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Abstract 

Specific binding sites for testosterone have been detected in three compartments of olfactory 

tissue from brown and rainbow trout. Binding of 3H-testosterone to the membrane fraction of 

olfactory tissue is of high affinity (KD = 0.5 - 1.9 nM) and limited capacity (NMAX = 30 - 60 

fmol mg-1 protein). Binding is reversible, and is eliminated by protease treatment. The 

membrane binding site exhibits a high degree of ligand specificity; 11β-hydroxytestosterone, 

11-ketotestosterone, 17α-hydroxyprogesterone, 17α, 20β-dihydroxy-4-pregnen-3-one, 

cortisol, and estradiol-17β all fail to displace testosterone at 20-fold excess while testosterone 

itself competes successfully. These attributes are consistent with the presence of specific 

steroid receptor proteins. Binding of testosterone within the cytosol is of moderate affinity 

(KD = 9.0 - 23.0 nM) and high capacity (Nmax = 0.5 - 2.9 pmol mg-1 protein) and is more 

readily displaced by a number of steroid competitors than is the case for the membrane site. 

The rate of association and dissociation of testosterone from the cytosolic binding site is 

markedly more rapid than the equivalent processes in the membrane fraction. Binding of 

testosterone to the nuclear extract is of high affinity (KD ~ 3.0 nM) and limited capacity (Nmax 

~ 50 fmol mg-1 protein).  

There are no substantial differences between species or between sexes in the affinity or 

capacity of testosterone-binding sites in nuclear extract or membrane fraction. However, 

cytosolic testosterone-binding sites are three- to four-fold more abundant in rainbow trout 

than in brown trout, and female rainbow trout have more cytosolic binding sites than male 

rainbow trout, but a lower affinity for testosterone than male sites.  

Preliminary evidence supports the involvement of the membrane-associated 

testosterone-binding site in olfactory processes. Rainbow trout display an EOG response to 

testosterone at a concentration (10-9 M) which is consistent with the equilibrium dissociation 

constant (KD) of the membrane-associated testosterone-binding site. Binding of 

3H-testosterone to the membrane-associated site shows a pH dependancy which is comparable 

to the effects of pH on the EOG response to testosterone in intact fish. The attributes of the 

intracellular testosterone-binding sites are common to testosterone receptors in other fish 

tissues which are known androgen target tissues. This suggests that the development and/or 

function of salmonid olfactory tissue may be susceptible to influence by endogenous 

testosterone. 
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Introduction 

 

It is now clear that fish release many compounds into the water which can be considered to 

perform a pheromonal function, among which are prostaglandins (Sorensen and Goetz, 1993; 

Sveinsson and Hara, 1995), steroids (Stacey et al., 1989; Bjerselius et al., 1995a) and steroid 

conjugates (Lambert and Resink, 1991; Scott and Vermeirsson, 1994). An overview of 

progress in this area is provided by Sorensen (1992). Two methodologies have underpinned 

studies on the identity and function of pheromonal compounds in fish. One is to expose fish 

to the putative pheromone and examine physiological and behavioural effects which result 

from such exposure. The second is to directly measure the ability of the fish to detect a 

specific compound by monitoring electrical activity in the olfactory tissue 

(electro-olfactogram, EOG). Both approaches have advantages. It is obviously ideal to obtain 

information on behavioural and physiological effects of a putative pheromone, as this 

exemplifies the role of the compound under natural conditions, and compounds likely to have 

pheromonal activity can be screened and identified rapidly using EOG techniques. 

 

The application of these techniques has resulted in the accumulation of considerable evidence 

that pheromones play a significant role in the reproduction of salmonid fish. It is known that 

female trout release a substance which attracts male fish (Newcombe and Hartmen, 1973). 

Anosmic kokanee salmon (Oncorhynchus nerka) are less vigorous and persistent in their 

courtship of females, and show reduced milt volume and plasma hormone levels compared to 

males with intact olfactory apparatus (Liley et al., 1993).  Similar evidence, supporting the 

importance of olfactory cues to reproductive processes, has been obtained for rainbow trout 

(O. mykiss; Olsen and Liley, 1992). It has subsequently been demonstrated that urine of 

mature female rainbow trout contains one or more priming pheromones which elevate levels 

of  17α, 20β-dihydroxy-4-pregnen-3-one (17α,20β-P), testosterone and GTH II in the blood 

of mature male rainbow trout, although without apparent effect on milt volume (Scott et al., 

1994). However, despite the fact that large quantities of steroidal compounds with potential to 

act as pheromones are released into the surrounding water by salmonids (Scott and 

Vermeirsson, 1994; Scott and Liley, 1994), the identity and role of specific pheromones 

related to these effects has yet to be established. Neither  17α,20β-P, or its conjugate 
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17α,20β-P-sulphate, are potent in eliciting physiological responses in trout (Scott et al., 1994) 

although the latter is abundant in the urine of rainbow trout and evokes an 

electrophysiological response in Atlantic salmon (Salmo salar; Moore and Scott, 1992).  

 

The only evidence for the detection of specific compounds which may act as pheromones in 

salmonid fish exists for the Atlantic salmon (Moore and Scott, 1991, 1992) and Arctic charr 

(Salvelinus alpinus; Sveinsson and Hara, 1990, 1995). Mature male salmon display 

electrophysiological responses to very low concentrations of testosterone (threshold for 

detection: 10-14 M) but this sensitivity is apparent for only a limited period of several weeks 

(Moore and Scott, 1991). No response is observed to 17β-estradiol, 17α,20β-P or testosterone 

glucuronide. A substantial EOG response to 17α,20β-P-sulphate was also noted in 

precociously mature salmon parr but only after previous exposure of the olfactory tissue to 

urine from ovulated female salmon (Moore and Scott, 1992). As noted above, neither 

17α,20β-P or 17α,20β-P-sulphate elicit a physiological or behavioural response in rainbow 

trout (Scott et al., 1994). Sveinsson and Hara (1995) demonstrated that during spawning 

mature male Arctic charr release substances with the characteristics of F-series prostaglandins 

which attracted females and stimulated their spawning behaviour. More recently F-series 

prostaglandins have been shown to function as priming pheromones in Atlantic salmon, 

elevating the levels of plasma steroids, plasma GTH and expressible milt in male fish (Moore 

and Waring, unpublished data). 

 

Characterisation of the olfactory receptor to a specific ligand offers an approach to 

understanding factors associated with pheromonal communication in fish which is 

complementary to electrophysiological and behavioural studies. Only one previous study has 

adopted this approach, to characterised the binding of 17α,20β-P to goldfish olfactory tissue 

membrane (Rosenblum et al., 1991). The intention of the present study was to determine 

whether olfactory responsiveness to testosterone reflects the presence of specific steroid 

binding sites within the olfactory tissue of salmonid fish. Because of the apparent sensitivity 

of Atlantic salmon to testosterone, and in the absence of EOG data for other odorants in 

salmonid fish, testosterone was selected as ligand. Due to the difficulties inherent in locating 

and maintaining a substantial supply of mature Atlantic salmon parr the study was, in the first 
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instance, carried out on rainbow trout and brown trout (Salmo trutta) with the intention of 

developing methodology which could then be applied to salmon.   

 

In order to confirm the presence within a tissue of molecules which may function as 

receptors, a number of criteria must be satisfied. These can be summarised as a requirement 

for saturable binding of the ligand, which is reversible and is abolished by proteolytic 

conditions, displaying a high degree of ligand specificity, and a tissue distribution which 

reflects the function of the putative receptor (Orchinik and Murray, 1994; Hulme, 1990). The 

study was designed to address these factors with respect to the possible presence of 

testosterone-binding sites in the olfactory tissue of salmonid fish. 

 

 

Materials and methods 

 

Experimental fish 

Three-year old brown and rainbow trout were maintained in the IFE experimental fish facility 

at Windermere.  Both groups of fish were reared from eggs on site. Fish were held in 1500 l 

outdoor fibreglass tanks, each supplied with a constant flow of lake water (20 l min-1) and fed 

once daily, five times per week, on commercial trout feed (BP Mainstream) at the 

manufacturers recommended rate.  

 

Tissue preparation 

Fish were netted from their holding tank into a trough containing anaesthetic 

(2-phenoxyethanol, 1:2000). When fully anaesthetised, the olfactory tissue was exposed and 

removed by dissection. The fish were then killed by a blow to the head. Tissue was placed 

directly in homogenization buffer (0.2 M tris-HCl, pH 7.4, 12 mM monothioglycerol, 1.0 mM 

EDTA, 10.0 mM sodium molybdate, 20% glycerol) on ice. Within one hour of the 

commencement of sampling, tissue was rinsed, wet weighed, and fresh buffer was added in 

the ratio 3 : 1 (volume : weight). The wet weight of individual olfactory rosettes from the fish 

sampled during these experiments was within the range 80 - 120 mg. The tissue was then 

homogenised, on ice, using an Ultra-Turrax TP 18/10. The homogenate was transferred to 
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13.5 ml polycarbonate centrifuge tubes and centrifuged at 1000 g for 15 mins at 4oC 

(Beckman J2-21 centrifuge with JA21 head). The pellet from this first spin, comprising nuclei 

and intact cells, was retained and the supernatant was transferred to clean tubes and 

centrifuged at 30,000 g for 60 mins at 4oC. The resultant cytosol was dispensed in aliquots 

into capped polypropylene tubes and frozen at -70oC until required. The pellet (membrane 

fraction) was resuspended by the addition of ~8.0 ml of homogenization buffer and gentle 

homogenization. The resuspended membrane fraction was dispensed in aliquots and frozen at 

-70oC.The nuclear pellet was washed three times by suspension in buffer and centrifugation at 

1000 g for 15 mins. After the final wash, the pellet was resuspended in a similar volume of 

buffer containing 0.7 M KCl and incubated for 1 h at 4oC. The extract was then spun at 

30,000 g for 60 mins at 4oC and the resulting supernatant (nuclear extract) was dispensed in 

aliquots and frozen at -70oC.         

 

Preliminary experiments 

A first binding assay was carried out to determine whether there was any evidence for the 

specific binding of testosterone to either the membrane or cytosol fraction of trout olfactory 

tissue. Immature fish and mature female fish from two batches of 3+ rainbow trout (Stannan 

1990 and Tasmanian 1990) were employed.  Membrane and cytosol fractions were prepared 

from the olfactory tisue of these fish and 500 μl (5-10 mg protein ml-1) of each was incubated 

together with 100 μl of homogenization buffer containing 100,000 dpm (0.5 pmol) of 

[1,2,6,7-3H]testosterone  (3.33 Tbq mmol-1, 11.3 Gbq mg-1; Amersham) with (2 tubes) or 

without  (2 tubes) a 1000-fold excess of inert testosterone (500 pmol, 144 ng). Incubation 

was carried out at 4oC for 1 h. In order to determine the extent to which 3H-T was bound to 

the membrane fraction, immediately following incubation, the tubes were vortex-mixed and 

500 μl of the contents were pipetted onto a glass microfibre filter (Whatman GF/B, retention 

1.0 μm, 2.5 cm) which had been pre-soaked in buffer overnight. A vacuum was applied to the 

filter and a 10.0 ml buffer wash was applied to the filter to remove unbound steroid and any 

steroid bound to soluble components of the preparation. The filter was then placed in a 5.0 ml 

scintillation vial, 4.0 ml of scintillation fluid (Ecoscint A, National Diagnostics) were added, 

and the samples were counted under standard 3H conditions in a liquid scintillation counter 

(Canberra-Packard 1900TR). Binding in the cytosol preparations was determined as follows. 
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The tubes were placed on ice and 200 μl of a dextran-charcoal suspension (DCC; 1.25% 

activated charcoal, 0.125% dextran, in homogenization buffer) were added to each tube. The 

tubes were vortex mixed, incubated on ice for 10 mins, then centrifuged to remove the DCC 

from suspension. A 300 μl aliquot of supernatant from each tube was added to 4.0 ml of 

scintillation fluid in a 5.0 ml scintillation vial. Samples were counted under standard 3H 

conditions.  

 

Effect of protein concentration on specific binding of 3H-T to olfactory tissue membrane 

preparations 

Aliquots (400, 300, 200, 100 and 50 μl) of olfactory tissue membrane preparation from 

mature female rainbow trout were pipetted into groups of six assay tubes, and made up to a 

total  volume of 400 μl with buffer. Three tubes of each batch had previously received 20 μl 

of ethyl acetate containing 0.5 nmol inert T which was evaporated off under vacuum. A 100 

μl aliquot of buffer containing 100,000 dpm (0.5 pmol) of 3H-T was added to each tube and 

after mixing well the tubes were incubated for 1 h at 4oC. After this period, the tubes were 

mixed thoroughly, and  400 μl of each sample was pipetted onto a glass microfibre filter 

(Whatman GF/B, retention 1.0 μm, 2.5 cm) mounted in a vacuum filtration manifold 

(Millipore Model 1225) . A vacuum was applied to the filter and a 10.0 ml buffer wash was 

applied to each filter. Radioactivity retained by the filters was determined as described above. 

 

The effect of protease treatment on the specific binding of 3H-T to olfactory tissue membrane 

preparations 

Aliquots of mature female rainbow trout olfactory tissue membrane fraction (400 μl) were 

incubated together with 100,000 dpm (0.5 pmol) of 3H-T either with or without 0.5 nmol of 

inert T. Half the total and non-specific binding assay tubes (12) also received 100 μl of buffer 

containing sufficient trypsin (Sigma) to give a final concentration in the tube of 1.0 mg ml-1. 

The remaining tubes received 100 μl of buffer alone. The tubes were vortex-mixed and 

incubated at 4oC for 24 h. At the end of this period, binding of 3H-T within each sample was 

determined by filtration as described above. 

 

 



 

 8 

The tissue specificity of the specific binding of 3H-T to membrane fractions from rainbow 

trout 

Membrane fractions were prepared, as described above for olfactory tissue, from brain, liver, 

spleen, and muscle tissue of rainbow trout. Specific binding of 3H-T was quantified in each of 

these fractions as for olfactory tissue. Each preparation was assayed in quadruplicate. 

 

The ligand specificity of the 3H-T binding sites in olfactory tissue membrane fraction and 

olfactory tissue cytosol 

To 32 assay tubes containing 400 μl of mature female  olfactory tissue membrane fraction 

were added 100 μl of buffer containing 1.0 pmol (200,000 dpm) of 3H-T and 1.0 nmol of 

either  testosterone, 11β-hydroxytestosterone, 11-ketotestosterone, 17α-hydroxyprogesterone, 

17α,20β-dihydroxy-4-pregnen-3-one, cortisol, or estradiol-17β (unlabelled). Each steroid was 

dispensed into 4 assay tubes. Four tubes received buffer and 3H-T only to estimate BT. The 

tubes were vortex mixed and incubated at 4oC for 1 h. After this period, the samples were 

filtered and binding of the radiolabelled ligand was determined as described above. The 

specificity of binding in cytosol was assessed using the same protocol except that 300 μl 

cytosol were employed in each tube. The tubes were mixed and incubated at 4oC for 2 h. 

Binding was determined as previously described. A total of seven separate pools of 

membrane and cytosol preparation were employed, derived from both brown trout and 

rainbow trout. The results from each species were indistinguishable and so were combined. 

 

The time-course of binding of 3H-T to olfactory tissue membrane fraction and olfactory tissue 

cytosol 

A 400 μl aliquot of mature female rainbow trout olfactory tissue membrane preparation was 

pipetted into each of 42 assay tubes, together with 100 μl of buffer containing 0.5 pmol 

(100,000 dpm) 3H-T. Half of these tubes also received 0.5 nmol (144 pg) of inert T. The tubes 

were vortex mixed and incubated at 4oC. At 10, 20, 30, 45, 60, 120, 240 mins and 24 h after 

the start of the experiment, binding of  3H-T was determined in three BT and three BNS tubes, 

as described in above. A similar procedure was carried out with olfactory tissue cytosol. In 

this case, 300 μl aliquots of cytosol were added to each tube. The assay was carried out as for 

the membrane fraction and equilibration was terminated as described above. 
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The time-course of dissociation of 3H-T from olfactory tissue membrane fraction and from 

olfactory tissue cytosol 

Aliquots of olfactory tissue membrane preparation (400 μl) were added to thirty-six assay 

tubes together with 100 μl of buffer containing 0.5 pmol (100,000 dpm) 3H-T. Half of these 

tubes also received 0.5 nmol (144 pg) of inert T. The tubes were vortex mixed and incubated 

at 4oC for 2 h. After 2 h, binding of 3H-T was determined in three BT and three BNS tubes, as 

described above. At this point, 20 μl of ethanol containing 0.5 nmol of inert T were added to 

18 tubes, and 12 tubes received ethanol only. Binding of 3H-T was determined in the tubes 

which received additional inert T at 10, 20, 30, 45, 60 and 120 mins after the addition. 

Binding was determined in the control, ethanol only, tubes at 60 and 120 mins. Binding was 

quantified as described above. A similar procedure was followed to determine the 

time-course of dissociation in cytosol. Aliquots of 300 μl were employed, and samples were 

initially incubated for 1 h before the addition of the additional excess inert T.  Binding was 

quantified as described previously. 

 

Determination of Kd and Nmax for testosterone binding in olfactory tissue membrane fraction 

by saturation analysis 

In order to conserve material, because of the limited quantities of olfactory tissue recovered 

from each fish (~150 mg wet weight fish-1),  saturation analyses were carried out over only 5 

- 6 different concentrations of ligand. The range of concentrations of 3H-T over which the 

saturation analysis was carried out was 0.5 - 8.0 nM, equivalent to 50,000 - 800,000 dpm of 

3H-T in a 500μl assay volume. Four assay tubes were assigned to each point on the saturation 

curve. An aliquot of 20μl of ethyl acetate containing 0.5 nmol inert T was added to two tubes 

within each group and evaporated under a vacuum. Then 100μl of buffer containing either 50, 

100, 200, 400 or 800 K dpm of 3H-T (see above for details of specific activity etc.) was added 

to to each group of four tubes, two BT and two BNS tubes per concentration. A 500μl aliquot 

of membrane suspension (protein concentration ~2.0 mg ml-1) was pipetted into each tube and 

the tubes were vortex-mixed and incubated at 4oC for 1 h. After this period, the tubes were 

vortex-mixed and filtered to separate membrane fragments from unbound steroid and 

radioactivity on the filters was quantified. 
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Determination of Kd and Nmax for testosterone binding in olfactory tissue cytosol by 

saturation analysis 

Initial attempts to obtain saturation curves for 3H-T with olfactory tissue cytosol were 

unsuccessful and it appeared to be the case that large amounts of T would be required to 

achieve saturating concentrations. To conserve 3H-T, a "spiked cold" approach was 

employed, in which  increasing amounts of inert T were incubated together with a constant 

amount of 3H-T, both in the presence and absence of excess inert T. Four assay tubes were 

assigned to each point on the saturation curve. A 100μl aliquot of ethyl acetate either 0.5, 1, 

2, 4, 8, 16, 32, or 64 pmols of inert T was added to each batch of tubes. Two tubes from each 

batch of four also received 10μl of ethyl acetate containing 2 nmol inert T (576 ng). The 

solvent was evaporated under vacuum and 100μl of buffer containing 50,000 dpm 3H-T was 

added to each tube. A 200μl aliquot of cytosol (2.0 - 5.0 mg ml-1) was pipetted into each tube 

and the tubes were vortex-mixed before being incubated at 4oC for 2 h. After incubation, a 

200μl aliquot of DCC was added to each tube, tubes were mixed, incubated on ice for 10 

mins, and then spun down in a refrigerated centrifuge. A 300μl aliquot of supernatant was 

removed, transferred to a 5.0 ml scintillation vial containing 4.0 ml scintillation fluid, and 

counted under standard 3H conditions. 

 

Determination of Kd and Nmax for testosterone binding in olfactory tissue nuclear extract by 

saturation analysis 

Saturation analysis of olfactory tissue nuclear extract was set up and carried out over the 

range of steroid concentrations described for the membrane fraction, but binding was 

quantified using the DCC method as described for cytosol.  

 

The effect of pH on the specific binding of 3H-testosterone to olfactory tissue membrane 

fraction 

Profound effects of pH have been reported on the EOG responses to T of precocious male 

Atlantic salmon parr (Moore, 1994) and the aim of this experiment was to determine whether 

these observations were reflected in vitro.  The pH of assay buffer was adjusted by the 

addition of dilute H2SO4 or NaOH solutions such that, on the addition of 250 μl of 
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pH-adjusted buffer to 350 μl of assay buffer, the final pH was either 3.2, 4.7, 5.3, 6.4, 7.4, 

8.3, or 9.3. Each sample of 250 μl of membrane preparation was incubated with 250 μl of 

pH-adjusted buffer and 100 μl of assay buffer containing 500,000 dpm of 3H-T. Four assay 

tubes were designated to each pH, two of which contained 0.5 nmol of inert T. The samples 

were incubated at 4oC for 1 h at which point binding in each tube was quantified by filtration. 

 

Electron microscopic examination of olfactory tissue membrane fraction 

After concentration by centrifugation, membrane fraction samples for electron microscope 

examination were fixed using a standard two-stage protocol. Initially samples were fixed for 

60 min at room temperature in a 3% gluteraldehyde solution made up in 0.1M sodium 

cacodylate buffered at pH 6.8. This was followed by a 30 min fixation at room temperature in 

a 2% solution of osmium tetroxide made up in the same buffer. The fixed samples were then 

washed in fresh buffer and dehydrated through increasing concentrations of ethanol in 

distilled water, to 100% ethanol. The samples were then embedded in Spurr resin over two 

days at room temperature before curing at 60oC. Sections were cut and triple stained with lead 

citrate/uranyl acetate/lead citrate before examination in a JEOL JEM 100CX electron 

microscope.  

 

Electrophysiological response of rainbow trout to testosterone 

Experimental Animals. Rainbow trout (29 - 32 cm in length) were collected from Westacre 

Trout Farm (Narborough, Norfolk, UK) and transported to the Lowestoft Fisheries 

Laboratory. The fish were maintained under natural photoperiod in 1000 l tanks supplied with 

a constant flow (85 l min-1) of aerated, dechlorinated water (5.5 - 16.5o C; pH 7.5; alkalinity 

156 mg HCO3 l
-1; total calcium 166 mg l-1; total hardness 405 mg l-1 as CaCO3; aluminium 

<10-32 μg l-1; sodium 37.3 mg l-1; magnesium 12 mg l-1; NO3 0.2 - 49.1 mg l-1; SO4 10 μg l-1). 

Fish were fed to satiation daily with commercial salmon pellets. The EOG measurements 

were made between September and October 1994 (water temperature 8.9 - 13.8 oC). After 

each experiment (4 - 5h in duration) the fish were killed, sexed, and gonads were removed 

and weighed. Most of the fish tested were sexually immature with gonadosomatic indices of 

0.026 ± 0.001% (mean ± SEM, n = 6). 
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Electrophysiological Studies. This study employed the same electrophysiological technique 

(electro-olfactogram; EOG) as that used in previous studies on mature male Atlantic salmon 

parr (Moore and Scott, 1991, 1992; Moore, 1994). EOG recording measures transepithelial 

voltage gradients from the surface of the olfactory epithelium and is considered to reflect 

multi-unit cell activity (Evans and Hara, 1985; Hara, 1992). The fish were anaesthetized with 

2-phenoxyethanol (0.4 ml l-1) and skin and cartilage were removed to expose the olfactory 

rosettes. The fish were then immobilised with an intramuscular injection of gallamine 

triethiodide (0.3 mg kg-1 of body weight) and placed in a V-shaped clamp within a Perspex 

flow-through chamber. The gills were constantly perfused with water containing 

2-phenoxyethanol. Paired silver electrodes were attached subcutaneously to the fish to 

monitor heart rate and level of anaesthesia during each experiment. The output was 

continuously displayed on an oscilloscope (Textronic 465B). This also provided an indication 

of the stability and health of the preparation. Electrophysiological recordings were made by 

using glass pipettes filled with saline-agar (2%) bridged to an Ag-AgCl electrode (Type 

EH-3MS, Clark Electromedical Instruments) filled with 3M Kcl. The tip of the pipette 

(diameter 80 - 100 μm) was placed close to the olfactory epithelium at the base of the largest 

posterior lamella. This was where the maximum response to 10-5 M L-serine and minimum 

response to dechlorinated water controls were normally obtained. A reference electrode, of 

the same type, was grounded and placed lightly on the skin of the nares of the fish. The signal 

was amplified using a Neurolog Systems DC preamplifier (Digitimer Ltd) and either 

displayed directly on a pen recorder (Lectromed MX212) or digitised and stored for later 

analysis on an Apricot XEN-i 386/100 computer using Asystant+ software (Asyst Inc.). A 

constant volume of the test substance (100 μl) was then injected, via a remote-control switch, 

into the second inlet of a three-way solenoid valve (Lee Company) carrying a constant flow of 

water over the olfactory epithelium (12 ml min-1) and the EOG response recorded. The 

stimulus lasted 5 secs and the flow rate was unaltered by the addition of the test substance. 

 

Testing procedure. Serial dilutions of testosterone (Sigma Chemicals), ranging from 10-5 - 

10-12 M were prepared from a stock solution containing 500 μg ml testosterone in absolute 

ethanol. The dilutions were freshly prepared before each experiment with water taken from 

the inlet pipe of the trout holding tank and allowed to stand at room temperature until 
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required (room temperature 7.5 - 10.7 oC). Increasing concentrations of testosterone were 

presented to the olfactory epithelium with a 2 min recovery interval between stimuli. The 

responses to 10-5 M L-serine, ethanol, and water control were tested at the beginning and end 

of each test series. The amplitude of each EOG response was expressed as a percentage 

response of the initial L-serine standard. 

 

Data analysis. The amplitude of each EOG response was measured from the baseline to the 

peak of each phasic displacement and expressed in millivolts (mV). Any replicates were then 

averaged and the values were expressed as a percentage of the response to the initial L-serine 

standard. The dechlorinated water control response level was subtracted from the EOG 

response to each concentration of testosterone. 

 

Protein determination 

Protein levels were determined by the method of Ohnishi and Barr (1978). 

 

 

Results 

 

The main problem encountered during the course of these studies was the relatively limited 

amounts of olfactory tissue which could be retrieved from individual fish. This necessitated 

the use of tissue "pools" which inevitably results in an inability to discern fish-to-fish 

variation. From a 300 - 500g trout, approximately 0.12g (wet weight) of tissue could be 

removed. A batch of 36 fish provided enough material for approximately 20 ml of membrane 

fraction. Each saturation analysis requires 5.0 ml of membrane preparation.  

 

Preliminary experiments 

Specific binding (BT > BNS) of 3H-T was consistently detected in both the cytosolic and 

membrane fractions from the olfactory tissue of immature and mature female rainbow trout. 

 

Effect of protein concentration on specific binding of 3H-T to olfactory tissue membrane 

preparations 
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The results of this experiment are presented in Fig. 1. There was a clear linear relationship 

between the amount of specifically bound T and the dilution factor of the membrane 

preparation.  

 

The effect of protease treatment on the specific binding of 3H-T to olfactory tissue membrane 

preparations 

Incubation with trypsin (1.0 mg ml-1) for 24 h completely abolished specific binding of 3H-T 

to rainbow trout olfactory tissue membrane preparation (Table 1). 

 

The tissue specificity of the specific binding of 3H-T to membrane fractions from rainbow 

trout 

Specific binding of 3H-T was detected in all tissue fractions except spleen, in which the 

difference between BT and BNS was minimal. The greatest amount of binding, normalised for 

protein concentration, was observed in the whole brain preparation. The results are presented 

in full in Table 2. Significant differences in binding between preparations were determined by 

Students t-test. 

 

The ligand specificity of the 3H-T binding sites in olfactory tissue membrane fraction 

The results of this experiment are presented in Fig. 2. In both membrane and cytosol, 3H-T 

was displaced most effectively by a 20-fold excess of unlabelled T. However, the extent to 

which other unlabelled steroids displaced 3H-T varied markedly between cytosol and 

membrane fractions. In cytosol, T displaced all but 12.9 ± 0.9% (n=7) of specifically bound 

3H-T, but 11-ketotestosterone, 17α-hydroxyprogesterone, and estradiol-17β also displaced a 

substantial proportion of bound 3H-T (60 - 70 %; Fig. 2a). In contrast, in the membrane 

fraction, a twenty-fold excess of unlabelled T displaced all but 2.3 ± 1.1 % (n=7) of 

specifically bound 3H-T whereas 11-ketotestosterone, 17α-hydroxyprogesterone, and 

estradiol-17β displaced only 25 - 30 % of bound 3H-T. 

 

The time-course of binding of 3H-T to olfactory tissue membrane fraction and olfactory tissue 

cytosol 

The results of this study are presented in Fig. 3. Specific binding of 3H-T to olfactory tissue 

membrane fraction increased from time 0 to reach a maximum after 45 mins (Fig. 3a). This 
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level of binding was maintained until at least 24 h after the start of the incubation (data not 

shown). Maximum specific binding of 3H-T was achieved more rapidly in cytosol (Fig. 3b). 

A stable maximum in specific binding was observed within 10 mins of the start of the 

incubation, and was maintained for 24 h (data not shown). 

 

The time-course of dissociation of 3H-T from olfactory tissue membrane fraction and 

olfactory tissue cytosol 

Following the addition of competing excess inert T, at least 2 h was required for all 

specifically bound 3H-T to dissociate from membrane fraction binding sites (Fig. 4a). In 

contrast, all specifically bound T was displaced within 10 mins of the addition of the 

competitor to the cytosol preparation (Fig. 4b). 

 

Saturation analysis of olfactory tissue membrane fraction, cytosols, and nuclear extracts with 

3H-T as ligand 

For each species (brown and rainbow trout), sex (male or female), and tissue fraction 

(cytosol, membrane fraction, nuclear extract) saturation analyses were carried out employing 

3H-testosterone as ligand. The analyses were of necessity carried out on preparations derived 

from tissue pools. Each pool was comprised of olfactory tissue from approximately 35 fish 

and for each species / sex / fraction 3 - 5 separate pools were analysed.  Representative 

saturation curves and Scatchard plots for each species/sex/fraction are presented in Figs 5 - 

10. Mean binding parameters (KD, Nmax) derived from Scatchard analyses of each tissue pool 

are presented in Table 4. Linearity of the Scatchard plots was strongly suggestive of the 

presence of a single high-affinity binding site in each fraction. However, some brown trout 

olfactory tissue cytosol pools presented Scatchard plots which were suggestive of curvature. 

Utilisation of a non-linear curve fitting program (LIGAND, Biosoft) failed to consistently 

resolve the binding isotherm into two components indicating that a single site model 

remained the most appropriate for these fractions. 

 

The effect of pH on the specific binding of 3H-testosterone to olfactory tissue membrane 

fraction 

Highest levels of specific binding were observed at pH 6.4 and 7.4. Binding was inhibited by 



 

 16 

both low and high pH, lowest levels of specific binding being detected at pH 3.2 and pH 9.3. 

 

Electron microscopic examination of olfactory tissue membrane fraction 

Inspection of the membrane fraction revealed there to be no intact cells or nuclei present. The 

preparation consisted entirely of small (< 0.5 μm) membrane micelles and included some 

apparent ciliary fragments, identifiable in cross-section by their characteristic arrangement of 

microtubules.  In contrast, the pellet obtained from the first spin (1000 g) of the homogenate 

contained clearly identifiable cells, nuclei and organelles. 

 

Electrophysiological response of rainbow trout to testosterone 

Testosterone, at concentrations of 10-9 M to 10-5 M evoked an electrophysiological response 

from the olfactory epithelia of immature rainbow trout. The level of response varied 

according to the concentration of testosterone employed, minimal responses being observed 

at 10-9 M and, surprisingly, at 10-5 M. The EOG response did not appear to reach a plateau. 

Instead, exposure of the olfactory tissue to concentrations above 10-7 M testosterone resulted 

in reduced EOG responses.  

 

Discussion 

 

The rationale for undertaking this study was to identify and characterise a possible 

testosterone receptor in olfactory tissue of salmonid fish, capable of responding to external 

signals. While the "classical" genomic action of steroids requires a cytosolic/nuclear receptor 

via which the transduction of hormone signal to effect is a relatively slow process, pheromone 

reception arguably requires that the receptor be capable of initiating a rapid response. The 

initiation of events leading to rapid membrane depolarisation in the sensory neurone is likely 

to be best mediated by a receptor complex situated in the cell membrane. A 

membrane-associated receptor has been demonstrated to underly olfaction in those systems 

most studied to date, the best characterised of which comprise a receptor protein, 

GTP-binding protein, and adenylate cyclase which, via the production of cAMP, open a 

cationic channel in the plasma membrane (Shepherd, 1994). A second transduction 

mechanism, in which a G-protein-mediated increase in phospholoipase C occurs, causing an 
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increase in inositol triphosphate, which may in turn open Ca2+ channels in the cell membrane, 

has also been suggested to be associated with olfactory transduction (Farbman, 1994). 

 

Membrane-associated steroid receptors in fish. 

In recent years it has become apparent that steroid hormones can act via non-classical 

mechanisms (Brann et al., 1995). In mammals, corticosteroid, estrogen and progestogen 

receptors have been located in the membrane fraction of neural tissues (e.g. Horvat et al., 

1995; Tischkau and Ramirez, 1993; Moore et al., 1995) and membrane-located steroid 

receptors have also been reported in spermatozoa (Revelli et al., 1994), liver (Grote et al., 

1993; Konoplya and Popoff, 1992), leucocytes (Wehling et al., 1991, 1992) and the uterus 

(Pietras and Szego, 1979). Direct evidence linking a membrane-bound steroid receptor with 

rapid changes in cellular ion flux has been presented for the progesterone-stimulated 

acrosome reaction in sperm (Blackmore, 1993; Wistrom and Meizel, 1993). As far as the 

authors are aware, membrane-associated steroid binding sites have been reported from only 

two tissues in fish. The best characterised is the membrane receptor situated in the oocyte 

which binds a specific maturation-inducing steroid (Patino and Thomas, 1990; Maneckjee et 

al., 1991; Yoshikuni et al., 1993). The 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DHP) 

binding site in rainbow trout oocytes has been shown to be associated with a G-protein 

sub-unit in the cell membrane. In addition to studies on the binding of steroids to oocyte 

membranes, there is also a single report of the binding of 17α,20β-DHP to olfactory tissue 

membrane preparations from goldfish, Carassius auratus (Rosenblum et al., 1991). 

 

In goldfish olfactory tissue membrane fraction Rosenblum et al. reported a binding site for 

17α,20β-DHP which was of high affinity (KD ~ 1.0 nM) and moderate to low capacity (Nmax ~ 

1.4 pmol mg-1 protein). The specificity of the binding site for 17α,20β-DHP was not absolute, 

both androgens and progestins showed a high level of displacement of 17α,20β-DHP in 

competition studies. However, 17α,20β-DHP binding sites were markedly more abundant in 

olfactory tissue membrane preparations, than in gut, liver or brain. Specific 17α,20β-DHP 

binding associated with particulate material was also detected in all subcellular fractions of 

the olfactory tissue preparations. The authors interpreted this as representing binding to 

membrane fragments and whole cells but did not exclude the possibility of binding associated 
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with nuclei. The concentration of steroid at which saturation of the binding site was observed 

was within the range in which the EOG response to 17α,20β-DHP in goldfish is observed to 

saturate. The authors concluded that the binding site identified was involved in the 

transduction of pheromonal signals.  

 

Androgen binding in the olfactory tissue of brown and rainbow trout 

The data obtained during the course of the present study indicate that both rainbow trout and 

brown trout olfactory tissue contains at least three specific binding sites for testosterone. 

These are located in the nuclear fraction, cytosolic fraction, and membrane fraction of 

olfactory tissue preparations. Binding of testosterone in the membrane fraction and nuclear 

fraction shows characteristics consistent with the presence of specific steroid receptors. 

 

Binding to both the membrane and cytosol sites was saturable, reversible, and was eliminated 

by treatment of the preparations with a protease. The characteristics of testosterone binding to 

the membrane and nuclear extract fractions were similar for both rainbow and brown trout, 

and for both male and female fish. There was a greater discrepancy in the binding of 

testosterone to the cytosol fraction of olfactory tissue in rainbow trout. Female rainbow trout 

appeared to possess a greater number of cytosolic binding sites, with a lower affinity for 

testosterone, than male fish. The membrane binding-site showed a markedly greater 

specificity for testosterone relative to other potential ligands, than the cytosol site. 

 

The equilibrium dissociation constant (KD) and maximum number of binding sites (Nmax) 

calculated for testosterone binding within the nuclear extract and the membrane fraction 

(Table 3) fall within the range considered indicative of a functional steroid receptor. Specific 

binding of testosterone to the cytosol fraction was of lower affinity and higher capacity, 

suggesting a non-receptor function for this site. These data represent the first report of 

specific androgen binding sites in the olfactory tissue of teleost fish, and the first report of a 

membrane-associated androgen binding site in fish. 

 

Has this study identified a pheromone receptor?  

The results of the present study differ from that of Rosenblum et al. in several respects. The 
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binding capacity of the trout olfactory tissue membrane fraction for testosterone (30 - 60 fmol 

 mg-1 protein) is considerably lower than that of goldfish olfactory tissue membrane for 

17α,20β-DHP ( ~ 1.4 pmol mg-1 protein) although the KD is similar in both species (~1.0 nM). 

The ligand specificity appears to be greater for trout olfactory tissue membrane than goldfish. 

Of the range of competitors tested, only testosterone displaced specifically bound 

3H-testosterone in trout.  In goldfish olfactory tissue, ligand specificity was not so clearly 

delineated. However, tissue specificity appeared to be greater in the goldfish. No other tissue 

tested, including brain, displayed as many membrane-located binding sites for 17α,20β-DHP 

as olfactory tissue. In the trout, however, membrane-associated testosterone binding was more 

abundant in brain membrane preparations than in olfactory tissue membrane fraction.  

 

Goldfish display an EOG response to 17α,20β-DHP the characteristics of which closely 

parallel the characteristics of the membrane binding site, in terms of the concentration of 

ligand necessary to obtain threshold and saturated EOG responses. In rainbow trout, a 

measurable EOG response to testosterone is obtained, and the threshold for detection (10-9 M) 

corresponds to the KD for testosterone binding to the membrane. However, increasing 

concentrations of testosterone do not produce a stable plateau EOG response. Instead, the 

response markedly declines at concentrations of testosterone of 10-6 M and greater. It is 

possible that this observation arises through saturation of available binding-sites, coupled 

with a slow dissociation rate, and "desensitization" or "exhaustion" of transducing elements 

within the receptor cell. 

 

Further evidence that the binding site detected may be involved in olfactory processes is 

provided by a recent study (Moore, 1994) in which it was demonstrated that exposure of the 

olfactory epithelia of mature Atlantic salmon parr to water at a range of pH values markedly 

affected the EOG response to testosterone. Exposure to water at pH of 5.5 and 4.5 severely 

reduced the EOG response and exposure to water at pH 3.5 abolished the response. Exposure 

to water at pH 8.5 and 9.5 also markedly reduced responsiveness to testosterone. In the 

present study, the pH of the medium was found to be a significant factor in determining 

binding of 3H-testosterone to binding sites within the olfactory tissue membrane fraction. 

Maximum binding was observed at pH 6.4 - 7.4 but declined at pH values above or below 
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this range. The similarity of the effect of pH on EOG responsiveness of olfactory tissue, and 

on ligand binding within the olfactory tissue provides intriguing circumstantial evidence that 

the two processes are functionally linked. 

 

On balance, the presence of specific testosterone-binding sites in the olfactory tissue 

membrane of rainbow and brown trout is consistent with their having a role in detecting 

testosterone in the environment. This interpretation is supported primarily by the ability of 

testosterone to evoke an EOG response in rainbow trout. However, three factors must be 

addressed. First, testosterone has yet to be demonstrated to have a pheromonal or 

communicative role in trout. Second, in the present study, high levels of 

membrane-associated testosterone binding were detected in brain tissue. Third, the EOG 

response of rainbow trout to testosterone is less sensitive than that of mature Atlantic salmon 

parr.  

 

The high degree of olfactory sensitivity of precocious male Atlantic salmon parr to 

testosterone, albeit for a limited period, suggests that it is quite feasible for this steroid to play 

a role in chemical communication in salmonid fish. In this study, immature rainbow trout did 

not display an EOG response to concentrations of testosterone below 10-9 M whereas mature 

Atlantic salmon parr display a threshold for detection of testosterone at 10-14 M (Moore and 

Scott, 1991). Although the apparent sensitivity of the response is lower in rainbow trout, the 

response seems unlikely to have arisen by any means other than interaction of water-borne 

testosterone with a specific olfactory receptor.   

 

The presence of membrane-associated testosterone binding in the brain of rainbow trout does 

not preclude the possibility that binding within the olfactory tissue membrane represents a 

receptor system directed at stimuli external to the fish. Mammalian neural tissue is known to 

contain membrane-bound receptors for estradiol-17β, testosterone, progesterone and 

corticosterone (Haukkamaa, 1987). Steroid receptors in neuronal membranes are believed to 

mediate a number of rapid effects including alterations in firing rates of neurons, changes in 

neuronal sensitivity/excitability, and induction/suppression of specific behaviours (Brann et 

al., 1995). The membrane fraction of brain tissue collected from rainbow trout in the present 
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study showed high levels of testosterone binding. It might be argued that the testosterone 

binding sites identified in trout olfactory tissue membrane fraction represent a phenomenon 

associated with neuronal tissue in general, and not olfactory tissue in particular. Why, then, 

should a specialised tissue such as the olfactory rosette, whose neurons terminate at the tissue 

surface as specialised sensory cells, possess a receptor which may be capable of mediating 

rapid effects when occupied by its ligand? It is conceivable that the binding of testosterone to 

olfactory tissue membrane represents a mechanism by which some functions of the olfactory 

tissue may be modified under androgenic influence. However, it is equally justifiable to 

suggest that a receptor system which is exploited for one purpose within the brain is also 

employed to detect signals within the aquatic environment. It is clear from the EOG studies 

that this system detects water-borne testosterone - if concerned only with an internal function, 

it would be highly susceptible to interference by testosterone released by conspecifics and 

present in the surrounding water. 

 

What is the significance of the cytosolic and nuclear testosterone binding sites in trout 

olfactory tissue? 

Cytosolic and nuclear binding sites which display characteristics consistent with specific 

androgen receptors have been identified in a number of tissues in several species of fish, 

including brown trout skin (Pottinger, 1987, 1988), goldfish brain (Pasmanik and Callard, 

1988), and the electric organ of mormyrid fish (Bass et al., 1986). In skin and the electric 

organ the presence of androgen receptors has been linked to sexually dimorphic patterns of 

development, while androgen binding in the brain is suggestive of a behavioural role. The 

binding of testosterone to nuclear extract and cytosol derived from trout olfactory tissue is 

very similar to that observed in the skin of brown trout. In the present study, binding of 

testosterone in the nuclear extract of olfactory tissue was of high affinity (~ 3.0 nM) while 

binding of testosterone in the cytosolic fraction was of lower affinity (~ 10-20 nM). In the 

skin of brown trout, nuclear binding is of high affinity (~ 1.0 - 3.0 nM) while cytosolic 

binding possesses a lower affinity for testosterone (~ 20.0 nM) (Pottinger, 1987, 1988). The 

similarity of these data suggest that the olfactory organ in fish may be a target tissue for 

androgens of internal origin and that olfactory tissue function or development may to some 

extent be androgen dependent. This interpretation is supported by the results of a recent study 
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(Cardwell et al., 1995) in which it was demonstrated that the magnitude and sensitivity of 

EOG responses to prostaglandin were were increased in cyprinid fish (Puntius schwanenfeldi) 

with artificially elevated blood androgen levels. It is likely that such an effect will be 

mediated by specific androgen receptors. However, common to other intracellular 

androgen-binding sites identified in fish (Pottinger, 1987; Pasmanik and Callard, 1988), the 

olfactory tissue binding site has little affinity for 11-ketotestosterone, the (quantitatively) 

dominant androgen in male salmonids. Levels of 11-ketotestosterone in female salmonids are 

negligible compared to those in male fish (Scott et al., 1980) but levels of testosterone in 

female plasma during the reproductive period may exceed those in male fish by up to 

four-fold (Scott and Sumpter, 1983; Baynes and Scott, 1985). Thus both male and female 

salmonids display elevated levels of plasma testosterone during the reproductive period. It is 

perhaps more likely, therefore, that the presence of intracellular testosterone binding in the 

olfactory tissue is involved with a response of the tissue to an overall change in reproductive 

status of the fish, rather than sex-specific effects.  
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Tables 

 

Table 1. The effect of trypsin digestion on the binding of 3H-T to olfactory tissue membrane 

preparation. 

 

 

 Treatment 
 
 BT (dpm) 

 
 BNS  (dpm) 

 
 BS  (dpm) 

 
 Buffer 

 
 4287 

 
 904 

 
 3383 

 
 Buffer + trypsin 

 
 628 

 
 505 

 
 123 

 

 

 

 

 

 

Table 2. Specific binding of 3H-T to various tissue fractions from rainbow trout. The values 

are expressed as the mean ± SEM, n = 4. a, binding sig. greater than all other preps p<0.001; 

b, binding sig. greater than in liver, muscle, and spleen, p<0.001; c, binding significantly 

greater than in muscle and spleen, p<0.01. 

 

 

 Tissue 
 
 BS (dpm mg-1 protein) 

 
 Brain 

 
 17171 ± 776a 

 
 Olfactory tissue 

 
 1208 ± 31b 

 
 Liver 

 
 470 ± 54c 

 
 Muscle 

 
 154 ± 30 

 
 Spleen 

 
 72 ± 32 
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Table 3. The equilibrium dissociation constant (KD) and maximum number of binding sites 

(Nmax) for 3H-testosterone in olfactory tissue cytosol, membrane fraction, and nuclear extract 

from male and female brown and rainbow trout. The data are expressed as mean ± SEM. 

 

 

 
Species 

 
Sex 

 
Fraction 

 
n  

 
KD (nM) 

 
Nmax (fmol mg-1 

protein) 

 
RT 

 
♀ 

 
cytosol 

 
5 

 
22.7 ± 1.4 

 
2943 ± 721 

 
RT 

 
♂ 

 
cytosol 

 
3 

 
8.9 ± 2.3 

 
1543 ± 374 

 
BT 

 
♀ 

 
cytosol 

 
5 

 
13.0 ± 1.8 

 
735 ± 70 

 
BT 

 
♂ 

 
cytosol 

 
4 

 
15.1 ± 1.5 

 
473 ± 41 

 
RT 

 
♀ 

 
membrane 

 
4 

 
1.6 ± 0.6 

 
60 ± 19 

 
RT 

 
♂ 

 
membrane 

 
3 

 
1.9 ± 0.7 

 
30 ± 7 

 
BT 

 
♀ 

 
membrane 

 
5 

 
1.6 ± 0.6 

 
36 ± 3 

 
BT 

 
♂ 

 
membrane 

 
4 

 
0.5 ± 0.1 

 
30 ± 2 

 
RT 

 
♀ 

 
nuc. extract 

 
3 

 
3.4 ± 1 

 
55 ± 8 

 
RT 

 
♂ 

 
nuc. extract 

 
- 

 
- 

 
- 

 
BT 

 
♀ 

 
nuc. extract 

 
5 

 
2.3 ± 0.3 

 
43 ± 5 

 
BT 

 
♂ 

 
nuc. extract 

 
3 

 
2.8 ± 1.2 

 
49 ± 14 
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Fig. 1 The relationship between protein concentration and number of specific binding sites for 

3H-testosterone in rainbow trout olfactory tissue membrane preparation. 
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Fig. 2. The displacement of specifically bound 3H-testosterone from (a) cytosolic and (b) 

membrane fraction binding sites by a range of steroids in 20-fold excess. T, testosterone; 

OHT, 11β-hydroxytestosterone; KT, 11-ketotestosterone; OHP, 17α-hydroxyprogesterone; 

DHP, 17α,20β-dihydroxy-4-pregnen-3-one; C, cortisol; E2, estradiol-17β. Seven separate 

tissue pools were assayed. Each estimate is the mean ± SEM (n=7). 
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Fig. 3 The time-course of binding of 3H-testosterone to (a) membrane and (b) cytosol 

preparation of mature female rainbow trout olfactory tissue. BT, total binding; BNS, 

non-specific binding; BS, specific binding. Each point is the mean of three determinations. 
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Fig. 4 The rate of dissociation of specifically bound 3H-testosterone from sites in (a) olfactory 

tissue membrane and (b) cytosol preparations. 
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Fig. 5. Saturation analysis of the binding of 3H-testosterone to olfactory tissue cytosol from 

(a) female brown trout and (b) male brown trout. Scatchard plots for each saturation analysis 

are presented (insets). The analyses are of single pools, each comprising tissue from 

approximately 35 fish. The binding parameters derived from each plot are (a) KD = 13.7 nM, 

Nmax = 690 fmol mg-1 protein, and (b) KD =14.1 nM, Nmax = 441 fmol mg-1 protein. 
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Fig. 6. Saturation analysis of the binding of 3H-testosterone to olfactory tissue cytosol from 

(a) female rainbow trout and (b) male rainbow trout. Scatchard plots for each saturation 

analysis are presented (insets). The analyses are of single pools, each comprising tissue from 

approximately 35 fish. The binding parameters derived from each plot are (a) KD = 23.8 nM, 

Nmax = 1636 fmol mg-1 protein, and (b) KD = 5.75 nM, Nmax = 1772 fmol mg-1 protein.  
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Fig. 7. Saturation analysis of the binding of 3H-testosterone to olfactory tissue membrane 

fraction from (a) female brown trout and (b) male brown trout. Scatchard plots for each 

saturation analysis are presented (insets). The analyses are of single pools, each comprising 

tissue from approximately 35 fish. The binding parameters derived from each plot are (a) KD 

= 0.45 nM, Nmax = 33.4 fmol mg-1 protein, and (b) KD = 0.33 nM, Nmax = 34.1 fmol mg-1 

protein.   
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Fig. 8. Saturation analysis of the binding of 3H-testosterone to olfactory tissue membrane 

fraction from (a) female rainbow trout and (b) male rainbow trout. Scatchard plots for each 

saturation analysis are presented (insets). The analyses are of single pools, each comprising 

tissue from approximately 35 fish. The binding parameters derived from each plot are (a) KD 

= 0.75 nM, Nmax = 94.7 fmol mg-1 protein, and (b) KD = 0.96 nM, Nmax = 42.9 fmol mg-1 

protein.  
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Fig. 9. Saturation analysis of the binding of 3H-testosterone to olfactory tissue nuclear extract 

from (a) female brown trout and (b) male brown trout. Scatchard plots for each saturation 

analysis are presented (insets). The analyses are of single pools, each comprising tissue from 

approximately 35 fish. The binding parameters derived from each plot are (a) KD = 1.89 nM, 

Nmax = 43.6 fmol mg-1 protein, and (b) KD =1.39 nM , Nmax = 41.3 fmol mg-1 protein.  
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Fig. 10. Saturation analysis of the binding of 3H-testosterone to olfactory tissue nuclear 

extract from female rainbow trout. A Scatchard plot for the saturation analysis is also 

presented (inset). The analysis was of a single pool,  comprising tissue from approximately 

35 fish. The binding parameters derived from the plot are (a) KD = 2 nM, Nmax = 49.6 fmol 

mg-1 protein.  No male rainbow trout olfactory tissue nuclear extracts were available. 
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Fig. 11. Specific binding of 3H-testosterone to rainbow trout olfactory tissue membrane 

fraction at a range of pH values. Each value is the mean of two estimates. 
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Fig. 12. The electrophysiological response of the olfactory epithelium of immature rainbow 

trout to various concentrations of testosterone. The amplitude of each response is expressed 

as a percentage of the response to a 10-5 M L-serine standard. The data presented are the mean 

responses of six fish, the vertical error bar indicates the SEM. 
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