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Glossary 
DEM – digital elevtion model of the landscape 

EO - Earth Observation using sensors above the ground surface 

InSAR – Interferometric synthetic aperture radar – a type of radar-based remote sensing 

IsBAS – a processing technique, called intermittent small baseline subset, applied to InSAR data 

MIR – mid infra-red referring to the wavelengths of light between 2.5 and 25 microns  

RS - remote sensing 

SAR – synthetic aperture radar – a radar-based technique used in remote sensing 

SLED - soil Euclidean distance; a method for computing a soil property index from remotely 

sensed images 

UAV – un-manned aerial vehicle 

VNIR - visible and near infra-red reflectance spectra which is a measurement of reflected light at 

different wavelengths from surfaces – in this case soil.  The range of VNIR wavelengths is 0.35 

to 2.5 microns. 
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Summary 

Defra wish to establish to what extent national-scale soil monitoring (both state and change) of a 

series of soil indicators might be undertaken by the application of remote sensing methods.  

Current soil monitoring activities rely on the field-based collection and laboratory analysis of 

soil samples from across the landscape according to different sampling designs.  The use of 

remote sensing offers the potential to encompass a larger proportion of the landscape, but the 

signal detected by the remote sensor has to be converted into a meaningful soil measurement 

which may have considerable uncertainty associated with it.  The eleven soil indicators which 

were considered in this report are pH, organic carbon, bulk density, phosphorus (Olsen P), 

nitrogen (total N), magnesium (extractable), potassium (extractable), copper (aqua regia 

extractable), cadmium (aqua regia extractable), zinc (aqua regia extractable) and nickel 

(aqua regia extractable).  However, we also comment on the potential use of remote sensing for 

monitoring of soil depth and (in particular) peat depth, plus soil erosion and compaction. 

In assessing the potential of remote sensing methods for soil monitoring of state and change, we 

addressed the following questions: 

1. When will these be ready for use and what level of further development is required? 

2. Could remote sensing of any of these indicators replace and/or complement traditional 

field based national scale soil monitoring? 

3. Can meaningful measures of change be derived? 

4. How could remote soil monitoring of individual indicators be incorporated into national 

scale soil monitoring schemes? 

 

To address these questions, we undertook a comprehensive literature and internet search and also 

wrote to a range of international experts in remote sensing.  It is important to note that the 

monitoring of the status of soil indicators, and the monitoring of their change, are two quite 

different challenges; they are different variables and their variability is likely to differ.  There are 

particular challenges to the application of remote sensing of soil in northern temperate regions 

(such as England and Wales), including the presence of year-round vegetation cover which 

means that soil spectral reflectance cannot be captured by airborne or satellite observations, and 

long-periods of cloud cover which limits the application of satellite-based spectroscopy. 

 

We summarise the potential for each of the indicators, grouped where appropriate.  Unless 

otherwise stated, the remote sensing methods would need to be combined with ground-based 

sampling and analysis to make a contribution to detection of state or change in soil indicators. 

Soil metals (copper (Cu), cadmium (Cd), zinc (Zn), nickel (Ni)): there is no technical basis 

for applying current remote sensing approaches to monitor either state or change of these 

indicators and there are no published studies which have shown how this might be achieved. 

Soil nutrients: the most promising remote sensing technique to improve estimates of the status 

of extractable potassium (K) is the collection and application of airborne radiometric survey 

(detection of gamma radiation by low-flying aircraft) but this should be investigated further.  

This is unlikely to assist in monitoring change.  Based on published literature, it may be possible 

to enhance mapping the state of extractable magnesium (Mg), but not to monitor change, using 

hyperspectral (satellite or airborne) remote sensing in cultivated areas.  This needs to be 

investigated further.  There are no current remote sensing methods for detecting state or change 

of Olsen (extractable) phosphorus (P). 

Organic carbon and total nitrogen: Based on published literature, it may be possible to 

enhance mapping the state of organic carbon and total nitrogen (but not to monitor change), 

using hyperspectral (satellite or airborne) remote sensing in cultivated areas only.  In applying 

this approach the satellite data are applied using a statistical model which is trained using 

ground-based sampling and analysis of soil. 
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Soil pH: Based on published literature, it may be possible to enhance mapping the state of soil 

pH (but not to monitor change), using hyperspectral (satellite or airborne) remote sensing in 

cultivated areas only.  In applying this approach the satellite data are applied using a statistical 

model which is trained using ground-based sampling and analysis of soil. 

Soil (peat) depth, erosion and compaction: based on some recent research, it may be possible 

using a new processing technique for InSAR (interferometric synthetic aperture radar) satellite 

data to monitor the change in surface elevation of peat soils (and overlying vegetation) as a 

proxy for change in depth.  Further research is required to determine whether this approach could 

be applied to other (non-peat) soils.  This approach is based on radar reflection from the Earth’s 

surface and it cannot be used to quantify soil depth (status).  However, this approach does not 

require field-based measurement of elevation to ground-truth the remotely sensed data. This 

technique can detect changes in surface elevation of as little as 1 millimetre over areas as small 

as one hundred square metres, so it may be possible to use it to monitor soil erosion in cultivated 

areas.  This approach needs to be tested further and applied over large scales.  Soil compaction 

also leads to small reductions in soil surface elevation so it may also be possible to detect 

compaction-induced changes through remote monitoring.  Monitoring based on application of 

InSAR data needs thorough testing. 

Bulk density: there are currently no remote sensing technologies which can contribute to 

improving measurement of status or change of soil bulk density.  
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1 Introduction 

1.1 BACKGROUND 

Defra last reviewed the opportunities for using remote sensing
1
 (RS) to monitor soils in 2004 

(Wood et al., 2004). This found, for the most part, that remote sensing could be used to monitor 

soil quantity and extent, but had only limited usefulness for those indicators that relate to soil 

condition (quality).  Since then remote sensors have developed significantly and there have been 

a number of studies examining the potential use of remote sensing to measure the concentration 

of soil organic carbon across the landscape, and also possibly to monitor it. Given the high costs 

associated with soil monitoring, Defra wish to understand what the current opportunities to 

monitor soils remotely are, and what the potential is for remote monitoring to replace traditional 

field monitoring across England and Wales. 

The UK Soil Indicators Consortium (UKSIC) identified the following eleven indicators for 

inclusion in national scale soil monitoring: pH, organic carbon, bulk density, phosphorus 

(Olsen P), nitrogen (total N), magnesium (extractable), potassium (extractable), copper 

(aqua regia extractable), cadmium (aqua regia extractable), zinc (aqua regia extractable) 

and nickel (aqua regia extractable). Since the UKSIC report (Black et al., 2008), soil depth 

and, in particular, peat depth has been identified as an important requirement for soil 

monitoring. There is also interest in the monitoring of soil erosion and compaction.  However, 

we are not explicitly considering soil erosion monitoring, as a pilot project to establish a soil 

erosion network for England and Wales is currently underway.  Combining the two sets of soil 

indicators above gives a total of fourteen that we consider in this report. 

Soil monitoring activity is still at a relatively early stage of development.  Optimal approaches to 

measuring state and change in soil may be quite different. The spatial variation of change in soil 

properties should determine the resampling strategy for monitoring, and this may be quite 

different from the baseline variation of that property’s state (Lark et al., 2006).  There are many 

examples of using remotely sensed data as covariates for reducing the uncertainty in predictions 

of soil properties such as organic carbon in combination with traditional, ground-based 

measurements (Rawlins et al., 2009).  However, this, and other exploitation of remote sensor 

data depends on statistical correlations between the remotely sensed measurement and the soil 

property of interest.  Such a correlation may have a direct physical basis (e.g. if the soil property 

directly influences the radiative properties of the land surface), but may also arise through 

secondary relationships (e.g. soil organic carbon may be correlated with clay content, which in 

turn affects soil water content and so the radiometric measurement).  When we are concerned 

with measuring changes in the soil, a remote sensor variable that proves useful for predicting 

landscape-scale variation of baseline values may prove rather less useful, if its value in the 

former context is due to correlations with indirect rather than direct physical effects on the 

radiometric properties of the landscape.  Our review of technologies therefore considers evidence 

for the relative importance of direct physical effects and indirect relationships in determining 

correlations of predictive value. 

The aims of this report are to address the following questions: 

1. What are the current and potential future opportunities to monitor any of the listed set of 

indicators using remote sensing? Defra wish to understand the potential to monitor both 

state and change. 
2. When will these be ready for use and what level of further development is required? 

                                                 
1
 For the purpose of this study we consider remote sensing (RS) and earth observation [in relation to soil 

monitoring] to encompass airborne and spaceborne (satellite) sensor technologies (by means of propagated signals 

such as electromagnetic radiation) which can provide useful data or information for the purpose of soil monitoring.   
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3. Could remote sensing of any of these indicators replace and/or complement traditional 

field based national scale soil monitoring? 

4. Can meaningful measures of change be derived? 

5. How could remote soil monitoring of individual indicators be incorporated into national 

scale soil monitoring schemes (such as the Countryside Survey?) 

 

In addressing these questions we have considered the full range of earth observation, satellite 

navigation and telecommunications tools available. 

1.2 SENSOR PLATFORMS 

In the context of remote sensing, the different sensor types can generally be mounted on either 

airborne or spaceborne platforms. Here, airborne platforms are differentiated according to 

whether the aircraft is manned (i.e. airplane or helicopter) or unmanned (i.e. UAV – un-manned 

aerial vehicle). The choice of sensor-platform combination is not only governed by the soil 

property of interest, but by several additional factors including the associated cost and 

practicality. 

Irrespective of the application, the use of UAVs for remote sensing is somewhat restricted by the 

size and mass of the sensor payload they are capable of carrying. As a result, UAVs have 

traditionally been used as a platform for imaging systems for the acquisition of spectral 

reflectance data (Honkavaara et al., 2013; Torres-Sánchez et al., 2013), thermal infrared imagery 

(Berni et al., 2009; Zarco-Tejada et al., 2012), or for the derivation of photogrammetric digital 

elevation models (DEMs) (d'Oleire-Oltmanns et al., 2012). However, with recent advances in 

compact sensor technology, more potential UAV applications are emerging as some are now 

capable of carrying RADAR sensor payloads (Koo et al., 2012; Remy et al., 2012). After the 

initial outlay to purchase the UAV and any appropriate sensors, the cost of acquiring remotely 

sensed data from an unmanned airborne platform generally consists of the staff-time for only a 

single operator. Moreover, UAVs can be utilised to acquire very high spatial resolution data — 

typically on the order of centimetres — because they can be operated at lower altitudes than 

manned aircraft. However, imagery acquired at a very high spatial resolution usually covers a 

small spatial extent on the ground. As a consequence, achieving national-scale coverage using 

UAVs is likely to require considerable time and financial support. Accordingly, soil monitoring 

through repeat UAV surveys is arguably better suited to detailed local monitoring programmes. 

The acquisition of various remotely sensed datasets (e.g., multi- and hyperspectral imagery, 

RADAR, LiDAR, radiometric, thermal) from manned airborne platforms is well established. 

Although having a higher operating altitude than their unmanned counterparts, manned airborne 

platforms can still be utilised to acquire high spatial resolution data — typically on the order of 

metres. Data acquired from manned airborne platforms also has the added benefit of it covering a 

larger spatial extent than that of UAV-acquired data, therefore providing a more practical means 

of acquiring data at regional or even national-scale. However, despite the advantages, the 

commissioning of manned airborne surveys is generally costly, particularly if considered for 

repeat surveys for national-scale monitoring purposes.    

With many relevant sensors already in operation, spaceborne platforms offer an attractive means 

of monitoring soils at a national-scale, because image scenes typically cover large spatial extents 

and can be acquired at either no cost or for a relatively small fee. Although only a handful of 

scenes may be required for national coverage, spaceborne data do generally have a coarser 

spatial resolution than airborne platforms — typically on the order of tens to hundreds of metres. 

Nevertheless, with frequent revisit times, spaceborne platforms provide access to temporal 

datasets that can be readily used for monitoring purposes. 
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1.3 THE CHALLENGES OF REMOTE SENSING OF SOIL PROPERTIES 

A recent review by Croft et al. (2012) highlights the major challenges to remote sensing and 

modelling of soil properties: “One of the greatest challenges facing the broad-scale adoption of 

remote sensing methods in soil science and soil organic carbon [SOC] studies is the site-specific 

nature of relationships between RS-measured variables and SOC.” 

Site-specific relationships between remotely sensed variables and soil properties can occur for 

various reasons: 

1) Reported models are empirical in nature. These models are often only relevant for a 

particular instrument at a point in time and space, as the complex relationship between 

soil constituents and soil reflectance is not taken into account (Bartholomeus et al., 2011) 

2) Sensor characteristics vary between sensors. The transfer of prediction models between 

one sensor to another can be complex, due to differences in spectral resolution, sampled 

wavelengths, location of spectral bands and the number of bands used (Bartholomeus et 

al., 2011).  

3) The use of different numerical methods and data pools can also cause difficulties when 

comparing the statistical quality of mapped soil parameters (Selige et al., 2006). 

4) Soil reflectance responds to temporally invariant factors (e.g. soil type, mineralogy, 

geology) and temporally variant factors (e.g. tillage, moisture, soil roughness, crop 

residue cover (Ladoni et al., 2010). 

5) Inherent data accuracy of airborne and satellite data, which can be due to variations in 

illumination, changes in terrain and atmospheric attenuation (Ben-Dor et al., 2002). This 

can also cause problems particularly when, for example, SOC has low concentrations or a 

small range of SOC values, and measurement uncertainly can exceed spatial and 

temporal differences in SOC content (Stevens et al., 2008). 

1.3.1 Challenges in northern temperate regions 

In regions of northern latitudes, such as the UK (50-60 ºN), there are particular challenges for 

remote sensing of non-vegetated soils to measure their properties. The window of opportunity 

for remote sensors to measure soil surfaces is generally reduced because: 1) bare, or partially 

bare, ground exists mainly during the autumn and winter months, due to tillage practices, where 

soils are cultivated in the autumn and sown later that autumn; and in the case of grassland are 

seldom bare. 2) Cloud cover during the winter is common in northern latitudes, preventing clear-

day skies, which are necessary for remote sensors to provide spectral reflectance data of soil 

properties. 3) Soil moisture can cause variation to spectral response, which during the winter can 

be very variable, including aspects of freeze/thaw and snow, which have a large effect on 

spectral reflectance. 4) During the winter, the angle of the sun is low, which also affects spectral 

response of remote sensors. To reduce spectral response variability in the visible and near infra-

red, it is best to have a small azimuth angle
2
. 

Mulder et al. (2011) reviewed the use of remote sensing in soil and terrain mapping and 

summarised the various ways remotely sensed data offered possibilities for extending existing 

soil survey datasets. The suggested uses of remote sensing were: 

1) Soil composition can be assessed by using remote sensing to segment the landscape into 

approximately homogenous soil-landscape units, which then aids the assessment of soil 

composition using classical or more advanced methods, 

2) The spectral data measured by remote sensors can be analysed using physically-based or 

empirical methods to derive soil properties, 

3) Remotely sensed imagery can be used as a data source to support soil mapping as 

described by (Grunwald et al., 2011), and (Minasny et al., 2013)) 

                                                 
2
 The azimuth angle is the angle between the line from which the remote sensing instrument detects its signal from 

an observed point on the land surface and the line of shortest distance between the sensor and the land surface. 
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4) Remote sensing methods facilitate mapping of inaccessible areas, reducing the need for 

extensive time-consuming and costly field surveys. 

1.4 MEASURING STATE AND CHANGE OF SOIL INDICATORS 

The monitoring of the status of soil indicators and the monitoring of change in these indicators 

are two quite different challenges. Lark (2009) notes that the status and change of a soil indicator 

are different variables and their variability is likely to differ. For example, Lark (2009) 

considered the example of metal concentrations in the soil. The baseline status of a particular 

metal is likely to be primarily related to the underlying geology, whereas the change might be 

related to anthropogenic processes such as land use change and pollution. This example 

illustrates that a soil monitoring network that is suitable to monitor the status of a soil indicator 

might not be suitable to monitor the change in the property in two regards. First, the statistical 

design of the network might not be able to estimate the change in the indicator with the same 

precision as the status can be estimated. Second, a measurement method (e.g. a remote sensing 

technology) that is suitable to infer the status of the indicator might not be suitable to infer 

change in that property. 

The design of a soil monitoring network refers to the configuration of locations and times at 

which the soil indicator is measured. The precision of an estimate of the baseline status of a soil 

indicator should improve with the sampling effort in space. This precision depends on the design 

and the spatial variability of the measurements of the soil indicator. If the variability of a 

particular indicator is well understood it is possible to estimate the precision with which a 

particular design will estimate the baseline status. Such a process was conducted by Black et al. 

(2008) when they considered the design of a UK soil monitoring network that would use 

conventional measurement methods. They used previous surveys of soil properties (the National 

Soil Inventory and Countryside Survey) to establish models of the spatial variability of key soil 

indicators, such as soil organic carbon, pH, copper and zinc. They then tested the precision with 

which different designs could estimate the means of these indicators. If the same process is to be 

used to determine the precision with which a soil monitoring network could estimate the change 

of a soil indicator, then it is necessary to quantify both the spatial and temporal variation of the 

indicator.  Information about the temporal variation of soil properties tends to be less plentiful 

than spatial information, because of the expense of conducting a survey at multiple times and the 

time that must elapse before meaningful changes can be observed. Therefore, it tends to be more 

difficult to establish whether a monitoring network is suitable to monitor change with a specified 

precision.  Black et al. (2008) only considered the precision with which changes in soil organic 

carbon could be estimated. Where temporal information about soil properties is not available it is 

necessary to conduct reconnaissance surveys prior to designing a soil monitoring network. 

The second point about whether a particular measurement method is suitable to infer both status 

and change in a soil indicator is particularly pertinent for remote sensing technologies. Often 

these technologies do not directly measure the soil indicator of interest.  Instead, they measure a 

property that is correlated to the indicator of interest and a statistical model is used to infer the 

indicator.  If we return to the example of soil metal concentrations, it might be possible to use a 

radiometric sensor to identify variations in parent material and a statistical model calibrated to 

relate these variations to the metal concentrations.  However, if the radiometric sensor is used to 

re-measure the soil at regular intervals then the information it gathers will still primarily relate to 

the variation in geology.  It will say less about pollution or the changes in land use which might 

have caused changes to the soil metal concentrations. 

One key question is “What is meant by a meaningful change in a soil property?” Meaningful 

could refer to a statistically significant change i.e. a change that is sufficiently large that we 

would not have expected it to occur by random chance.  However, this is not always the most 

useful definition.  The magnitude required for a change to be statistically significant decreases 

with sampling effort.  If very intensive soil sampling is employed then it is possible that tiny 
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changes to soil indicators might be statistically significant.  However, these changes might be too 

small to cause a noticeable change to soil functionality.  It is preferable to consider meaningful 

changes in terms of soil functionality. For instance, there might be critical thresholds in the 

concentrations of soil nutrients below which the soil is unsuitable to maintain production or 

heavy metal concentrations above which plant toxicity may occur.  A meaningful change in the 

property could be said to have occurred if soil nutrient or heavy metal concentrations cross a 

threshold.  Black et al. (2008) reviewed critical thresholds or ‘action levels’ for 13 soil 

indicators. A coupled question is how precisely the soil indicator and these action levels need to 

be monitored.  Black et al. (2008) suggested that the development of such quality measures was 

urgently required, but to our knowledge, these have not been determined to date. 

1.5 NATIONAL SCALE SOIL MONITORING AND INCOPORATION OF REMOTE 

METHODS  

To understand the potential for remote methods to enhance soil monitoring it is necessary to 

clarify some terminology.  We refer to ground-based soil sampling followed by laboratory 

measurements of soil indicators at national survey sites as primary observation.  If a remote 

sensor makes a direct measurement of a soil indictor this is a secondary observation.  Where we 

can establish a statistical relationship between a series of remotely sensed observations at a large 

number of sites where a series of primary observations have also been made, we refer to the 

former as a secondary covariate.  Such a secondary covariate may have an indirect relationship 

with the soil indicator. For example, in their study on mapping soil organic carbon across 

Northern Ireland, Rawlins et al. (2009) stated that the two dominant factors which explained the 

negative correlation (indirect relationship) between SOC and gamma-radiation derived from 

potassium (
40

K) decay were: i) the variation in mineral-K content which decreased with 

increasing quantities of soil organic matter, and ii) increased soil moisture resulting in greater 

attenuation of the gamma signal from the soil.  The secondary covariate can be included in 

statistical approaches to predicting soil properties as a fixed effect. 

To enhance soil monitoring, by contributing to the detection of a meaningful change in soil 

indicators, preliminary approaches are likely to utilise remote sensing as a secondary covariate to 

improve predictions of soil properties at unsampled locations.  For example, in areas of 

cultivated soils of England, it may be possible to use either airborne (Selige et al., 2006) or 

satellite (Jaber et al., 2011) hyperspectral data as a fixed effect to predict SOC concentrations in 

topsoil across large regions. 

The CEH Countryside Survey soil sampled a total of 396 sites  across England and Wales in 

2007 (Emmett et al., 2010), but it would only be possible to capture vegetation-free, remotely 

sensed data on soil reflectance for a subset of cultivated sites predominantly in southern and 

eastern England.   If it was possible to establish a strong statistical relationship between the 

hyperspectral data for these sites and the primary measurements, this could be used as a fixed 

effect to make predictions (with associated uncertainties) for other areas of cultivated land for 

which hyperspectral data were available as a way of wider mapping of the status of soil 

indicators. 
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2 Methodology 

Figure 1 shows our approach to address the aims of the project. 

 

Figure 1 Summary of the approach used in this review study - Flow diagram of the 

literature review process to create a database of relevant literature and information 

(OUTPUT 1), which was then used to write OUTPUT 2: a review report of the most 

relevant findings of remote sensing and soil physical properties. 

The literature review had three types of investigation to provide the relevant information and 

data for an up-to-date assessment. The literature review was divided into three searches: 1) 

Global Expert Survey, 2) Published literature search and 3) Internet search. These searches 

provided relevant published literature, internet data and sources, and the most recent up-to-date 

research from experts working in remote sensing. The data was compiled into a database to store 

and categorise the relevant material and is shown as Output 1, in Figure 1. The database was 

used to write the final review report (Output 2, in Figure 1). 

2.1 PUBLISHED LITERATURE SEARCH 

A literature search of published information was undertaken using the Thompson Reuters Web 

of Science literature search engine. A systematic topic search was done, using a combination of 

terms listed in Appendix 1 (Table 1), which provided 43 separate search criteria. The 

combination of search terms was considered in four ‘fields’: the first ‘field’ always used the term 

‘Soil’; the second ‘field’ was related to the terms ‘remote sensing’, ‘satellite’, or ‘airborne’ and 

more specific search terms relating to remotely sensed sensors, such as ‘microwave’, ‘LiDAR’ 

‘hyperspectal’, ‘thermal’, ‘radar’ and ‘unmanned aerial vehicle’ and; the third field was related 

to a physical soil property, such as ‘organic carbon’, ‘geochemistry’, ‘bulk density’, ‘soil depth’. 

Each time a search was done using a combination of terms, the number of ‘hits’: i.e. references 

found by the search engine were recorded (and are shown in Appendix 1, Table 1). If there were 
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too many ‘hits’ (above 600 articles), more defined search terms were used and the search was 

run again. The search terms used in the published literature search are shown as grey rows in 

Appendix 1. A total of 2,885 published citations and their abstracts were downloaded to 

EndNote; a reference management software package, which manages bibliographies and 

references. All duplicate references were discarded and the final reference list in EndNote was 

2,031 published references.  

This final reference list in EndNote was then divided into three EndNote reference libraries and 

distributed to three experts, who then read through each reference and discarded those that were 

not-relevant. The criteria for keeping a reference were that the remote sensing method used 

monitored or measured one or more of the following: 

1) SOC 

2) Bulk density 

3) pH 

4) Soil depth 

5) geochemical soil indicators: N, P, K, Mg, Cu, Zn, Ni and Cd 

6) peat 

Once all irrelevant published references were deleted, the three resulting libraries were merged 

to create a final reference EndNote library. The final merged library contained 307 published 

references. 

2.2 INTERNET SEARCH 

Two types of Internet searches were undertaken, using the Google Chrome browser to find 

relevant published references, website references, sources and blog sites relating to remote 

sensing of soil physical properties (shown in Appendix 1, Table 2). The first search was a 

Google Web search and used two search criteria: 1) ‘remote sensing’ + ‘soil’ + ‘physical’ + 

‘properties’ and 2) ‘remote sensing’ + ‘soil’ + ‘monitoring’. Theses searches gave an enormous 

amount of hits (between 2 and 4 million), we therefore only searched the hits of the first 10 

pages.  

As the second search criteria provided only 1 useful reference, we only used the search criteria 

‘remote sensing’ + ‘soil’ + ‘physical’ + ‘properties’ for a Google Blog search, which found 4 

useful hits from the first 10 pages of the Blog Search. 

In total, 44 useful references were found and added to EndNote. These references were added to 

the final merged EndNote library, providing in total 351 references. 

2.3 GLOBAL EXPERT SURVEY 

Based on our knowledge of the soil remote sensing community, we selected and wrote to six 

world experts (see list in Appendix 2, Table 1) to ask whether there were new techniques which 

had not yet been published that may be worthy of consideration in this review.  The letter sent to 

these experts is also shown in Appendix 2.  Where the experts provided new references relevant 

to our review we included these in our reference database and where they provided relevant, new 

insights we included these in our overall interpretation.  We also undertook a telephone interview 

with members of a project team based at the newly established company Rezatec, who are 

currently undertaking a project to develop a peat spotter service, where the objective is enable 

accurate, cost-effective and appropriate (in line with international standards) methods for 

identifying the location of peatlands, quantifying their intactness and assessing their carbon 

content. 
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2.4 STRUCTURING AND ASSIMILATION OF INFORMATION 

All the new (n=15) references from the Global Expert Survey were added to the final merged 

EndNote library (containing 351 references). This library was again divided into three smaller 

libraries and given to three experts who again discarded irrelevant references which were 

considered to be: 

1) of no relevance in a UK environment (many of the references related to arid and semi-

arid environments). 

2) related to the monitoring of irrelevant physical soil properties. 

3) using inappropriate remotely sensed techniques; for example many references were 

related to using spectral techniques proximally (at ground level) or in laboratory 

conditions. 

The remaining total number of references was 186. These final references were then categorised 

using a ‘tagging’ procedure in EndNote. Each reference had a Keyword field which was ‘tagged’ 

using keywords, relating to the remote sensor and the physical soil property being measured. 

These keywords were the following: 

1) Hyperspectral 

2) SAR 

3) Microwave 

4) UAV 

5) Thermal 

6) Radiometric 

7) Spectral 

8) Soil texture 

9) Electrical conductivity 

10) Bulk density 

11) pH 

12) Soil depth 

13) SOC 

14) Geochemistry 

15) Erosion 

By using tagged keywords, the references were then categorised quantitatively to understand 

which remote sensor was mainly used to measure different soil properties and which physical 

soil property had been researched the most. 

3 Results and their interpretation 

We have presented our findings by first summarising the counts of the tagged keywords in the 

reference database through combining the information from the literature search, the internet 

search and the expert survey. Secondly, we have assessed each of the indicators separately 

through addressing the list of 5 key questions which were presented in the introduction.  We 

summarise the information in a table describing the most promising remote sensing approaches 

which might be used for each indicator and the practicality of implementation.  We chose to 

combine some of the indicators into two groups: i) nutrients (extractable K, extractable Mg, 

Olsen extractable P, total N) and ii) metals (Cd, Zn, Cu, Ni). 
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3.1 TAGGED DATABASE SUMMARY 

 

 

Figure 2 The number of soil monitoring and remote sensing studies which refer to or utilise 

the specified a) soil indicators, and b) sensors/platforms (based on a total of 185 references 

selected from peer-reviewed published literature). 

Figure 2a shows that overwhelmingly the most common soil indicator which has been measured 

(or referred to) by soil remote sensing approaches is SOC (n=118 keyword citations).  This 

dominance is likely for two main reasons: i) the importance of soil organic carbon as a mediator 

of global climate change and its general use as a soil quality indicator, ii) organic carbon 

signatures can be detected using hyperspectral data because the frequency of the associated 

bonds occur within the visible and near infra-red spectral range (0.35–2.5 µm). 

s
o

il
 t

e
x
tu

re

e
le

c
tr

ic
a

l 
c
o

n
d

u
c
ti
v
it
y

b
u

lk
 d

e
n

s
it
y

p
H

s
o

il
 d

e
p

th

S
O

C

g
e

o
c
h

e
m

is
tr

y

e
ro

s
io

n

c
o

u
n

t

0
20
40
60
80

100
120 a)

h
y
p

e
rs

p
e

c
tr

a
l

S
A

R

m
ic

ro
w

a
v
e

U
A

V

th
e

rm
a

l

ra
d

io
m

e
tr

ic

s
p

e
c
tr

a
l

c
o

u
n

t

0
20
40
60
80

100
120 b)



 

 15 

3.2 SOIL ORGANIC CARBON (SOC) AND TOTAL NITROGEN (N) 

SOC: There are many published studies which show that remotely sensed reflectance data can 

be used, via the construction of statistical models between the spectra and direct measurements 

of SOC, to make predictions of the concentration of SOC (status) at sites where soils samples 

have not been collected (Ladoni et al., 2010).  The spectral reflectance (or spectral absorption) 

data encompasses the ultra violet (UV), visible (VIS), near infrared (NIR) and mid infrared 

(MIR) regions.  However, there are currently few satellite-based observations that encompass the 

MIR range which typically have stronger correlations with SOC than the NIR range (Ladoni et 

al., 2010). 

One of the problems of using spectral reflectance data is that mineral absorption features 

typically overlap with organic compounds so statistical models must be developed for particular 

regions and cannot necessarily be applied with the same confidence to other regions.  Soil 

spectral reflectance and SOC relationships are not universal, and therefore require new statistical 

models to be constructed for each study area and field samples need to be collected and analysed 

(Ladoni et al., 2010). Weak statistical correlations may be observed between SOC and soil 

reflectance when soil samples are taken from large geographic areas with different parent 

materials or different landscapes where reflectance response is dominated by soil factors other 

than organic matter content (Henderson et al., 1992). 

Gomez et al. (2008) used a combination of proximal spectrometer data and Hyperion 

hyperspectral information to construct a statistical model and map SOC. In their study, Gomez et 

al. (2008) concluded that predictions of SOC using ground-based spectrometer data were more 

accurate than the Hyperion spectra, although the SOC map predicted using Hyperion data 

showed similarity with field observations.  Selige et al. (2006) showed that airborne 

hyperspectral remotely sensed data could be used to accurately map SOC concentrations at field 

scales,.  In their study encompassing Europe, Stevens et al. found that the errors in predicting 

SOC concentrations from visible and near infra-red (VNIR) spectra were 5 times greater than for 

traditional soil sampling and laboratory analysis.  The best spectral calibrations achieved a root 

mean square error ranging from 4 to 15 g C kg
-1

 for mineral soils and 50 g C kg
-1

 for organic 

soils. 

A direct relationship between SOC and soil reflectance is only measurable when SOC is greater 

than 2%, otherwise the SOC signal is concealed by the presence of other biochemical 

components such as iron and manganese (Al-Abbas et al., 1972). Such low SOC concentrations 

can cause difficulty in deriving absorption features through visual inspection alone, due to a 

combination of overlapping absorption features. Consequently, more complex spectroscopic 

modelling approaches are needed to derive mathematical relationships between soil spectra and 

soil constituents (Croft et al., 2012). 

Two reflectance bands (near infra-red and red) have been used from both airborne and remotely 

sensed imaging based on the ‘soil line’ concept.  For any un-vegetated soil surface, there is an 

approximate linear relationship between the NIR and red reflectance bands referred to as the 

‘soil line’ with which other soil properties are related.  This shows bright soils are more 

reflective in both the IR and red, whilst dark soils are the least reflective in both reflectance 

bands (Richardson and Wiegand, 1977). As concluded by Baret et al. (1993) and Nanni and 

Dematte (2006), experimental results show that a “global soil line” does not apply and that the 

main factor of variation of ‘soil line’ parameters appears to be soil type. In their review, Ladoni 

et al. (2010) indicate that more recent research has shown that ‘SOC is correlated to a pixel’s 

location along the soil line’ using the soil Euclidean distance (SLED) technique (Fox and 

Sabbagh, 2002).  Soil sampling and measurement of these samples for SOC provide a descriptive 

curve relating SLED and field SOC. This method has been shown to reduce field sampling and 

was found to provide good correlations with SOC (R
2
 = 0.72 to 0.76) (Fox and Sabbagh, 2002).  

Both NIR and red reflectance bands are available from airborne infra-red cameras and satellite 
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platforms that encompass the UK, but these data have not, to date, been combined with ground 

based analyses for application to national scales in England and Wales. 

 

Based on a combination of ground-based sampling and airborne radiometric survey, Rawlins et 

al. (2009) showed that SOC concentration could be mapped with smaller prediction uncertainties 

by including measurements of radiometric K data as a secondary covariate, along with elevation 

data.  This approach can only be applied from low-flying airborne or ground-based systems, so it 

may have limited applicability to national-scale approaches. All the published studies have 

demonstrated that remotely sensed data can contribute to improved mapping of SOC 

concentration [status], but none have shown that remote methods can monitor change, either with 

or without ground-based measurements.  In their review, Ladoni et al. (2010) conclude that the 

main advantage of remotely sensed data (suggested by most researchers) is that “they can be 

used to design a sampling scheme for mapping SOC [status] with the smallest number of 

samples, and with greater accuracy”. They also propose that: 

1. Remotely sensed data should first be a guide for field soil sampling, rather than directly 

predicting soil properties. 

2. Satellite data should be used as secondary information as geostatistical analysis has 

shown the potential to improve predictions of SOC. 

Total N: There is a relatively restricted range of element ratios between total C (carbon) and 

total N (nitrogen) in soil organic matter and it is possible to use pedo-transfer functions (PTFs) to 

estimate total N on the basis of other measured soil properties, including soil carbon and bulk 

density, with only modest prediction errors (Glendining et al., 2011).  However, errors for 

predicting total N based on the application of PTFs, using EO measurements of these soil 

properties as predictors, would likely be too large for practical use.  It has been shown that total 

soil nitrogen can be predicted with reasonable accuracy based on statistical models of visible and 

near infra-red (VNIR) laboratory spectra (Viscarra Rossel et al., 2006) and also using airborne, 

hyperspectral remote sensing data in combination with ground-based measurements (Selige and 

Schmidhalter, 2005).  There were two studies in which remotely sensed data had been used to 

enhance predictions of ground-based measurements of total nitrogen.  First, a study by Wu et al. 

(2009) applied this approach in Hengshan County, the northern Shanxi Province of China, using 

Hyperion satellite data.  Second, a study by Stamatiadis et al. (2013) applied the technique to 

three, 10 hectare fields in Greece. They showed that the greatest negative correlation coefficient 

(coefficient of determination R
2
 = 0.77) was obtained between satellite NIR reflectance (0.5 

metre multi-spectral World View 2 image) and soil N content.  In both cases, it was necessary to 

develop statistical models for the prediction of total soil nitrogen, using primary field sampling 

in combination with EO (hyperspectral) measurements.  The prediction errors for total soil N 

using the VNIR spectral range are typically somewhat larger than for total C (Viscarra Rossel et 

al., 2006).  Based on the published literature, airborne or spaceborne hyperspectral soil 

reflectance measurement is the only current EO technique which is likely to provide reasonable 

predictions of total soil N. However, because the remote sensor must be able to detect reflectance 

directly from the soil surface, this approach requires non-vegetated soil which are most 

effectively calibrated by ground-based soil sampling and direct laboratory measurements of soil 

properties.  Although we might expect statistically significant relationships between EO-derived 

vegetation canopy productivity indices and total soil nitrogen, there were no published studies 

which demonstrated that such relationships were sufficiently strong to accurately predict soil 

total N under a range of vegetation types. 

Our findings relating to the most effective EO technique for predicting state or change of total 

soil N were very similar to those for SOC, the most promising technology is hyperspectral 

remote sensing. 
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3.2.1 Opportunities 

The strong relationships between reflectance spectra and both SOC and total N, using 

multivariate statistical techniques, particularly laboratory and proximal (ground-based) 

approaches, illustrates their potential for improved mapping of their concentrations [state] (Croft 

et al., 2012). The larger uncertainties in statistical models developed to predict SOC and total N, 

using remotely sensed spectral information by comparison to ground-based (proximal or 

laboratory) methods, reflects: i) the site-specific nature of relationships between remotely sensed 

measured variables and target properties, and ii) atmospheric interference effects. However, the 

uncertainties in the prediction of soil properties such as SOC can be substantially reduced by 

combining digital mapping using combinations of spectral information and other data sources, 

such as soil and vegetation maps. Such an improvement in SOC prediction is shown in the use of 

digital mapping of SOC, which has quickly moved from a research stage to being operational, 

with maps of carbon concentration and carbon stock from field to regional scale (Minasny et al., 

2013).  

The review of Ladoni et al. (2010) suggests that given the uncertainty of direct measurements of 

SOC by remote sensing, there is a far greater possibility to use remotely sensed data to guide 

sampling schemes, rather than for direct measurement.  Obtaining representative soil samples is 

useful for the application of geostatistical models, and remotely sensed data has been found to be 

advantageous in designing a sampling scheme for mapping SOC, with the smallest number of 

samples and with greater accuracy, at lower costs (Ladoni et al., 2010). 

3.2.2 Can Earth Observation replace field sampling? 

Based on current sensor technology, EO cannot replace field sampling but can complement it by: 

i) helping to improve sampling schemes, and ii) providing an exhaustive covariate (available 

across large parts of the landscape) that if used in a statistical model can substantially reduce the 

uncertainty in predictions of total concentrations. For mapping the state of these properties it 

would be possible to devise efficient sampling schemes to achieve a specified accuracy based on 

the analysis of a specified number of ground-based samples with associated analyses, thus 

reducing survey costs.  In addition to spectral reflectance data, there are other environmental 

covariates which can reduce the prediction uncertainties of SOC and total N, such as terrain 

indices. 

3.2.3 Can change be measured? 

There have been no published studies to date which have demonstrated that a change in SOC or 

total N can be measured [at national scale], using only remotely sensed methods.  We noted in 

the introduction that the challenge of monitoring change is quite different to mapping the state of 

soil properties.  The errors associated with predicting SOC and total N concentrations by 

remotely sensed methods are substantially larger than for direct soil sampling and analysis, and it 

is therefore not practical to apply this approach to monitoring change for those areas where 

vegetation is sufficiently sparse for periods of the year for reflectance measurements to be made. 

3.2.4 Integration with National Surveys? 

The most promising technique for applying remote sensing of both SOC and total N is 

combining the use of hyperspectral satellite data with ground-based sampling and analysis of 

topsoils from a national survey (such as the National Soil Inventory or Countryside Survey) to 

improve predictions of SOC concentrations [state] at un-sampled locations.  However, 

reflectance data will only be available for a subset of those sites which are cultivated annually, 

limited largely to eastern and southern parts of England.  Without first testing this approach, it is 

not possible to state the magnitude of the improvement in prediction accuracy through using 

remotely sensed data.  A number of other factors would likely influence this; the quality of the 
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remotely sensed data (e.g. the extent of atmospheric interferences) and soil-dependent 

interferences between mineral and organic carbon and nitrogen absorption bands. 

3.3 BULK DENSITY AND COMPACTION 

The bulk density (of topsoil) is the mass of soil material per unit volume and is strongly related 

to the soil organic carbon concentration (and thus land cover type), land management and to a 

lesser extent soil texture (Hollis et al., 2012).  Soils which have been subject to compaction have 

larger bulk densities than those which have not and so we consider compaction in this section.  

There were no published papers in the scientific literature (nor was there evidence elsewhere) 

which showed that soil bulk density or compaction could be predicted on a defined scale with a 

specified accuracy using remotely sensed signals.  In their study on prediction of soil physical 

properties using spectral approaches, Minasny et al. (2008) state that “soil physical properties 

that are based on pore-space relationships such as bulk density, water retention and hydraulic 

conductivity cannot be predicted well using [MIR] spectroscopy”. The soil property which 

accounts for the greatest (typically around 65%) proportion of variation in bulk density is SOC 

concentration (Hollis et al., 2012).  Hence, it may be possible to use pedo-transfer functions 

based on SOC concentration to predict bulk density with errors somewhat larger 0.17 gm cm
-3

 

(Hollis et al., 2012) However, such large errors would mean that monitoring change by remote 

sensing would be impractical, and therefore it is advisable to use field-based sampling and 

analysis to monitor this property. 

Given the current absence of effective techniques for measuring bulk density by remote methods, 

and no immediate prospect of this being addressed in the short-term by new technologies, we 

have not addressed the set of five questions relating to this indicator, but summarise them in 

Table 1. Soil compaction leads to small reductions in soil surface elevation so it may also be 

possible to detect compaction-induced changes through remote monitoring of elevation using the 

InSAR methods described in the study by Rawlins et al., (2014), however such an approach 

would need considerable research and testing before it could be deployed. 

3.4 SOIL DEPTH AND SOIL EROSION 

Soil/peat depth: In a recent study funded by the Welsh Government, interferometric synthetic 

aperture radar (InSAR) remote sensing data was used to monitor changes in the surface elevation 

of vegetated peat over an area of 10 km
2
 (and other land cover types across a wider area) over a 

period of seven years (1993-2000; (Rawlins et al., 2014).  This study involved the application of 

a new InSAR processing technique which considers pixels within the input radar stack that are 

only coherent for subsets of the total period of processing.  The authors found that variations in 

the change in peat surface elevation across the study area were similar over shorter (24 hours) 

and longer periods (>100 days); the longer periods included periods of prolonged wet and dry 

weather.  The standard deviation of the peat surface elevation change was around 5.5 cm, in both 

cases highlighting considerable movement which the authors consider may be caused by gas 

generation and loss in peat soil.  The standard deviation in elevation change for other soil types 

with differing vegetation (grassland, forest, heather) was substantially smaller (1.7-3.2 cm).  The 

mean elevation of peatland (and its vegetation canopy) did not appear to change markedly over 

the seven year period, but there was clearly a considerable amount of short-term variation.  

These data suggest that it would be possible to monitor peat canopy elevation over many years to 

detect change, as a proxy for measuring changes in peat thickness, assuming there were limited 

changes in vegetation canopy height.  A substantial period of monitoring (>20 years) would 

likely be required to detect a statistically significant change in elevation of blanket peats, given 

the long timescales over which these soils respond to changes in local conditions.  

The approach described by Rezatec (see expert survey) to develop a peat spotter service will be 

based on a combination of satellite-based interferometry and LiDAR techniques to quantify 

tropical peat depths and volumes, in combination with ground-based measurements using field 
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sites in Indonesia.  Based on the findings of this work, which are in the early stage, it is hoped 

that the methodologies might be transferable to temperate zones such as the UK.  

Soil erosion: The current, Defra-funded pilot of a soil erosion monitoring network for England 

and Wales (project SP 1311), will utilise a fixed-wing UAV at a series of selected sites as a 

means of identifying the extent of erosion features, but there are no plans currently to process the 

captured images to quantify erosion losses.  A fixed-wing UAV was used by d'Oleire-Oltmanns 

et al. (2012) to quantify gully and rill erosion in 2D and 3D for a region of Morocco, based on 

the creation of high-resolution Digital Terrain Models.  In their review paper on monitoring, soil 

degradation by remote sensing, Shoshany et al. (2013) identified three RS technologies which 

were most likely to be effective: InSAR, LiDAR and close-range photogrammetry.  For national 

scale erosion monitoring we suggest that deployment of direct approaches to detect either gully 

erosion features or overall lowering of parts of the landscape (with associated accumulation 

downslope) is the most promising approach. 

3.4.1 Opportunities 

InSAR methods applied to satellite data may be able to detect a lowering of surface elevation by 

millimetres or centimetres.  This is a similar approach to that used by Rawlins et al. (2014) in 

their assessment of changes in peat elevation.  After processing, the ERS satellite data used by 

Rawlins et al. (2014) had a support (ground footprint) of a square, with side length 100 metres.  

Although these data are costly, more recent satellites (TerraSAR-X and RADAR-SAT) have the 

potential for finer resolution imagery (square of side length 1 or 10 metres) which may offer 

greater potential for detecting changes within particular fields or identifying gully erosion 

features.  The SAR data from ESA’s soon-to-launch (Spring 2014) Sentinel-1 satellite will be 

freely available at resolutions of 10 metres making this a practical means of obtaining the 

relevant data to assess the InSAR technique.  One of the limitations of applying InSAR methods 

to the assessment of soil erosion/soil depth is the need to have a consistent (or preferably absent) 

vegetation canopy.  The method could be applied effectively to cultivated land when crops have 

been removed, but it may be problematic to apply it in areas of grassland where sward heights 

change by season and between years.  Another study also used a combination of LiDAR data,  

InSAR and air photographs for detecting landslides and erosional features evolving at rates 

similar to those represented by water erosion of soil (Roering et al., 2009).  The approach was of 

sufficient resolution for the authors to compute downslope motion rates and also to estimate 

denudation rates. 

3.4.2 Timing and further development 

There are no current technical barriers to testing the use of a combination of InSAR with IsBAS 

processing for assessing changes in surface elevation as a means of estimating soil erosion in 

cultivated areas.  To access the most appropriate data it would be necessary to make a scientific 

application to those responsible for satellite data capture to ensure the relevant scenes were 

acquired on a regular basis.  It would also be necessary to ensure that areas where the technique 

is deployed are not subject to subsidence which could confound predictions of erosion loss or 

overall changes in surface elevation (Sowter et al., 2013). 

3.4.3 Can Earth Observation replace field sampling? 

Based on the evidence presented, we believe that a combination of InSAR with IsBAS 

processing for assessing changes in surface elevation, as a means of estimating soil erosion or 

change in soil depth, could replace field-based measurements such as terrestrial LiDAR.  

However, the method would need to be rigorously tested in areas where cultivated soils were 

known to have eroded to demonstrate that the method was fit for purpose. 
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3.4.4 Can change be measured? 

Assuming there were no technical difficulties with access to and processing of the data, it should 

be possible to measure changes in the  elevation of cultivated land, which could be attributed to 

erosion processes or changes in soil depth.  However, this approach/technology would need 

thorough testing with ground-based validation before it could be implemented. 

3.4.5 Integration with National Surveys? 

There is currently no established national-scale soil erosion monitoring scheme, although a pilot 

is currently being undertaken (Defra SP1311).  It may be possible to integrate earth observation 

with such a survey, although the InSAR technique is likely to be limited to vegetation-free, 

cultivated areas initially. 

3.5 METALS 

There is currently no technical basis for estimating the four total heavy metal soil indicators 

directly from remotely sensed data.  Quantitative assessments of soil properties from remote 

sensing largely rely on the correlation of particular soil properties with infra-red spectroscopic 

reflectance measurements (Mulder et al., 2011) which relate to the chemical bonds within 

organic and inorganic compounds in the soil.  The bonds that respond markedly to infra-red 

spectroscopy are predominantly between carbon, nitrogen, hydrogen and oxygen, which are 

present in substantial quantities in certain soil phases.  The four heavy metal soil indicators (Cu, 

Zn, Ni and Cd) either do not exhibit diagnostic spectral features in the infra-red wavelength 

region, or in the case of extractable components, the relationships between the bonds and 

extracted phases are too complex to be resolved in a quantitative measurement.  Nor do these 

indicators typically have simple relationships with common soil properties that can be identified 

by their infra-red spectral characteristics (Viscarra-Rossel et al., 2006).  One study on soil heavy 

metals refered to the application of remotely sensed data (Chen et al., 2012), however, the 

hyperspectral imagery was used as a means of classifying land use, not as the basis for 

measuring or improving the prediction of heavy metal concentrations in the soil. 

Due to a lack of appropriate methods, we do not consider it appropriate to separately address the 

five questions posed in our introduction. To summarise, there is no current or medium-term 

potential earth observation technique which could be deployed to monitor total (aqua regia 

extractable) soil heavy metal concentrations.  It is likely that the only realistic approach is field 

based sampling and laboratory analysis, likely based on existing monitoring networks. 

3.6 EXTRACTABLE NUTRIENTS 

The three extractable nutrients (and the forms they are present in extracted solutions that concern 

us are: phosphorus (Olsen P), magnesium (extractable), potassium (extractable). 

3.7 OLSEN P, EXTRACTABLE MG, EXTRACTABLE K  

The extractable concentrations of these three nutrients inform us about the fertility of the soil.  

Extractable concentrations are quite different from total concentrations, because the former are 

held in ‘exchangeable’ forms associated with the surfaces of soil minerals and organic matter.  

The concentrations of extractable nutrients do not have such strong relationships with bulk soil 

properties, because they can reflect recent applications of manufactured fertilisers and organic 

materials or transitory soil hydrological conditions (e.g. wetting and drying cycles).  The basis of 

predicting soil properties based on VNIR spectroscopy relies on the overall reflectance 

properties of the dominant soil mineral and organic phase composition, not the composition of 

‘exchangeable’ elements on their surfaces.  A review study by Ge et al. (2011) summarised 

approaches to estimate a range of soil properties by use of remote sensing including total P, total 

K and Mg, but not extractable concentrations.  The bonds that respond to infra-red spectroscopy 
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are predominantly between carbon, nitrogen, hydrogen and oxygen which are present in 

substantial quantities in certain soil phases, whilst bonds for P, K and Mg are much less 

responsive. 

3.7.1 Olsen P 

There were no published studies which showed that Olsen P could be measured using any remote 

sensing technique.  Nor had any study shown that Olsen P could be predicted accurately from 

soil based spectroscopic measurements.   A study by Baojuan (2008) in the USA showed that 

total soil P could be predicted using Hyperion hyperspectral, remote sensing imagery; the 

statistical model based on the spectra accounted for 67% of the variation in laboratory measured 

total P from field based sampling.  However, although there are typically positive correlations 

between total P and Olsen P in soil (Owens et al., 2008), the uncertainties associated with 

predicting the latter based on the former are far too large for this approach to be practical. 

3.7.2 Extractable Mg 

Hyperspectral VNIR data have been used to construct statistical models to predict extractable 

Mg in soil. In a study using 750 diverse soils from South Africa, (Shepherd and Walsh, 2002) 

accounted for 81% of the variance in extractable Mg using VNIR spectra, suggesting this 

approach had potential for wider application.  However, no studies have confirmed this 

relationship in temperate environments such as the UK.  None of the other remote sensing 

technologies have been shown to have sufficiently strong statistical relationships with extractable 

Mg for practical deployment in predicting state or change. 

3.7.3 Extractable K 

The only study to have demonstrated that extractable K could be measured based on the VNIR 

spectra of soil samples was published by Daniel et al. (2003) based on 41 samples collected from 

a region of Thailand.  In their study, Daniel et al. (2003) found that soil spectra accounted for 

80% of the variance in extractable K; there was no attempt to relate the ground-based spectra to 

remotely sensed sources such as hyperspectral satellite data.  A total sample size of 41 is a 

relatively small number upon which to develop and independently validate predictions of 

extractable soil K. It is somewhat surprising that, if there was a general relationship between soil 

VNIR spectra and extractable K, it has not been reported more widely given its potential 

importance for soil fertility and agricultural production.  We believe that the relationship 

reported by Daniel et al, (2003) was unusual (confined to these local soils) and that if tested 

more widely, the relationship could not be deployed to accurately predict extractable K in soils 

across broad landscapes.  Furthermore, the relationship with hyperspectral satellite data and 

extractable K would likely be even more tenuous. 

By contrast, it is possible to accurately predict total K based on airborne radiometric survey data 

which relies on the detection of gamma radiation from 
40

K emitted from the ground surface.  

Airborne radiometric survey data have been used to determine the distribution of plant available 

K at farm-scale (Pracilio et al., 2006); gamma-K concentrations accounted for 60% of the 

variation in bicarbonate-extractable K across three farms in Australia.  Specific regions of 

England and Wales have been flown by airborne radiometric survey by the British Geological 

Survey, including parts of the Midlands (Rawlins et al., 2007) and Wales, the Isle of Wight, and 

in 2013 south-west England.  However, the relationships between total and extractable potassium 

have not, to date, been investigated across England and Wales using these data.  Such an 

investigation could be undertaken by combining the data from the original National Soil 

Inventory of England and Wales (McGrath and Loveland, 1992) with the airborne survey data 

held by BGS.  This would establish if radiometric K is an effective predictor of extractable K at 

the landscape scale (i.e. to predict its state for mapping), and/or to infer change in this property. 
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3.7.3.1 OPPORTUNITIES 

In general, there are limited opportunities to implement national scale RS techniques to 

contribute to monitoring changes in the three soil nutrients (Olsen P, extractable K, extractable 

Mg).  In the case of Olsen P, there is currently no technical basis for successful application of 

remote sensing of this soil property.  In the case of extractable Mg, there is some evidence that 

hyperspectral RS data might contribute to indirect mapping of this property (state), but there is 

no evidence to suggest it could be used to monitor change even in combination with a ground-

based survey.  In the case of extractable K, the most promising technology for mapping this 

property, in combination with ground-based sampling, is airborne radiometric survey.  However, 

further investigation is required to establish the strength of statistical relationships between 

radiometric K and extractable K across the landscape; data are available to do this. 

3.7.3.2 TIMING AND FURTHER DEVELOPMENT 

There do not appear to be any major development opportunities or timelines for radical advances 

in the detection of the three extractable soil nutrients (P, Mg and K).  One potential development 

is the investigation of whether radiometric K has a strong correlation with extractable K, which 

could be used to enhance the prediction of extractable K across the landscape. 

3.7.3.3 CAN EARTH OBSERVATION REPLACE FIELD SAMPLING? 

Based on the literature survey, it is very unlikely that earth observation could replace field 

sampling for the three soil nutrient indicators; it is possible that with further development the 

hyperspectral and radiometric RS approaches might be able to complement field sampling.  

3.7.3.4 CAN CHANGE BE MEASURED? 

Based on the available information it is very unlikely that change in these three soil properties 

could be measured directly using RS approaches. 

3.7.3.5 INTEGRATION WITH NATIONAL SURVEYS? 

There are technical and practical barriers which would limit the extent to which RS approaches 

could be integrated with national surveys to monitor soil nutrients.  First, with the possible 

exception of extractable Mg, there is uncertainty over the strength of direct or indirect 

relationships between these soil properties and their (hyperspectral) remote sensing signal; this is 

likely to be insufficient for practical monitoring in combination with ground based 

measurements.  The practical limitations of applying hyperspectral remote sensing are that for 

much of the year vegetation prevents direct reflectance from the soil surface which would 

severely hamper any attempt to apply these approaches to much of the landscape. 

3.8 SOIL PH 

Soil pH is a critical soil property which has importance for a wide range of soil processes 

concerning fertility and soil nutrients, water quality (acid deposition and buffering capacity), soil 

biology.  Soil pH is controlled by a combination of soil mineralogy and land management 

(liming) and organic matter composition.  Soil pH is typically measured using wet laboratory-

based methods but there are strong relationships between VNIR spectra and soil pH. 

3.8.1 Opportunities 

The most promising approach for quantifying the state of soil pH using remote sensed methods is 

the application of hyperspectral remote sensing in combination with ground-based measurements 

(Lu et al., 2013).  In their study, Lu et al. (2013) showed that using Hyperion imagery, 60% of 

the variation on pH was accounted for by a statistical model fitted between the measured pH of 

the field samples and the remote sensing data from the VNIR region.  To robustly detect a 

change in soil pH, the method for its measurement would need to have a significantly smaller 
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error than that which would be associated with spectral approaches that relay in ground-based 

calibration of remote sensed data which could have RMSE values as large as 0.3 pH units (Lu et 

al., 2013). So it is unlikely that hyperspectral imagery (in combination with field sampling) could 

be used to measure change of soil pH.  Based on our literature survey, only one study has 

demonstrated that remote sensed data can improve the prediction of soil pH (state) and further 

studies are required across a range of soil types to prove that this approach is more generally 

applicable. 

3.8.2 Can Earth Observation replace field sampling? 

It will be necessary to use field sampling to develop the statistical model based on the remote 

sensing data for the prediction of soil pH. 

3.8.3 Can change be measured? 

It is unlikely that change can be measured based on current technology; there are no technologies 

in the pipeline that are unlikely to mean that change can be measured by remote methods at 

national scale. 

3.8.4 Integration with National Surveys? 

By capturing hyperspectral remote sensed imagery for periods when cultivated areas are largely 

free of vegetation, it would be possible to make more accurate predictions of soil pH in these 

areas, but only in regions where ground-based sampling has been undertaken.  It would not be 

possible to use this approach in year-round, vegetated areas. 

3.9 SUMMARY 

Table 1 below provides a summary of the most promising earth observation techniques for each 

of the soil indicators.  
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Table 1 Summary of most promising remote sensing techniques for a range of soil 

indicators. 

Indicator Most 

promising RS 

technique (or 

none 

available) 

Platform Can 

detect 

state 

and/or 

change 

Will also 

require 

ground-

based soil 

sampling 

and analysis 

at national 

scale? 

Further development 

required? Practicality or 

technical considerations to 

be addressed 

Organic 

carbon and 

total N 

Hyperspectral Satellite * State 

(not 

change) 

Yes Outcome: smaller errors in 

predicting concentrations in 

bare soil (partially vegetation 

free regions).  New satellites 

(e.g. HySPIRI) may enhance 

spectral signal-to-noise 

ratios. 

Bulk density None available NA NA NA NA 

Soil depth 

(and erosion) 

InSAR (using 

IsBAS) 

Satellite Change No This technique needs further 

testing before it could be 

used to monitor either peat 

depth or estimate the 

magnitude and extent of soil 

erosion. 

Total metals 

(Cu, Zn, Cd, 

Ni) 

None available NA NA NA NA 

Extractable 

K 

Radiometric 

survey 

(gamma 

radiation) 

Airborne *State 

(not 

change) 

Yes This technique would need 

testing in a pilot study – 

there are sufficient data 

across England and Wales 

for this to be undertaken. 

Extractable 

Mg 

Hyperspectral Satellite *Maybe 

state (not 

change) 

Yes This approach needs to be 

explored further as there are 

currently insufficient data 

from England and Wales to 

determine whether it could 

be effective. 

Soil pH Hyperspectral Satellite *State 

(not 

change) 

Yes Smaller errors in predicting 

pH values in bare soil (or 

partially vegetation free 

regions).  New satellites (e.g. 

HySPIRI) may enhance 

spectral signal-to-noise 

ratios. 

Olsen P None available NA NA NA NA 

*the remotely sensed data would most likely be used here as a secondary covariate to reduce the 

uncertainty in the prediction of the primary indicator property (measured by ground-based sampling plus 

analysis) at locations across the landscape where the remotely sensed data was available, but the primary 

soil indicator had not been measured. 

NA = Not applicable 
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Appendix 1  

Published literature search criteria 

The Excel spreadsheet of criteria used in the Web of Science search engine to search for 

published articles related to remote sensing of physical soil properties is summarised in Table 1. 

The number of ‘hits’ are the published references found by each search. The references found for 

the Search terms shown as grey rows, were downloaded to Endnote to create a database of 3663 

published references. If the search terms provided more than 1000 ‘hits’, this was considered too 

many ‘hits’ and the search was run again using more defined search criteria 
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Table 1 Excel spreadsheet showing the number of references found using 43 different 

search criteria (shown as ‘fields’). 

 

 

The Excel spreadsheet showing the number of hits for two Web searches and 1 Blog search is 

summarised in Table 2. The overall number of references considered to be of relevance was 44. 

 

SEARCH ID Field 1 Field 2 Field 3 Field 4 Hits

1 Soil AND remote sensing AND organic carbon 184

2 Soil AND remote sensing AND geochemistry 22

3 Soil AND remote sensing AND physical OR bulk density 51594

4 Soil AND remote sensing AND bulk density 39

5 Soil AND remote sensing AND soil depth 518

6 Soil AND satellite AND organic carbon 143

7 Soil AND satellite AND geochemistry 6

8 Soil AND satellite AND physical OR bulk density 51594

9 Soil AND satellite AND soil depth 418

10 Soil AND satellite bulk density 20

11 Soil AND airborne AND organic carbon 130

12 Soil AND airborne AND geochemistry 53

13 Soil AND airborne AND physical OR bulk density 51594

14 Soil AND airborne AND bulk density 10

15 Soil AND airborne AND soil depth 158

16 Soil AND hyperspectral AND organic carbon 55

17 Soil AND hyperspectral AND geochemistry 4

18 Soil AND hyperspectral AND physical OR bulk density 51664

19 Soil AND hyperspectral AND bulk density 2

20 Soil AND hyperspectral AND soil depth 59

21 Soil AND LiDAR AND organic carbon 10

22 Soil AND LiDAR AND geochemistry 1

23 Soil AND LiDAR AND physical OR bulk density 51616

24 Soil AND LiDAR AND bulk density 3

25 Soil AND LiDAR AND soil depth 50

26 Soil AND Radar AND organic carbon 26

27 Soil AND Radar AND geochemistry 8

28 Soil AND Radar AND physical OR bulk density 51858

29 Soil AND Radar AND bulk density 24

30 Soil AND Radar AND soil depth 488

31 Soil AND Thermal AND organic carbon 539

32 Soil AND Thermal imagery AND organic carbon 7

33 Soil AND Thermal imagery 239

34 Soil AND Thermal AND geochemistry 2

35 Soil AND Thermal AND physical OR bulk density 51615

36 Soil AND Thermal AND bulk density 1

37 Soil AND Thermal AND soil depth 19

38 Soil AND Microwave organic carbon 57

39 Soil AND Microwave geochemistry 5

40 Soil AND Microwave physical OR bulk density 51804

41 Soil AND Microwave bulk density 22

42 Soil AND Microwave soil depth 318

43 Soil AND Unmanned Aerial Vehicle 23

TOTAL HITS USED FOR LITERATURE REVIEW 3663
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Table 2 Excel spreadsheet showing the number of hits for two Web searches and one Blog 

search using different search criteria (shown as ‘fields’). 

 

 

Appendix 2  

Expert survey questions 

Dear named RS expert 

Monitoring soil indicators using remote sensing – request for small expert contributions 

We are currently undertaking a review on behalf of UK government on the application of remote 

sensing of specific soil properties / indicators because they wish to know whether (and how) 

such approaches could contribute to soil monitoring.  We consider you/your team to be experts 

on this topic based on your previous research.  Our team at the British Geological Survey have 

used remotely sensed data in our research to examine spatial variation of soil properties, but as 

you will be aware, repeated monitoring to detect change is a more demanding requirement. 

Accordingly, there are relatively few systems and techniques that offer a reliable means of 

monitoring the various soil properties.  

We have collated a database of published studies that have utilised remotely sensed data for soil 

applications, which monitor physical soil state and change.  However, this cannot include the 

most recent work that scientists around the globe are developing.  We are writing to ask whether 

you are using a new or novel approach that may not yet be in the published scientific literature 

(and so we would not be aware of), but which may have applications in detecting changes in soil 

properties or to enhance prediction or state of soil properties.  We would be grateful of you 

could write a short description (one paragraph maximum) of any methods you have developed 

in the last 12 months that may have relevance to our study.  

The list of soil properties or indicators we are considering are:  soil organic carbon, soil depth, 

soil pH, bulk density, electrical conductivity, phosphorus (Olsen P), total nitrogen, magnesium 

(extractable), potassium (extractable).  We are also interested in methods to assess soil erosion 

and compaction.  Although we do not consider there is any sensor which can detect metals 

remotely, the following soil properties are also on our list of indicators: total copper, total 

cadmium, total zinc and total nickel 

We do not wish to appear to be offering nothing in return for your contribution so we have made 

our reference database relating to “Soil+Remote Sensing+Monitoring” available to you via a link 

at the end of this email in various formats (Endnote, BibTex, RefMan RIS, .csv, .txt) so you can 

download it and use it yourself.  The database is focussed on temperate environments similar to 

the UK but we have included studies relating to arid settings for completeness.  The reference 

database can be found at the following location: 

https://www.dropbox.com/sh/75en2inmnis6xmr/OwBMlEJpid 

Thank you in advance for any information you can provide to our study. Any reply you make 

would need to be with us by Friday 28
th

 February 2014 so that we can use it in our report.  If you 

would like any more details relating to our study then please let us know. 

SEARCH 

ID Field 1 Field 2 Field 2 Field 4 Search tool Hits

Number of pages 

searched

Number of useful 

references

1 Remote sensing soil physical properties Web 2,180,000 10 39

2 Remote sensing soil monitoring Web 4,110,000 10 1

3 Remote sensing soil physical properties Blog 8,910 10 4

TOTAL USEFUL REFERENCES 44

https://www.dropbox.com/sh/75en2inmnis6xmr/OwBMlEJpid
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Yours sincerely, 

Barry Rawlins (bgr@bgs.ac.uk) & Nicole Archer & Stephen Grebby 

 

 

 

Table 1 Expert survey participants  

Institute Expert 

1.GFZ Potsdam  Prof S. Chabrillat 

2.Wageningen University Dr Harm Bartholemeus 

University of Zurich Prof M. Scheipmann 

US Department of Agriculture Dr M Moran 

Tel-Aviv University Prof E. Ben-Dor 

INRA, FRance Cecile Gomez 

 


