHV/ROCV, SLEV and CPCV. These viruses are bird associated and may therefore
have been introduced via migratory birds or bats. However, if birds were a major cause of virus
introduction into the NW, it seems surprising that viruses such as WNV have only been suc-
cessfully introduced once, as suggested by the numerous phylogenetic analyses of many North
America WNV isolates [81,120,121]. Additionally, Nanay virus isolated in Culexmosquitoes in
Peru might represent another example of potential virus introduction from the OW to the
NW.

Recent discoveries of viruses in the ISF group such as Culex flavivirus [20,21,122,123] show
that Culex spp.-associated viruses contain members from both the OW and the NW. It has
been proposed that in the past, several different insect-specific flaviviruses have been intro-
duced independently into Latin America, from the OW, rather than a single virus having been
introduced with subsequent divergence to generate the different viruses found in the Americas
[49,124].
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The NKVSL Apoi virus, an OW virus isolated in Japan from Apodemusmice (Muridae fami-
ly,Murinae sub-family) roots all other NKVSL. MODV and JUTV were the first recognised ro-
dent NKVSL to be introduced to the NW (Fig. 2—node O) about 9500 years ago. MODV was
isolated in North America from Peromyscusmice (Muridae family, Sigmodontinae sub-family)
whereas JUTV was isolated in South America. These viruses were possibly introduced into the
NW via rodents, when the OW and NW land masses in the northern hemisphere were joined
by ice.

Rio Bravo virus (RBV) and Montana myotis leukoencephalitis virus (MMLV, represent a
second introduction of NKVs into the NW (Fig. 2—node N). Their ancestral lineage appears to
have diverged from an ancestral lineage of the OW bat NKVs.

Studies on Arenaviruses and Hantaviruses originally led to the development of the concept
that viruses have co-evolved with their rodent hosts over time-scales of millions of years during
which the viruses were assumed to have been transported during the gradual introduction of
rodents from the OW into the NW [125–127]. However more recent studies do not appear to
support this concept since for hantaviruses, estimates of virus divergence are in the order of
thousands of years, as they exhibit short-term substitution rates of 10–2 to 10–4 substitutions/
site/year [128,129]. It is hence more likely that Hantaviruses adapted relatively recently to their
rodent hosts.

In the case of rodent-associated flaviviruses, and particularly NKVSL, only limited genetic
data are available and due to presumed undersampling of viruses, to date there is no clear indi-
cation of the exact period of introduction of viruses to the rodent species in the NW. However,
by analogy with the hantaviruses, and taking into account the TMRCA presented in Fig. 2, it
seems unlikely that flaviviruses have coevolved with their rodent hosts over millions of years.

Although the uncertainty in the TMRCA is quite significant, there are clearly two periods of
emergence, i.e. an “ancient period” in the order of magnitude of thousands of years ago, and a
more “recent” period in the order of decades to a few hundred years ago. We note that it is im-
portant to be aware of the fact that estimates for the “ancient period” including estimates for
NKSL, are based on a single calibration event of an Aedes vectored virus (YFV) during the “re-
cent period”. This is almost certainly not an accurate estimation of the evolutionary dynamics
that occurred during the “ancient period”, which in the case of the NKVSL are not vectored
by arthropods.

Frameshifting in the MBFVs and ISFVs
It was previously reported that members of the JEV serocomplex express a transframe fusion
protein, NS1', via-1 PRF [89]. The frameshift-stimulatory elements—a 'slippery' heptanucleo-
tide sequence and the potential to form a stable 3'-adjacent pseudoknot structure—are con-
served in all recognised members of the JEV serocomplex with the exception of SLEV [88].
However, the sequences of CPCV, YAOV and KOUV had not been determined when this con-
clusion was reached. We now show that the frameshift site is also conserved in these newly se-
quenced viruses. Thus, the ability to produce NS1' via PRF appears to have been acquired as a
genetic trait after the branching point which separates the NewWorld virus SLEV (Fig. 2—
node C) from another NewWorld virus (CPCV) and the remaining Old World JEV serocom-
plex viruses (Fig. 2—node B).

The CPCV sequence also lacks the potential to form the canonical JEV-serogroup 3' RNA
stable pseudoknot that is associated with highly efficient-1 PRF (20–50%; [89]); thus it is possi-
ble that frameshifting in CPCV is relatively inefficient.

The significance of the NS1' protein is not yet fully understood but it has been reported that
it plays a role in viral neuroinvasiveness and reduced neurovirulence [89,130,131].
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Frameshifting at a very similar genomic location occurs in the ISFVs but results in the trans-
lation of a much longer overlapping ORF [90]. Potential frameshift sites have also been bioin-
formatically predicted for NOUV, CHAOV, LAMV and KEDV (Firth et al., 2010); ILOV and
DGV [52]; and SEPV andWESSV (see above). These potential frameshift sites are also located
within the genomic region encoding NS2A/NS2B. Thus, the acquisition of PRF at internal re-
gions of the polyprotein ORF appears to be a common (though not ubiquitous) theme of flavi-
virus evolution. Aside from the ability to produce new functional proteins, where PRF is
efficient, it may also play a role in downregulating production of the 3'-encoded replicative pro-
teins and more quickly recycling the host cell translational machinery for increased production
of the 5'-encoded structural proteins.

In conclusion, with the addition of 14 new flavivirus ORF sequences, the estimation of phy-
logenies via Bayesian methods, plus biogeographic and bioinformatic considerations, we have
identified 11 likely introductions of mosquito-borne flaviviruses from the OW to the NW over
two separate temporal periods. We have also demonstrated that similar introductions have oc-
curred eastwards from Africa to Australia, again over two distinct time periods. Clearly there
have been far more introductory movements of flaviviruses from one part of the world to an-
other than we have described here. However, more data for a larger number of samples will be
required before we can draw specific and more detailed conclusions. Finally, in the context of
flavivirus evolution and dispersal, we have extended our current understanding of frameshift-
ing amongst the flaviviruses.
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