nerc.ac.uk

Identify the opportunities provided by developments in earth observation and remote sensing for national scale monitoring of soil quality

Archer, Nicole; Rawlins, Barry; Grebby, Stephen; Marchant, Ben; Emmett, Bridget ORCID: https://orcid.org/0000-0002-2713-4389. 2015 Identify the opportunities provided by developments in earth observation and remote sensing for national scale monitoring of soil quality. Nottingham, UK, British Geological Survey, 29pp. (OR/15/030) (Unpublished)

Before downloading, please read NORA policies.
[img]
Preview
Text
OR15030.pdf

Download (688kB) | Preview

Abstract/Summary

Defra wish to establish to what extent national-scale soil monitoring (both state and change) of a series of soil indicators might be undertaken by the application of remote sensing methods. Current soil monitoring activities rely on the field-based collection and laboratory analysis of soil samples from across the landscape according to different sampling designs. The use of remote sensing offers the potential to encompass a larger proportion of the landscape, but the signal detected by the remote sensor has to be converted into a meaningful soil measurement which may have considerable uncertainty associated with it. The eleven soil indicators which were considered in this report are pH, organic carbon, bulk density, phosphorus (Olsen P), nitrogen (total N), magnesium (extractable), potassium (extractable), copper (aqua regia extractable), cadmium (aqua regia extractable), zinc (aqua regia extractable) and nickel (aqua regia extractable). However, we also comment on the potential use of remote sensing for monitoring of soil depth and (in particular) peat depth, plus soil erosion and compaction. In assessing the potential of remote sensing methods for soil monitoring of state and change, we addressed the following questions: 1. When will these be ready for use and what level of further development is required? 2. Could remote sensing of any of these indicators replace and/or complement traditional field based national scale soil monitoring? 3. Can meaningful measures of change be derived? 4. How could remote soil monitoring of individual indicators be incorporated into national scale soil monitoring schemes? To address these questions, we undertook a comprehensive literature and internet search and also wrote to a range of international experts in remote sensing. It is important to note that the monitoring of the status of soil indicators, and the monitoring of their change, are two quite different challenges; they are different variables and their variability is likely to differ. There are particular challenges to the application of remote sensing of soil in northern temperate regions (such as England and Wales), including the presence of year-round vegetation cover which means that soil spectral reflectance cannot be captured by airborne or satellite observations, and long-periods of cloud cover which limits the application of satellite-based spectroscopy. We summarise the potential for each of the indicators, grouped where appropriate. Unless otherwise stated, the remote sensing methods would need to be combined with ground-based sampling and analysis to make a contribution to detection of state or change in soil indicators. Soil metals (copper (Cu), cadmium (Cd), zinc (Zn), nickel (Ni)): there is no technical basis for applying current remote sensing approaches to monitor either state or change of these indicators and there are no published studies which have shown how this might be achieved. Soil nutrients: the most promising remote sensing technique to improve estimates of the status of extractable potassium (K) is the collection and application of airborne radiometric survey (detection of gamma radiation by low-flying aircraft) but this should be investigated further. This is unlikely to assist in monitoring change. Based on published literature, it may be possible to enhance mapping the state of extractable magnesium (Mg), but not to monitor change, using hyperspectral (satellite or airborne) remote sensing in cultivated areas. This needs to be investigated further. There are no current remote sensing methods for detecting state or change of Olsen (extractable) phosphorus (P). Organic carbon and total nitrogen: Based on published literature, it may be possible to enhance mapping the state of organic carbon and total nitrogen (but not to monitor change), using hyperspectral (satellite or airborne) remote sensing in cultivated areas only. In applying this approach the satellite data are applied using a statistical model which is trained using ground-based sampling and analysis of soil.

Item Type: Publication - Report
UKCEH and CEH Sections/Science Areas: Emmett
Funders/Sponsors: Defra
Additional Information. Not used in RCUK Gateway to Research.: This item has been internally reviewed but not externally peer-reviewed
NORA Subject Terms: Agriculture and Soil Science
Date made live: 14 May 2015 08:53 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/510783

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...