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Oxygen depletion recorded in upper waters
of the glacial Southern Ocean
Zunli Lu1, Babette A.A. Hoogakker2, Claus-Dieter Hillenbrand3, Xiaoli Zhou1, Ellen Thomas4,

Kristina M. Gutchess1, Wanyi Lu1, Luke Jones2 & Rosalind E.M. Rickaby2

Oxygen depletion in the upper ocean is commonly associated with poor ventilation and

storage of respired carbon, potentially linked to atmospheric CO2 levels. Iodine to calcium

ratios (I/Ca) in recent planktonic foraminifera suggest that values less than

B2.5mmol mol� 1 indicate the presence of O2-depleted water. Here we apply this proxy to

estimate past dissolved oxygen concentrations in the near surface waters of the currently

well-oxygenated Southern Ocean, which played a critical role in carbon sequestration during

glacial times. A down-core planktonic I/Ca record from south of the Antarctic Polar Front

(APF) suggests that minimum O2 concentrations in the upper ocean fell below 70 mmol kg� 1

during the last two glacial periods, indicating persistent glacial O2 depletion at the heart of the

carbon engine of the Earth’s climate system. These new estimates of past ocean oxygenation

variability may assist in resolving mechanisms responsible for the much-debated ice-age

atmospheric CO2 decline.
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T
he Southern Ocean is widely considered to be critical to
global nutrient and carbon cycling, including over glacial–
interglacial time scales1. As an area of incomplete nutrient

utilization, it is a major source of CO2 to the atmosphere today2.
At present, old (CO2� and nutrient-rich and relatively
O2� depleted) deep waters upwell along most of the Antarctic
continental margin3,4 (Fig. 1), release CO2 into, and recharge O2

from surface waters before they down-well in distinct areas, such
as the Weddell and Ross seas, to form Antarctic Bottom Water
(AABW). In the glacial Southern Ocean, strengthening of the
biological pump due to enhanced iron supply5,6, increased
stratification7, and expanded sea–ice cover8, were among the
dominant players in reducing atmospheric CO2 by B90 p.p.m.V.
Each of these mechanisms could counterbalance the increased O2

solubility due to lower glacial temperatures, leading to a reduction
in the O2 concentration of the seawater. Since the Southern
Ocean is thought to have reduced its CO2 leakage during glacial
periods1, it provides an ideal location to search for evidence of
deoxygenation linked to CO2 sequestration in the upper ocean.

During the last glacial period, deep waters surrounding
Antarctica were less ventilated, and older than today (relative to
the atmosphere)9. A recent quantitative O2 proxy study based on
benthic foraminiferal d13C indicates that decreased ventilation
linked to a reorganization of glacial ocean circulation and a
strengthened global biological pump significantly enhanced the
ocean storage of respired carbon in the deep North Atlantic10.
Early box-models hypothesized very low-oxygen levels in the high
latitude Southern Ocean11,12. Proxies did not paint a clear picture
for bottom-water O2 concentrations in the glacial Southern
Ocean13. Only a few studies on marine sediment cores south of
the APF have found evidence for substantially lowered bottom
water O2 concentrations. There, authigenic uranium
concentrations were elevated in sediments deposited during
glacial Marine Isotope Stages (MIS) 2 and 6 (refs 14,15). By
contrast, another study highlighted a transient stagnation event
during the early stage of the last interglacial (MIS 5e)16.

Bottom water or porewater redox proxies cannot capture upper
ocean O2 levels far from the continental shelf, so there is scant
constraint on upper ocean oxygenation conditions in vast tracts
of the open ocean13. A novel proxy, the I/Ca composition of
marine carbonates, especially planktonic and benthic
foraminiferal tests, has demonstrated its potential to reconstruct
paleo-oxygenation levels in both the upper ocean17–20 and
bottom waters21, respectively. The thermodynamically stable
forms of iodine in seawater are iodate (IO3

� ) and iodide (I� )22.

The total concentrations of IO3
� and I� are relatively uniform in

the world ocean at around 0.45 mmol l� 1 due to the residence
time of B300 kyr (ref. 23), supported by a more recent
compilation of iodine concentrations in global rivers24.
Therefore, the total iodine concentration in the global ocean
likely remained invariant over the duration of a glacial
termination (B6 kyr).

Iodate is taken up by marine organisms as a micronutrient in
surface waters25, but its concentration does not increase during
the aging of deep waters26,27, in contrast to those of the major
nutrients nitrate and phosphate, probably due to the low I/Corg

ratio of plankton25. Iodine speciation is strongly redox sensitive.
IO3
� is completely converted to I� when oxygen is depleted28.

Because IO3
� is the only chemical form of iodine that is

incorporated into the structure of carbonate17, calcareous tests
precipitated closer to an oxygen minimum zone (OMZ) will
record lower I/Ca and vice versa. An OMZ is defined by
O2o20 mmol kg� 1 in the Pacific Ocean and O2o50mmol kg� 1

in the Atlantic Ocean29.
In this paper, we use recent planktonic foraminifera and

modern water column data to establish typical I/Ca values for the
presence of an OMZ or O2-depleted water. On the basis of this
proxy development, the down-core record of planktonic for-
aminifera I/Ca obtained at site TC493/PS2547 indicates the
persistent presence of oxygen-depletion in the upper waters of
high latitude Southern Ocean during the last two glacial periods.

Results
Site selection. We measured I/Ca values on eleven planktonic
foraminiferal species in modern to Holocene samples, and in one
sample from a previous interglacial (Supplementary Table 1 and
Supplementary Figs 1 and 2). We chose sites from well-oxyge-
nated areas (for example, the North and sub-Antarctic South
Atlantic), and sites located beneath OMZs, including Ocean
Drilling Program (ODP) Sites 658, 709, 720 (Site 720: last
interglacial samples), 849 and 1242. First, we use these data to
further establish the foundations of the I/Ca proxy. Subsequently,
we focus on an I/Ca down-core record on Neogloboquadrina
pachyderma sinistral deposited during the last two glacial cycles
in two sediment cores (PS2547 and TC493) recovered from the
same location (71�090 S, 119�550 W, water depth 2,096 m) on a
seamount in the Amundsen Sea (Fig. 1)30. The excellent
carbonate preservation at this site30 provides a unique window
to reconstruct past upper ocean conditions south of the APF. Site
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Figure 1 | Hydrographic section of Southern Ocean in the Pacific sector. Dissolved oxygen concentrations showing major water masses50 and

boundaries, average modern summer (SSI) and winter (WSI) sea–ice extent62, and core site PS2547/TC493. The locations of the Antarctic Circumpolar

Current (ACC) fronts are marked as SB, Southern Boundary of the ACC; SACCF, Southern ACC Front; APF, Antarctic Polar Front; SAF, Sub-Antarctic Front.

AABW, Antarctic Bottom Water; AAIW, Antarctic Intermediate Water; AASW, Antarctic Surface Water; CDW, Circumpolar Deep Water; PDW, Pacific

Deep Water. This graph is generated in Ocean Data View, using the Southern Ocean Atlas data set63.
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TC493/PS2547 is currently bathed by Circumpolar Deep Water
(CDW), which is overlain by a layer of Antarctic Surface Water
(AASW), or Winter Water31–33, and is located on the edge of the
average modern summer sea–ice limit34 (Fig. 1). During the Last
Glacial Maximum (LGM), the sea–ice boundaries within the
Southern Ocean shifted significantly northwards35,36. Thus, it is
highly likely that site TC493/PS2547 was located within the
permanent sea–ice zone during past glacial periods34.

Age model and glacial polynyas. The sediments of core TC493/
PS2547 consist mainly of foraminiferal ooze and sandy mud,
with N. pachyderma (s) tests forming the primary carbonate
component30. The age model of the record is based on

magnetostratigraphy combined with benthic foraminiferal
(Cibicides cf. wuellerstorfi) oxygen isotope (d18O) stratigraphy30,
tuned to the global benthic d18O stack37. Continuous deposition
of foraminifera30 indicates at least episodic opening of polynyas
during glacial periods34, because of its seamount location38,39.
This scenario is consistent with the occurrence of the benthic
foraminifera species Epistominella exigua, which is adapted to
highly episodic phytodetritus supply40.

I/Ca in foraminifera. I/Ca values in the modern and late Holo-
cene samples are lower than B2.5 mmol mol� 1 at sites with O2

minima o70mmol kg� 1 in the upper ocean (0–500 m) (Fig. 2a).
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Figure 2 | I/Ca and modern OMZs. (a) Modern and late Holocene I/Ca in planktonic foraminiferal tests versus minimum O2 concentrations in the upper

500 m of the water column (Note: I/Ca at Site 720 is from a MIS 5 sample). Error bars for y axis indicate the s.d. (1 s.d.) of triplicate measurements. Blue

squares show down-core interglacial (IG) I/Ca data on N. pachyderma (s) from site TC493/PS2547 plotted against minimum O2 concentrations in the

modern water column, indicating well-oxygenated conditions. I/Ca for glacial N. pachyderma (s) tests are marked as red squares, indicating O2 depletion.

(b) Compilation of modern ocean surface water IO3
� concentrations compared with minimum O2 concentrations26–28,47–48,64–69. Brown dashed line

indicates the surface water IO3
� concentration of B0.25mmol l� 1 as a threshold value for differentiating OMZ-type and normal open ocean type of IO3

�

depth profiles. (c) O2 depth profiles. Yellow shading marks 20–70mmol kg� 1 O2 concentration as the threshold for complete iodate reduction. (d) IO3
�

depth profiles at OMZ sites from the Eastern Equatorial Pacific (EEP)28 and the Arabian Sea (station N8)48 and at a well-oxygenated high-latitude site near

the Weddell Sea (station PS71/179–1)54.
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In contrast, recent planktonic foraminifera at sites with O2

minima 4100mmol kg� 1 have I/Ca 44 mmol mol� 1, regardless
of species (Fig. 2a). At site TC493/PS2547, the
N. pachyderma (s) I/Ca ratio is high (5–7 mmol mol� 1) during
the Holocene and MIS 5 relative to the lowest values
(o2 mmol mol� 1) during glacial MIS 2 and 6 (Fig. 3 and
Supplementary Table 2).

Discussion
A tremendous amount of work has been devoted to developing
foraminiferal proxies for temperature and pH, using global
calibrations derived from core-top samples (for example, the Mg/
Ca seawater temperature proxy41). Low I/Ca ratios of planktonic
foraminifera unambiguously reveal the presence of low-oxygen
waters, but a global calibration approach cannot establish
planktonic foraminifera I/Ca as a linearly quantitative proxy for
the continuum of dissolved O2 concentration. Due to the stepwise
nature of redox reactions42, quantitative IO3

� reduction does not
occur before the dissolved oxygen is depleted to a certain
threshold value, triggering nitrate reduction43. IO3

�

concentrations at water depths matching planktonic
foraminiferal habitats are often not in equilibrium with the
in situ O2 concentrations, and O2 contents which are sufficiently
low to initiate major IO3

� reduction may be detrimental to many
species44. Instead, the I/Ca (recording the in situ IO3

�

concentration) is determined by the depth habitat of the
foraminifera and the upper ocean IO3

� mixing gradient. This
mixing gradient is largely controlled by the surface water IO3

�

concentration and the depth of the IO3
� reduction zone28.

Nonetheless, a planktonic foraminifera proxy that semi-
quantitatively approximates dissolved O2 concentrations,
indicative of the presence of an OMZ, can still be highly
valuable for the paleoceanography community.

Before interpreting the down-core record from site TC493/
PS2547, we identify the characteristic I/Ca signals for modern
OMZs. IO3

� depth profiles in the open ocean generally fall into
two types (Fig. 2d): (1) the OMZ-type, with low surface water
values and near-zero subsurface values in the OMZ; and (2) the
normal open ocean type (for example, in a well-oxygenated water
column), with relatively high surface water values and even
higher subsurface values. A threshold O2 concentration will cause
complete IO3

� reduction in the subsurface, and there may be a
surface water IO3

� threshold concentration below which
complete IO3

� reduction is likely to happen in the water column.
Combined with modern water column IO3

� and O2 data, the I/Ca
values measured on modern and late Holocene planktonic
foraminifera consistently indicate that I/Ca o2.5 mmol mol� 1

is equivalent to a surface water IO3
� concentration of

o0.25 mmol l� 1, thus providing a marker for the presence of
oxygen-depleted water with a subsurface O2 concentration
o20–70 mmol kg� 1 (Fig. 2a–c).
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Modern surface water IO3
� concentrations are influenced by

productivity and the presence of a subsurface OMZ25,28. To
visualize this relationship, we compiled surface water IO3

�

concentrations from the literature and plotted them against the
minimum O2 concentrations in the subsurface water (Fig. 2b).
The IO3

� concentration broadly increases with the minimum O2

concentration when the surface water IO3
� concentration is

40.25 mmol l� 1 (Fig. 2b). This correlation is likely a reflection of
surface productivity versus subsurface respiration, because lower
productivity leads to lower iodine uptake in surface water and less
oxygen consumption by subsurface organic matter
decomposition. In areas with a strong OMZ and near-zero O2

values, the surface water IO3
� concentrations are below

0.25 mmol l� 1 (Fig. 2b). A partition coefficient Kd (Kd¼ [I/Ca]/
[IO3
� ] with units of [mmol mol� 1]/[mmol l� 1]) of B10 was

reported from abiological calcite synthesis experiments17,20.
Using this Kd value, an IO3

� concentration oB0.25 mmol l� 1

results in I/Ca values oB2.5 mmol mol� 1 in calcite. This
estimate is consistent with modern I/Ca at OMZ Sites 658, 849
and 1242, as well as the last interglacial I/Ca value at Site 720
(Fig. 2a). Therefore, a surface water I/Ca value o2.5 mmol mol� 1

indicates that a pronounced subsurface O2 minimum exerted the
dominant control on the upper ocean IO3

� profile. This I/Ca
threshold value does not seem to depend on foraminiferal species
(Fig. 2a).

The O2 threshold for maintaining an OMZ-type IO3
� profile is

useful for the paleoceanographic application of the planktonic
I/Ca proxy. At O2 concentrations o20mmol kg� 1, microbial
processes become dominant29, and IO3

� likely would be
completely reduced to I� since the reaction is biologically
mediated45 (for example, ODP Sites 1242, 720 and 849 in
Fig. 2a,c). ODP Site 658 is located at the northern edge of a
shallow pocket of distinctively low-oxygen water with mean O2

concentrations of B70mmol kg� 1 in the upper 200 m (ref. 46),
which may be sufficiently low to generate an OMZ-type iodate
profile. Three species of planktonic foraminifera analysed at ODP
Site 1242 show exceptionally low I/Ca ratios around
0.5 mmol mol� 1, corresponding to an IO3

� concentration of
B0.05 mmol l� 1. Such a low IO3

� concentration is comparable to
that reported for a location where an extreme hypoxic event
occurred47. Moreover, this low IO3

� concentration implies that
IO3
� reduction should occur shallower than at Site 849 and at two

sites with classic OMZ-type IO3
� profiles (Eastern Equatorial

Pacific28 and Arabian Sea48; Fig. 2c). A comparison of the O2

profiles of these sites reveals that the O2 threshold needs to be
450 mmol kg� 1 to achieve a shallower IO3

� reduction at Site
1242. Therefore, we suggest that I/Ca values lower than
B2.5 mmol mol� 1 indicate O2 minima o20–70mmol l� 1. This
O2 range cannot be further narrowed down with the available
information, and we refer to this range as the O2 threshold for an
OMZ-type IO3

� profile. However, the threshold behaviour of
IO3
� reduction (relative to O2) in subsurface waters does not

necessarily lead to step changes in down-core records of
planktonic I/Ca. This is because planktonic foraminifera
typically record the IO3

� mixing gradient in the top part of
water column, above the O2-depleted zone where rapid step
changes in IO3

� concentrations occur. Low planktonic I/Ca
values may be driven by shoaling of O2-depleted water, and/or by
increasing productivity, both of which could change gradually
over time.

The available data from modern and late Holocene planktonic
foraminifera suggest that the I/Ca ratio acts as a robust (paleo-)
proxy for determining the signature of O2-depletion in the upper
ocean (Fig. 2). At site TC493/PS2547, I/Ca was high
(5–7 mmol mol� 1) during the Holocene and interglacial MIS 5
when compared with the lowest values (o2mmol mol� 1)
characterizing peak glacial periods MIS 2 and 6 (Fig. 3). Changes
in salinity, temperature and foraminiferal habitat, most likely, are
not the main drivers for this record (Supplementary Discussion).
The glacial I/Ca values of N. pachyderma (s) are best explained by
the presence of a water mass with a dissolved O2 content
o70mmol kg� 1 close to, i.e., above or near, this site (Figs 2 and
3). We reiterate that the low I/Ca does not necessarily imply O2-
depleted seawater within the foraminiferal habitat.

At present, CDW wells up to a water depth of approximately
250–300 m in the Amundsen Sea31 and has O2 concentrations
notably lower than the top 200 m of the water column (Fig. 2c).
Although the interpretation of absolute values of planktonic d13C
is far from straightforward in the seasonal ice zone (for example,
disequilibrium from seawater49), it is reasonable to assume that
CDW had a strong influence on the local water column during
glacial periods, as its upwelling along the continental margin was
probably responsible for the opening of the glacial polynyas. The
CDW upwelling at site TC493/PS2547 today partly originates
from Pacific Deep Water (PDW) moving southward from the
equator, with a low-oxygen and high nutrient signature

CDWCDW

Interglacial Seasonal polynya
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Glacial stratification
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Slow I– oxidation

High productivity
High O2

High IO3
– Low O2

Low IO3
–

Very low productivity
Stratification

a b c

Figure 4 | Conceptual illustration of paleo-environmental changes. Upper ocean IO3
� and O2 profiles were influenced by circulation, productivity and

polynyas over glacial cycles. (a) Well-oxygenated interglacial condition; (b) Relatively oxygen-depleted glacial conditions with expanded sea–ice cover;

(c) Episodic polynya opening during glacials.
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(Fig. 1)50,51. d30Si data from fossil diatoms and sponges indicate
higher silicic acid concentrations in the Pacific sector of the
Southern Ocean during the LGM, which further imply that either
the southward transport of PDW was more efficient or PDW was
less ventilated than today52. So glacial CDW was likely more O2

depleted than during interglacials, and upwelling of this water
contributed to the glacial I/Ca signal at site TC493/PS2547.

The oxidation of I� to IO3
� is thought to take from a few

months up to 40 years53. Long-distance transport of well-
oxygenated deep water with low IO3

� concentrations
(o0.25 mmol l� 1) has not been documented in the modern
ocean, but this scenario should be tested with further work on I�

oxidation kinetics. Today our site is bathed in CDW transported
from a Pacific OMZ and the interglacial I/Ca values at site
TC493/PS2547 do not show any remnant signal of the OMZ from
the Pacific Ocean. On the basis of the knowledge about iodine
speciation change in modern ocean, we interpret the observed
glacial I/Ca values as a local signal, in principle, indicating the
presence of a water mass with low O2 and low IO3

� vertically or
horizontally close to the planktonic foraminiferal habitat.

In the setting of site TC493/PS2547 a coherent conceptual
model for N. pachyderma (s) recording the presence/absence of
O2-depletion needs to integrate changes in productivity, sea–ice
extent and the opening/closing of polynyas on time scales of
glacial to seasonal cycles (Fig. 4). Although the polynyas
complicate the interpretation of the proxy data, their presence
arguably provides the only window for sufficient accumulation of
planktonic microfossils to record upper ocean conditions during
glacial periods at such high latitudes.

The modern O2 profile at site TC493/PS2547 is defined by
equilibration with the atmosphere at 0–250 m, and CDW
influence below 250 m, as shown by the distinctively low O2

concentrations (Fig. 2c). With O2 above the threshold for
complete IO3

� reduction in the entire water column, the IO3
�

profile at site TC493/PS2547 should be similar to those at other
high latitude locations, for example, site PS71/179–1 at 69�310 S
and 0�30 W in the Weddell Sea54 (Fig. 2d). An interglacial
scenario of relatively high seasonal productivity, high O2 and
surface water IO3

� (40.3 mmol l� 1) concentrations (Fig. 4a), is
well described for the modern Atlantic sector of Southern
Ocean54.

Relative to the interglacial periods, the Southern Ocean
experienced expanded sea–ice cover during glacial periods, and
was less ventilated9,36. A more dynamic seasonal sea–ice cycle
during ice ages would have increased water column stratification.
Increased winter sea–ice formation (spatially and volumetrically)
may have generated waters dense enough to sink ultimately to the
bottom of the ocean55. On the other hand, melting of thicker sea
ice during glacial-time summers in the seasonal sea–ice zone
would have strengthened the halocline (not considering the
influence of polynyas). So, the glacial seasonal stratification was
likely stronger than today. These factors overall should have
lowered the glacial O2 concentrations in the Southern Ocean
(Fig. 4b). At site TC493/PS2547, glacial I/Ca demonstrate that the
IO3
� profile was OMZ-like with complete IO3

� reduction near
the foraminiferal habitat (Fig. 2d). However, the dynamics of
polynyas must be considered when interpreting the location of
the low O2 water mass, and the means by which the signal was
recorded by N. pachyderma (s).

Without a polynya above site TC493/PS2547, glacial phyto-
plankton productivity under perennial sea–ice cover would have
been relatively low due to the scarcity of light34, and planktonic
foraminifera depending on algae could not flourish. The water
column would have been relatively poorly ventilated and strongly
stratified during these times, creating the ideal environment for
developing low O2 conditions and an OMZ-type IO3

� profile

(Fig. 4b). The episodic opening of a polynya re-established
primary production (mainly by diatoms) and thus a planktonic
foraminiferal habitat, vertical mixing and oxygenation in, at least,
the uppermost part of the water column (Fig. 4c). While overall
glacial-time production was reduced30,34, the planktonic
foraminifera preserved in the glacial sediments probably
recorded transient I/Ca changes in the water column associated
with polynya-induced peaks in glacial productivity. Modern open
ocean productivity pulses do not lower IO3

� concentrations to
o0.25 mmol l� 1 in oxygenated water (Supplementary
Discussion)54, thus the glacial I/Ca signal is most likely driven
by changes in O2 and not productivity.

The likely short-lived nature of glacial polynyas makes it
difficult to envisage that very brief plankton blooms alone could
produce a utilization-driven O2 depletion in a cold, well-
oxygenated Southern Ocean. For the same reason, it is difficult
to imagine that the vertical mixing cells restricted by the size of
the polynya could rapidly oxygenate voluminous nearby waters
outside of the polynya, if most of the sea–ice covered areas were
O2-depleted. The more likely scenario is that the O2 concentra-
tions in the deep and abyssal Southern Ocean were generally
lower during glacial periods than during interglacial periods.
Upwelling of a more O2-depleted CDW in the generally stratified
upper ocean was mainly responsible for the IO3

� reduction at site
TC493/PS2547 (Fig. 4b), while the episodic opening of polynyas
created habitable conditions for planktonic foraminifera to record
the deoxygenation in the upper ocean (Fig. 4c). We suggest that
the I/Ca proxy should be used as a local proxy, in principle.
However, it is probably a reasonable speculation that this record
(Fig. 3) shows oxygenation changes integrated over a regional
volume of water (e.g. CDW).

The timing of glacial deoxygenation and deglacial reoxygena-
tion at site PS2547 shows potential linkages to global
climate changes (Fig. 3). The appearance of OMZ-type I/Ca
values (oB2.5 mmol mol� 1) during past glacial periods
coincided with the lowering in atmospheric pCO2 level below
the long-term mean value56. Identical timing was reported
for a strongly stratified Antarctic Zone coincident with pCO2

decrease under the same threshold value (225 p.p.m.) in the
Atlantic sector of the Southern Ocean57. Stronger stratification
may be the common driving force for the productivity
change (ODP Site 1094) and oxygenation change (PS2547/
TC493) in the Antarctic zone. Furthermore, during the last
interglacial period, the recovery of N. pachyderma (s) I/Ca values
is offset from the d18O trend, with peak I/Ca occurring about
10 kyr after the peak d18O (Fig. 3), an observation worthy of
future investigation.

Our I/Ca results build on other evidence52,58,59 to make a
stronger case for lower oxygen concentrations in CDW (and very
likely PDW) during glacial periods. Altogether with the
reconstructed O2 content of deep waters in the glacial North
Atlantic10, these observations seem to allude to large scale
deoxygenation in the glacial global ocean interior60. Future work
providing quantitative reconstructions of bottom water O2

concentrations in the Southern Ocean, especially south of the
APF, and in other major ocean basins will shed new light on the
mechanisms of sequestering atmospheric CO2 during ice ages.

Methods
Foraminifera cleaning. Sediments were sampled from the split core sections and
wet sieved. Approximately 40 tests of N. pachyderma sinistral were picked from the
200–250mm size fraction of each sample. The cleaning procedure followed the
Mg/Ca protocol of Barker et al.61. Cleaned glass slides were used to gently crack
open all chambers. Clay particles were removed in an ultrasonic water bath. After
adding NaOH-buffered 1% H2O2 solutions the samples were heated in boiling
water for 10–20 min to remove organic matter. Calcareous microfossils were then
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thoroughly rinsed with de-ionized water. Reductive cleaning was not applied
because contribution of iodine from Mn-oxides is deemed negligible19.

ICP-MS measurements. The cleaned samples were dissolved in 3% nitric acid,
and diluted to solutions with 50 p.p.m. Ca for analyses. Iodine calibration standards
were freshly prepared also with 50 p.p.m. Ca. 0.5% tertiary amine solution (Spec-
trasol, CFA-C) was added to stabilize iodine within a few minutes after the sample
dissolution. The measurements were performed immediately after that to minimize
potential iodine loss. The sensitivity of iodine was tuned to above 80 kcps for a
1 p.p.b. standard. The precision for 127I is typically better than 1%. The long-term
accuracy is guaranteed by frequently repeated analyses of the reference material
JCp-1 (ref. 17). The detection limit of I/Ca is on the order of 0.1 mmol mol� 1. The
I/Ca measurements were performed using a quadrupole ICP-MS (Bruker M90) at
Syracuse University.
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