INTRODUCTION

Recent studies of \(\text{NO}_2, \text{N}_2\text{O}_5, \text{PANs} \) and trimethylamines at background sites are important for understanding the Reactive N cycle in the troposphere. The background EMEP supersite 'Auchencorth Moss' in South East Scotland routinely measures \(\text{NO}_2, \text{NH}_3, \text{HONO} \) and \(\text{HNO}_3 \) in gas phase and particulate (PM\(_{10}\), and PM\(_{2.5}\)) \(\text{NH}_4^+ \) and \(\text{NO}_3^- \).

A study in spring 2014 aimed to:

1. Develop a better understanding of the N budget at Auchencorth Moss (to refer to N cycle).
2. Identify potential artefacts in the routine N measurements.

METHODS

The table lists N species measured and the instrument used.

Due to issues with baseline drift in the ANNO\(_3\)- data, the data hasn’t been presented.

\(\text{PAN} \) GC measured from 24 April 2014 to 06 May 2014

All other instrumentation operated for the length of the campaign.

INTERCOMPARISON OF INSTRUMENTATION

Thermo Scientific analyser systematically reports higher values than the TDLIF.

TDLIF NO\(_2\) vs **Thermo Scientific** NO\(_2\)

Good correlation

Thermo scientific analyser reports higher values than the TDLIF.

TDLIF NO\(_2\) vs **Thermo Scientific** NO\(_3\)

Good correlation

Thermo scientific analyser reports higher values than the TDLIF.

TDLIF ZP\(_2\) vs **GC PANs**

Poor correlation

GC reports higher concentrations

TDLIF HNO\(_3\) vs **MARGA** HNO\(_3\)

Poor correlation

TDLIF reports higher concentrations.

TDLIF ZP\(_2\) vs **MARGA** HNO\(_3\)

MARGA HNO\(_3\) correlates with the ZP\(_2\) reported by the TDLIF.

CHALLENGES OF DERIVING A SPECIFIED N BUDGET: WHAT IS HNO\(_2\)?

Di Carlo et al. (2013) demonstrated from flights over the UK that N\(_2\)O\(_5\) dominated the ZP\(_2\) at night measured by the TDLIF. Phillips et al. (2013) provided evidence to suggest night time HNO\(_2\) reported by MARGA may include N\(_2\)O\(_5\), where:

\[\text{N}_2\text{O}_5 + \text{H}_2 \rightarrow 2 \text{HNO}_2 = \text{additional measured HNO}_2 \]

This work suggests a relationship between the MARGA HNO\(_3\) and ZP\(_2\) measured by the TDLIF.

5 consecutive nights were plotted (see LHS graph) assuming ZP\(_2\) = N\(_2\)O\(_5\).

Molar N\(_2\)O\(_5\) was used to calculate the molar HNO\(_2\), assuming a 100% capture efficiency and compared to the measured HNO\(_3\) by the MARGA.

Night time HNO\(_3\) measured by the MARGA correlates well with the additional measured HNO\(_2\) derived from ZP\(_2\).

This suggests that the HNO\(_3\) reported by the MARGA at Auchencorth Moss may additionally contain N\(_2\)O\(_5\), though further studies are required to confirm this.

INTERCOMPARISON STUDIES

Poor correlation between the MARGA and TDLIF for HNO\(_3\) measurements.

Thermo Scientific analyser reports higher NO\(_2\) compared to the TDLIF most likely due to interference at low NO\(_2\) concentrations previously demonstrated by Steinbacher et al. (2007).

NEXT STEPS OF THIS STUDY:

Determine if the GC overestimates PANs

Assess the potential interference of particulate NO\(_2\) in the TDLIF measurements of HNO\(_3\).

CONCLUSIONS

MARGA HNO\(_3\) may have an N\(_2\)O\(_5\) artefact in the measurement at night.

NEXT STEPS OF THIS STUDY:

Determine the N species to be used to derive a N budget

Investigate the chemical transformations of N species at the site

Examine the influence of long range transport of air masses on the specified N composition at this background site

Acknowledgements: The authors would like to thank the following for funding this work: the UK Department for Environment, Food and Rural Affairs (Defra) and the Devolved Administrations, through the projects "UK Eutrophying and Acidifying Atmospheric Pollutants (UKEAP) project" (AQ0047), Transnational access funding through the EU FP7 Infrastructure Project "ACTRIS" which also supports the site Auchencorth Moss.