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Abstract
The ever increasing microbial resistome means there is an urgent need for new antibiotics.

Metagenomics is an underexploited tool in the field of drug discovery. In this study we

aimed to produce a new updated assay for the discovery of biosynthetic gene clusters

encoding bioactive secondary metabolites. PCR assays targeting the polyketide synthases

(PKS) and non-ribosomal peptide synthetases (NRPS) were developed. A range of Euro-

pean soils were tested for their biosynthetic potential using clone libraries developed from

metagenomic DNA. Results revealed a surprising number of NRPS and PKS clones with

similarity to rare Actinomycetes. Many of the clones tested were phylogenetically divergent

suggesting they were fragments from novel NRPS and PKS gene clusters. Soils did not

appear to cluster by location but did represent NRPS and PKS clones of diverse taxonomic

origin. Fosmid libraries were constructed from Cuban and Antarctic soil samples; 17 fos-

mids were positive for NRPS domains suggesting a hit rate of less than 1 in 10 genomes.

NRPS hits had low similarities to both rare Actinobacteria and Proteobacteria; they also

clustered with known antibiotic producers suggesting they may encode for pathways pro-

ducing novel bioactive compounds. In conclusion we designed an assay capable of detect-

ing divergent NRPS and PKS gene clusters from the rare biosphere; when tested on soil
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samples results suggest the majority of NRPS and PKS pathways and hence bioactive

metabolites are yet to be discovered.

Introduction
Emerging multidrug resistant pathogens resistant to nearly all known antibiotics [1], coupled
with the ubiquitous spread of antibiotic resistance throughout the wider environment such as
in rivers [2], waste water [3] and agriculture [4], has led to an urgent global need for new anti-
biotics [5]. Natural products have been essential in drug discovery with 60%– 75% of drugs
aimed at cancer and infectious disease originating from natural origin [6, 7]. In particular sec-
ondary metabolites offer a rich source of bioactive compounds including antibiotics, antifun-
gals, anticancer and immunosuppressants [6]. The two main pathways for production of
secondary metabolites consist of the non-ribosomal peptides (NRPs) containing synthetases
(NRPSs) and polyketides (PKs) with specific synthases (PKSs) which have contributed to sev-
eral of the most important human medicines to date such as vancomycin [8], rifamycin [9] and
bleomycin [10]. Much of the study and exploitation of secondary metabolites has focused on a
culture dependent approach with the advent of genome sequencing revealing a surprising
diversity of silent or cryptic gene clusters potentially encoding for a tremendous range of bioac-
tive metabolites [11]. Despite advances in genome mining with several bioinformatics tools
allowing for rapid identification of gene clusters [12], comparatively few studies have investi-
gated the use of metagenomics for drug discovery [13]. Metataxonomics has revolutionized
microbial ecology [14] with estimates of> 99% of bacteria remaining recalcitrant to culture
[15]. Studies of 16S gene sequences using PCR analysis from total community (metagenomic)
DNA has led to a greater understanding of the phylogenetic view of bacterial diversity [16].
Targeted study of functional genes through PCR amplification of a marker gene from metage-
nomic DNA has also been used to look at metabolic diversity of microbial populations such as
using amoA for analysis of the diversity of ammonia-oxidising communities [17]. Functional
metagenomics (whereby genes are captured in plasmid, fosmid or BAC libraries and expressed)
has been successfully used to capture and express many functional genes such as those associ-
ated with antibiotic resistance [18, 19]. Surprisingly this approach has not been widely adopted
for evaluating the diversity of biosynthetic gene clusters. From the limited studies performed in
the field of metagenomic drug discovery, several new bioactive compounds have been discov-
ered [20–22]. Indeed a recent study displayed the large metabolic potential of worldwide soils
using a PCR assay targeting the pathways involved in synthesis of non-ribosomal peptides and
polyketides [23]. Yet the problem when investigating biosynthetic pathway distribution is the
assays available for their study. NRPSs and PKSs are modular enzyme complexes producing
metabolites in an assembly line fashion by the incorporation of an acyl-CoA or amino acid
building block into a growing metabolite [24]. NRPSs are multidomain enzymes consisting of a
minimal core structure containing an adenylation (A) domain, condensation (C) domain and
peptidepeptidyl carrier protein (PCP). Similarly PKS modules consist of an acyltranferase (AT)
domain, ketosynthase (KS) domain and acyl carrier protein (ACP) [24, 25]. The conserved
modular nature of NRPS and PKS modules allows for the design of primers on hypervariable
regions to analyse the variability across the gene clusters [18, 19]. Much of the work to date per-
formed on biosynthetic gene cluster diversity relies mostly on two PCR assays described over a
decade ago [23, 26–28] that are based on higly degenerate primers which may not be beneficial
for screening large metagenomic libraries. A possible approach would be to perform shotgun
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sequencing of all metagenomic DNA, thus removing PCR bias, however a comparison of this
method with PCR approaches revealed that the total shotgun metagenomic approach lacked
significant depth in comparison with targeted amplicon sequencing [29]. In the current study
we aimed to design a new updated PCR assay for NRPS and PKS modules for use in screening
metagenomes for biosynthetic pathways. We demonstrate that our PKS and NRPS assays are
specific, can detect clusters from a wide range of phyla and have a good hit rate. Here we
describe the use of the assay in both prospecting diversity from a range of European soils and
screening fosmid libraries from diverse soils. Sites were chosen to represent a range of different
habitats to maximise the potential for discovering novel biosynthetic clusters. These included
samples fromMars Oasis in Antarctica, which has previously been shown to have a high preva-
lence of the prolific antibiotic-producing phylum Actinobacteria [30], a high biodiversity site
in Cuba proven to be abundant in enzymatic activity [31], and a range of sites from across
Europe representing both coastal, untreated hay meadow, and heavily polluted agricultural
soil.

Methods

Sample sites
Soil samples for the Antarctic fosmid library were taken fromMars Oasis, located on the south
eastern coast of Alexander Island on the western Antarctic Peninsula [32]. Cuban samples
were taken from the rhizosphere of a sandy location on the Cayo Blanco island as previously
described [31]. The European sites from which soil was collected were Druridge Bay, UK (sand
dunes), Cockle Park Plot 6, UK (untreated agricultural hay meadow, gleyic brown earth) and
the suburbs of Athens, Greece (heavily disturbed agricultural soil). All soils were imported
under the Department of Environment, Food and Rural Affairs License No. 51993/1 9493812,
For the Antarctic samples the soils were gathered under a Specialist Activities in Antarctica
permit issued by the FCO under the Antarctic Act 1994, Antarctic Act 2013 and Antarctic Reg-
ulations 1995/490 (as amended). Cuban soils were collected under a collaboration between The
School of Life Sciences, University of Warwick and Biotechnology Department, Centre of
Pharmaceutical Chemistry, Havana, Cuba. For all other soils no special permits were required.

Primer design, PCR and sequencing
The NRPS primers were generated from the consensus sequence on the adenylation domain of
nine NRPS pathways obtained from GenBank (Table 1) using BLOCKMAKER and CODE-
HOP [33]. The Type-II PKS primers were generated using the same approach described for

Table 1. Non-ribosomal peptide synthetases used for primer design.

Accession Description

gi|2894188| PCZA363.3 [Amycolatopsis orientalis]

gi|4481933| CDA peptide synthetase II [Streptomyces coelicolor A3(2)]

gi|4481934| CDA peptide synthetase I [Streptomyces coelicolor A3(2)]

gi|45006| Alpha-aminoadipyl-L-cysteinyl-D-valine synthetase [Amycolatopsis lactamdurans]

gi|987101| Pipecolate incorporating enzyme [Streptomyces rapamycinicus]

gi|3798625| GFK506 peptide synthetase [Streptomyces sp. MA6548]

gi|2052277| Virginiamycin S synthetase [Streptomyces virginiae]

gi|2052249| Pristinamycin I synthase 3 and 4 [Streptomyces pristinaespiralis]

gi|5051823| Putative peptide synthetase [Amycolatopsis orientalis]

doi:10.1371/journal.pone.0138327.t001
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NRPS primers aligning 18 KSα genes (Table 2). Reaction mixes were made with 12.5 μl PCR
Master Mix (Promega, Madison, WI, USA), 1.25 μl DMSO and 0.8 μM of each primer
(Table 3) in 25 μl total volume. The cycling protocol used was the same for all primers with
only the annealing temperature varying (Table 3): 5 min denaturing step at 95°C followed by
40 cycles of 30 s at 95°C, 45 s at 61°C or 63°C and 90 s at 72°C followed by a final extension
step for 10 min at 72°C. To test the primers, a range of 50 strains with known PKS and NRPS
genes were screened (S1 Table). For subsequent screening S. griseus DSM 40236, S. vinaceus
DSM 40257, S. lividans 1326 and S. coelicolorM145 (genomic DNA) were used as positive con-
trols for both primer sets (NRPS_F2/R and PKS_F/R). The PCR products were run on a 1%
agarose gel and the product bands were purified using the QIAquick Gel Extraction Kit (QIA-
GEN; Venlo, Netherlands) as per manufacturer’s instructions. Sequencing was performed
using 50 ng of purified PCR product with 5 μM of primer using Sanger sequencing (GATC Bio-
tech AG, Cologne, Germany). Both the forward and reverse primers were used for sequencing
to ensure there were no sequencing errors.

A comparison of the new degenerate primer sets with primers already available targeting
either the adenylation domain (NRPS) or the ketosynthase domain (PKS) [26–28] was

Table 2. Ketoacylsynthases used for primer design.

Accession Description

gi|125235 KAS1_STRCO Putative polyketide beta-ketoacyl synthase 1 (WhiE ORF III)

gi|729871| KAS1_STRHA PUTATIVE POLYKETIDE BETA-KETOACYL SYNTHASE 1 (KS)
(POLYKETIDE CONDENSING ENZYME)

gi|729870| KAS1_STRCN PUTATIVE POLYKETIDE BETA-KETOACYL SYNTHASE 1

gi|
15823945|

3-oxoacyl-(acyl carrier protein) synthase I [Streptomyces avermitilis]

gi|
11024335|

PKSA beta-ketoacylsynthase subunit alpha; PKSA-ORF1 [Streptomyces collinus]

gi|7209628| Ketosynthase [Streptomyces nogalater]

gi|7209626| Ketosynthase [Streptomyces venezuelae]

gi|2580442| ORF 1 [Actinomadura hibisca]

gi|7433744| Polyketide synthase Actinomadura hibisca

gi|5381247| Polyketide synthase [Actinomadura verrucosospora]

gi|
14486277|

B-ketoacyl-ACP synthase-like protein [Streptomyces aureofaciens]

gi|125237| KAS1_STRVN GRANATICIN POLYKETIDE PUTATIVE BETA-KETOACYL SYNTHASE 1

gi|510722| jadomycin polyketide ketosynthase; JadA [Streptomyces venezuelae ATCC 10712]

gi|1076101 ketosynthase–Streptomyces griseus

gi|532245| daunorubicin-doxorubicin polyketide synthase

gi|516109| polyketide synthase [Streptomyces]

gi|7209618| ketosynthase [Streptomyces aureofaciens]

gi|7209610| ketosynthase [Streptomyces capoamus]

doi:10.1371/journal.pone.0138327.t002

Table 3. Primers used in this study.

Gene Primer Sequence Amplicon size Annealing T°C

NRPS F CGCGCGCATGTACTGGACNGGNGAYYT 480 63

R GGAGTGGCCGCCCARNYBRAARAA

PKS F GGCAACGCCTACCACATGCANGGNYT 350 61

R GGTCCGCGGGACGTARTCNARRTC

doi:10.1371/journal.pone.0138327.t003
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conducted on single strains genomic DNA and on the Cuban metagenomic library. Reaction
mixes were made with 12.5 μl PCRMaster Mix (Promega, Madison, WI, USA), 1.25 μl DMSO
and 0.8 μM of each primer in 25 μl total volume. The following primers and PCR condition
were tested: A3F 5’- GCSTACSYSATSTACACSTCSGG-3’ and A7R 5’SASGTCVCCSGT
SCGGTAS-3’ [26] (5 min at 95°C followed by 40 cycles of 30s at 95°C, 30s at 59°C, 90s at 72°C
and a final step of 5 min at 72°C); degKS2F 5’- GCIATGGAYCCICARCARMGIVT-3’ and
degKS2R 5’-GTICCIGTICCRTGISCYTCIAC-3’ (5 min at 94°C followed by 40 cycles of
40s at 94°C, 40s at 55°C, 75s at 72°C and a final step of 5 min at 72°C [27, 28]).

Screening Antarctic and Cuban fosmid libraries
The construction of the Antarctic fosmid library has been previously described by Pearce et al.
[30] and the creation of the Cuban fosmid library was performed following the protocol
described by Brady [34] using Copy-control™ Fosmid Library phage packaging system (Epicen-
tre, Madison, WI, USA). Metagenomic libraries, created in Falcon

1

96-well cell culture plates
containing LB medium with addition of 12.5 μg/ml chloramphenicol and 1X CopyControl Fos-
mid Autoinduction Solution (Epicentre), were stored at -80°C and 4°C.

For the screening of both the Antarctic and the Cuban libraries, each 96-well plate was indi-
vidually pooled using 20 μl from each well and a fosmid extraction was performed using the
GeneJET plasmid miniprep kit (Thermo Scientific) as per manufacturer’s instructions. A PCR
using 1 μl of the extracted fosmid DNA was performed using the same conditions previously
described in order to identify the presence of the target genes. Bands of the expected size were
purified from 1% agarose gel using the QIAquick Gel Extraction Kit (QIAGEN; Venlo, Nether-
lands) and sequenced (GATC Biotech AG, Cologne, Germany) using both forward and reverse
primers to avoid sequencing errors. The two libraries of approximately 24,690 and 3000 E. coli
clones containing 30–40 Kb of environmental DNA (eDNA) per fosmid, for a total amount of
864 Mb and 105 Mb respectively for Antarctic and Cuban samples, were screened for NRPS_F/
R and PKS_F/R primer sets (Table 1). The Cuban library was also screened with the additional
primers A3F/A7R and degKS2F/R following the conditions previously described in order to
compare the new primers with the ones already available. All sequenced amplicons can be
viewed under GenBank accession numbers KT443010 –KT443022 and KT443093 –KT443096.

Screening of European soils
Total Community DNA (TCDNA) was extracted from the soils using the CTAB/phenol/chlo-
roform ribolyzing based method [35] and used as a template for PCR with the NRPS_F/R and
PKS_F/R primer sets. The resulting PCR products were cloned according to the manufacturer’s
instructions (Promega pGEM-T Easy Vector Systems) and 47 NRPS clones and 42 PKS clones
were sequenced from each site. The sequences were compared to the GenBank database using
the blastn algorithm to confirm that they were of the desired genes and the closest matches in
GenBank were included in the analysis. The sequences were aligned using ClustalW in Molecu-
lar Evolutionary Genetics Analysis in MEGA [36] and neighbor joining trees were also con-
structed in MEGA. Bootstraps were preformed with 1000 replicates. All sequenced amplicons
can be viewed under GenBank accession numbers KT443023 –KT443092.

Results and Discussion

Performance of the primers
Screening of 50 strains as known producers of either PKs or NRPs proved that the primer
design detected the majority of an extensive range of genes involved in production of highly

NRPS and PKS Diversity in Soils

PLOS ONE | DOI:10.1371/journal.pone.0138327 September 23, 2015 5 / 15



diverse antibiotics (S1 Table). The performance of the primers is summarized in S2 Table and
revealed that the primer pair NRPS_F/R detected a range (74%) of NRP clusters. The PKS
primer pair detected 50% of the strains producing known PKs.

Comparison of the new primers with the existing primers showed that hit rates of the newly
designed primers were comparable to other primers with a slightly different distribution of hits
(Table 4 and S1 Fig).

All the primers sets (NRPS_F/R, A3F/A7R, PKS_F/R and degKS2F/R) were also tested to
screen the metagenomic library from Cuban soil to compare any differences in the hit rate and
increase the chances of identifying clones with novel antibiotic gene clusters. The screening
results showed no positive hits for PKS_F/R and degKS2F/R and an equal number of clones was
detected with NRPS_F/R and A3F/A7R. Details of the positive hits is given in Table 5, two
clones out of six were positively identified with both primers sets, while the remaining four were
identified by a single primers set (two clones with NRPS_F/R and two clones with A3F/A7R).

Diversity of PKSs in European soils
PKS primers were developed on conserved regions of 18 different ketosynthase (KS) amino
acid sequences. The final PCR product size of 350 bp resulted from two conserved sites flank-
ing a highly variable region allowing for excellent discrimination between gene clusters. Total
community DNA was extracted from the Drudridge, Cockles and Athens sites to allow for

Table 4. Comparison of primer sets on genomic DNA of different actinomycetes. The positive PCR hits are reported with the + symbol. Examples of
known biosynthetic products related to NRPS and PKS clusters present in the strains are reported in the “Antibiotic pathways” column (Source: database
ClusterMine360).

Antibiotic pathways PCR results

Organism NRPS PKSI PKSII Hybrid
NRPS-PKS

NRPS_F/
R

A3F/
A7R

PKS_F/
R

degKS2F/
R

Micromonospora fulvoviolaceus
JCM 3258

+

Streptomyces avermitilis MA-4680 +
(Avermectins)

+ + + +

Streptomyces coelicolor M1152 + +

Streptomyces coelicolor M1154 + +

Streptomyces coelicolor M145 + (CDA) +
(Actinorhodin)

+ (Prodigiosin) + + + +

Streptomyces flavogriseus +

Streptomyces griseus DSM 40660

Streptomyces hygroscopicus AM-
3672

+
(Herbimycin)

+ + + +

Streptomyces hygroscopicus
NRRL 3602

+
(Geldanamycin)

+ + + +

Streptomyces hygroscopicus
subsp. glebosus ATCC 14607

Streptomyces lividans TK24

Streptomyces parvulus + (Borrelidin) + +

Streptomyces rochei DSM 40231 +
(Streptothricin)

+
(Lankamycin)

+ (Lankacidin) + + + +

Streptomyces spectabilis + + + +

Streptomyces subrutilus +

Streptomyces violaceusniger
KCC-S0850

+ (Meridamycin) + + + +

doi:10.1371/journal.pone.0138327.t004
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comparison of the PK biosynthetic gene cluster diversity in the uncultured fraction of the three
European soils. PCR products were generated and clone libraries were constructed. For PKS
primers 51 products with similarity to KS domains were amplified from the European soils
(Fig 1). The KS domains recovered had similarities to a wide range of KS domains present in
diverse taxa in the NCBI database. Two major clades were recovered (Fig 1), with a third
smaller clade and a few phylogenetically distinct singletons also present. The first major clade
included clones recovered with similarity exclusively to the Actinomycetales Order such as
Streptomyces including Streptomyces halstei and S. flaveus. Other KS domains recovered in this
clade had similarity to the rare Suborder Catenulisporineae, including the Actinospica and
Catenulispora genera. The second clade also included clones recovered with similarity to previ-
ously described KS domains in the Actinomycetales Order. A large number of clones shared
similarity with clones from the genera Streptomyces, but different species from clade 1 such as
S. cineoruber, S. hachijoensis, and S. eurocidius. However a number of recovered KS domains
also shared similarity to rarer actinobacteria such as members of the genus Nonomuraea (Ath-
ens soils) and the obligate marine actinobacteria Salinispora tropica (Druridge). Many clones
in the second clade separated having very distant relationships to known PK gene clusters such
as Drudridge 32, Drudridge 47 and Athens 2a. Such a distant relationship suggests they are as
of yet uncharacterized PKS genes from uncultured actinobacteria. A number of clones were
distinct from any of the actinobacteria and although phylogenetically distant, were most simi-
lar to KS domains from the Proteobacteria such as Burkholderia thaliandensis and Sphingo-
pyxis alaskensis. Despite a clear taxonomic spread across the recovered clones, none clustered
according to sample site. Clones recovered from each location had representatives in each
clade suggesting the PKS gene diversity in this study was not limited by geography. All recov-
ered sequences had an average sequence identity of 71% with a maximum sequence identity of
93% to sequences in the NCBI database, demonstrating the ability of the primers to pick up
clusters distinct from those previously observed.

Testing of NRPS primers on European soils
The NRPS_F/R primer set was generated from a consensus sequence of nine NRP pathways
and targeted the conserved adenylation (A) domain of the NRPS gene cluster. The final

Table 5. Results of nucleotide sequences identity of the positive clones identified during the screening for NRPS and PKS genes of the metage-
nomic library created from Cuban soil using the blastn algorithm.

Clone Primers set Species Annotation Accession
No.

%
Identity

E
value

ST1P6A4 NRPS_F/R Delftia acidovorans SPH-1 Amino acid adenylation domain protein CP000884.1 99 0.0

ST1P6A4 A3F/A7R Delftia acidovorans SPH-1 Amino acid adenylation domain protein CP000884.1 98 0.0

ST1P6B6 NRPS_F/R Delftia acidovorans SPH-1 Amino acid adenylation domain protein CP000884.1 98 0.0

ST1P6B6 A3F/A7R Delftia acidovorans SPH-1 Amino acid adenylation domain protein CP000884.1 98 0.0

ST1P9E10 NRPS_F/R Saccharothrix espanaensis
DSM 44229

Non-ribosomal peptide synthetase HE804045.1 80 3e-08

ST1P9D7 A3F/A7R Burkholderia gladioli BSR3
chromosome 2

Arthrofactin synthetase/syringopeptin synthetase C-related
non-ribosomal peptide synthetase module

CP002600.1 85 1e-07

ST1P19C8 NRPS_F/R Stenotrophomonas maltophilia
R551-3

amino acid adenylation domain protein CP001111.1 97 2e-
174

ST1P29D1 A3F/A7R Streptomyces
ansochromogenes

nrps2 metabolite biosynthetic gene cluster KF170330.1 70 4e-20

doi:10.1371/journal.pone.0138327.t005
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Fig 1. Neighbour joining tree demonstrating relationship between PKS clones recovered from
Cockles, Athens and Drudridge.Reference sequences from Genbank were included and are indicated by
named species.

doi:10.1371/journal.pone.0138327.g001
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product was 480 bp and flanked a highly variable region allowing discrimination between
NRPS biosynthetic genes. Total community DNA extracted from the European soils was used
to amplify A domains for the construction of clone libraries to compare the distribution of
NRPS gene clusters across samples. A total of 22 clones were amplified from the Cockle Park
site, 20 from Drudridge Bay and 28 from Athens (Fig 2). All amplified sequences had similarity
to NRPS gene clusters with all blastn hits recorded as ‘peptide synthase’ or ‘amino acid adenyla-
tion domain protein’. The sequences recovered clustered with genes originating from a diverse
range of bacterial classes including the Alphaproteobacteria (Bradyrhizobium), Betaproteobac-
teria (Burkholderia, Delftia, Ralstonia), Gammaproteobacteria (Pseudomonas, Pectobacterium),
Deltaproteobacteria (Myxococcus, Sorangium), Bacilli (Bacillus) and Actinobacteria (Actino-
synnema, Saccharopolyspora, Saccharothrix, Streptomyces, Thermomonospora). Despite coming
from different locations the sequences from the three European soils did not segregate from
one another. Several of the sequences had low similarity to any known sequence in the NCBI
database, exemplified by Drudridge 2, Athens 46 and Cockle 20. Such clones potentially repre-
sent divergent NRPS genes likely to represent biosynthetic gene clusters capable of producing
new secondary metabolites.

Detection of gene clusters from fosmid libraries
In order to analyse the performance of the primer sets in assaying libraries for detection of clus-
ters capable of producing bioactive compounds, pilot fosmid libraries were constructed from
soil from both the Antarctic Mars Oasis and Cuban Beach samples. The Antarctic library con-
sisted of ~ 24,690 clones with an average insert size calculated to be approximately 35 kb giving
a total library size of 864 Mb. The Cuban library consisted of ~3000 clones with an average
insert size calculated to be approximately 35 kb giving a total library size of 105 Mb. Both
libraries were screened using the PKS PCR assay (PKS_F/R) and the NRPS PCR assay
(NRPS_F/R). A combined total of 17 clones were detected from the two libraries (Fig 3); thus
putatively containing a biosynthetic pathway. All hits were recovered using the NRPS PCR
assay. From this we can calculate the hit rate in each library as the total DNA captured divided
by the number of positive hits (4 in the Cuban library and 13 in the Antarctic library respec-
tively), therefor it is 1 in 26.3 Mb for the Cuban library and 1 in 66.5 Mb for the Antarctic
library. Assuming the average E. coli genome to be 4.6 Mb in size, this suggests that the NRPS
assay can detect an average (between the two libraries) greater than one gene cluster per 10
genomes. Although collectively the Antarctic and Cuban NRPS clones had similarity to genes
reported in a wide range of phyla, Cuban clones primarily had similarity to sequences found in
gram-negative bacteria, specifically the Proteobacteria. In contrast the Antarctic clones had
similarities to sequences found in both Proteobacteria as well as a wide range of Actinobacteria
including the genera Thermomonospora, Saccharothrix and Streptomyces. Several of the clones
had low similarities to sequences of NRPS genes in the NCBI database and were phylogeneti-
cally divergent from representative sequences suggesting many of the clones recovered came
from as yet undiscovered NRP pathways.

Discussion
In comparison to genome mining, relatively few studies to date have taken advantage of meta-
genomics as a tool for drug discovery [13], and those that have had great success in discovering
new compounds [21, 22]. To facilitate future drug discovery the aims of this study were to pro-
vide additional PCR assays for the capture of biosynthetic pathways, test the biosynthetic
potential of different types of soils and demonstrate the assays’ utilities in screening fosmid
libraries. We demonstrate here two highly specific assays; all PKS clones had highest similarity
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Fig 2. Neighbour joining tree demonstrating relationship between NRPS clones recovered from
Cockles, Athens and Drudridge.Reference sequences from Genbank were included and are indicated by
named species.

doi:10.1371/journal.pone.0138327.g002
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to either keto-synthase (KS) or β-ketoacyl ACP synthases from PK-like gene clusters, and all
NRPS clone and library hits matched adenylation (A) domains from NRP gene clusters. When
screening European soils the PKS assay was able to detect clones from a range of Actinobacteria
and Proteobacteria, suggesting these are the most two dominant phyla producing polyketides
in the soils tested. This reflects what has previously been observed in culture [37]. Surprisingly
many of the clones with similarity to sequences in Actinobacteria were similar to PK pathways
from rare genera such as Actinospica, Catenulispora and Nonomuraea. All three of the genera
have been recorded to produce potent antimicrobials such as the chrolactomycins from Acti-
nospica [38], novel aminocoumarins from Catenulispora [39] and a novel drug targetingMyco-
bacterium tuberculosis ecumicin from Nonomuraea [40]. As well as rare actinobacteria, clones
were similar to sequences from the classic natural product producing Streptomyces [11]. Similar
findings were reported for the NRPS assay, with recovered clones having similarity to
sequences from a diverse range of bacterial classes belonging to the Actinobacteria and Proteo-
bacteria phyla, such as the Delta ProteobacteriumMyxococcus, a prolific antibiotic producer
[41]. The ability of the assays to amplify clones from such a diverse range of taxa is indicative

Fig 3. Neighbour joining tree demonstrating relationship between NRPS clones recovered from fosmid libraries constructed from Cuban and
Antarctic sample sites. Reference sequences from Genbank were included and are indicated by named species.

doi:10.1371/journal.pone.0138327.g003
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of the flexibility of both described assays. Many of the functional genes amplified from clones
recovered from European soils were phylogenetically divergent from representatives in the
NCBI database suggesting they were from novel gene clusters, which demonstrates the ability
of the assays to detect new NRPS and PKS pathways. This also infers that European soils may
have a wide range of untapped bioactive potential as has been described for soil in general [23].
Despite previous studies suggesting biosynthetic pathways may be restricted by biogeography
[23], here we did not observe this for either PKS or NRPS gene sequences, although the number
of clones was low and a greater sequencing effort is needed to discover all the gene clusters in
these soils. The amplicon size of 350 bp for PKS and 480 bp for the NRPS are both compatible
with next generation sequencing, allowing for greater sequencing depth in future studies. The
primers worked well for the recovery of clones in fosmid libraries, indicating the presence of
biosynthetic gene clusters containing NRPS and PKS genes; the future characterization of the
recovered fosmids may lead to the discovery of interesting bioactive compounds. The Cuban
site appeared to contain a greater diversity of target sequences with similarity to Proteobacteria
which correlates well with a previous community analysis proving prevalence of alpha-
proteobacteria in this soil [31].

In conclusion, in this study we have validated two new assays for drug discovery targeting
the PKS and NRPS genes involved in the biosynthesis of many antibiotics. The two assays were
capable of bioprospecting new environments and mining fosmid libraries. They are a useful
addition to the current selection of primers used for bioprospecting metabolic diversity in envi-
ronmental samples and extend the range of gene clusters detected. The results support the
hypothesis that a range of Actinobacteria and Proteobacteria are responsible for producing
diverse PKs and NRPs. Assays were capable of detecting novel diverged variants of previously
described NRPS and PKS gene clusters, and detected sequences found in phylogenetically dis-
tinct groups, which implies a lack of bias. Fosmid libraries constructed from soils recovered a
number of clones with a high hit rate for clusters of genes potentially capable of producing bio-
active compounds, supporting the research of diverse soils in drug discovery.
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nobacteria. PCR amplicons obtained with primers: A) PKS_F/R, B) degKS2F/R, C) NRPS_F/R,
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hygroscopicus AM-3672, 3) S. violaceusniger KCC-S0850, 4) S. subrutilus 445, 5) S. hygroscopi-
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