Connecting the seasonal productivities: migratory movements of rhinoceros auklets in the northwestern Pacific

Akinori Takahashi1,2*, Motohiro Ito1, Yuuya Suzuki3, Yutaka Watanuki3, Jean-Baptiste Thiebot1, Takashi Yamamoto1,3, Takahiro Iida1,2, Phil Trathan4, Yasuaki Niizuma5, Tomohiro Kuwae6

1National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan
2Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tachikawa, Tokyo 190-8518, Japan
3Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
4British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
5Faculty of Agriculture, Meijo University, 1-501, Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan.
6Port and Airport Research Institute, 3-1-1, Nagase, Yokosuka 239-0826, Japan

*E-mail: atak@nipr.ac.jp

ABSTRACT: Spatial and temporal variability in marine biological productivity may drive heterogeneity in seasonal resources available for marine animals in temperate waters. Migratory seabirds are expected to adjust the annual cycle of breeding activities and migratory movements to exploit seasonally available resources efficiently. We studied the movement and trophic position of rhinoceros auklets \textit{Cerorhinca monocerata} breeding at Teuri Island, Japan Sea, during the nonbreeding and early breeding periods over two years. After breeding, the auklets moved northward from the colony to the Sea of Okhotsk, where phytoplankton blooms enhanced biological productivity in autumn. The birds then moved southward to the southwestern Japan Sea.
(~1470 km from the colony), where major epipelagic fish and squid concentrations have been reported in winter. Stable isotope analyses suggest that the auklets fed on higher-trophic level prey, including fish and/or squid during the autumn and winter nonbreeding periods. The auklets moved northward and returned to the colony in mid-March. During the early breeding period, the birds foraged close to the colony (~380 km) on lower-trophic level prey, including fish and/or krill, which were available during the spring phytoplankton bloom. The timing of the return migration does not match with the northward migration of warm-water anchovy, a profitable prey during summer, but may be related to the adjustment of the chick-rearing period to anchovy arrival. We suggest that rhinoceros auklets follow spatial and seasonal changes in prey availability by a distinctive ‘three-step’ migration (first northward, second southward, third northward) in a temperate marine system of northwestern Pacific.

KEY WORDS: Seabird foraging, Light-based geolocation, Productivity, Seasonal movements, Stable isotope analysis, Japan Sea

INTRODUCTION

Seabirds are faced with challenges in finding their prey in the spatially and temporally variable marine environment (Weimerskirch 2007), under the different foraging constraints that exist during the breeding and nonbreeding periods. During the breeding period, parent seabirds are central place foragers that have to commute between their colony and feeding grounds at sea. Their foraging ranges are relatively limited especially during early chick-rearing period to provision their offspring (e.g., Charrassin & Bost 2001, Rayner et al. 2012). Despite the constraints on their foraging range, parent seabirds have to feed intensively in order to meet the high energetic demands associated with breeding (Hamer et al. 2001). During the nonbreeding period, seabirds can move over larger distances without the constraints of central-place foraging (e.g., Thiebot et al. 2011), but may experience reduced prey availability due to decreased marine productivity outside the summer breeding season and/or possible changes in the accessibility of prey in the water column (e.g., Charrassin & Bost 2001).
An increasing number of studies have shown that seabirds, especially proficient-flying procellariiform seabirds, adjust the annual cycle of breeding activities and migratory movements to seasonally available resources (Shaffer et al. 2006, González-Solís et al. 2007, Guilford et al. 2009, Rayner et al. 2011, Carey et al. 2014); though, such adjustments may vary among species of different migration abilities and among different marine regions.

Recent advances in bio-logging technologies, such as light-based geolocators, have allowed us to examine the year-round movement of individual seabirds over extensive periods (Burger & Shaffer 2008, Wakefield et al. 2009). In addition, stable isotope analysis of animal tissues can be used to examine the trophic position of seabirds during their year-round movement (Hobson & Bond 2012). Based on these techniques, long-distance trans-equatorial migrations have been documented for proficient-flying medium-sized petrels, which presumably allow them to exploit the summer peaks in biological productivities in both northern and southern hemispheres successively (Shaffer et al. 2006, González-Solís et al. 2007, Rayner et al. 2011). However, relatively less is known about the movements of seabirds with higher energetic cost of flying, such as auks (Elliott et al. 2013), in relation to seasonal changes in regional marine productivities and breeding constraints. So far, all the previous studies on the migratory movements of alcids have been conducted in the North Atlantic, highlighting the areas off Newfoundland as important foraging area during autumn and winter (Mosbech et al. 2012, Jessopp et al. 2013, Linnebjerg et al. 2013, McFarlane Tranquilla et al. 2013). In contrast, no such information is yet available for any alcid species breeding in the North Pacific. Information on migratory patterns will also be valuable for understanding population trends with respect to marine environmental change and for assessing any potential conservation issues (Harris et al. 2013, McFarlane Tranquilla et al. 2013).

Rhinoceros auklets *Cerorhinca monocerata* are medium-sized alcids (500 - 600 g) that breed in the North Pacific. The largest breeding colony is located at Teuri Island in the northern Japan Sea, where approximately 0.3 million pairs breed annually (Watanuki & Ito 2012). The auklets feed intensively on Japanese anchovy *Engraulis japonicus* close to the breeding colony (~130 km) during chick-rearing period (Kato et al. 2003, Watanuki & Ito 2012), but their movement and diet have been largely
unknown outside the breeding period. The objective of this study is therefore to characterize the migratory movements and trophic position of rhinoceros auklets during nonbreeding and early breeding periods, by combining information from light-based geolocation and stable isotope analyses. It is hypothesized that the migratory movements of the auklets follow seasonal changes in regional prey availability, given the heterogeneity of seasonal productivity patterns in Japan Sea and the adjacent Sea of Okhotsk (Lee et al. 2009, Radchenco et al. 2010). We expect that rhinoceros auklets maintain their fish diet by moving among different marine regions during the nonbreeding period, but they may be confined to feed close to the colony on different prey items during the early breeding period.

MATERIALS AND METHODS

- Geolocator deployments. The study was conducted at Teuri Island (44°24' N, 141°17' E), located in the northern Japan Sea (Fig. 1). Rhinoceros auklets first return to Teuri Island from March to April and lay a single egg in April and May. The single chick hatches between May and June, and fledges in July (Watanuki & Ito 2012). In July 2010, we captured 10 chick-rearing birds from nest burrows, and attached a geolocator (Mk15, 16 x 18 x 6mm, British Antarctic Survey, Cambridge, UK) on the tarsus of each bird using a plastic leg ring. The total mass of geolocators including the ring was 3.5 g (0.62 % of the mean body mass of tracked birds). We retrieved geolocators from 8 out of 10 birds and in May 2011. Upon recapture, the 10th primary feather and 2-3 breast feathers were taken as samples for stable isotope analysis. One additional instrumented bird was recaptured in the breeding season of 2013. We also attached geolocators on 20 birds in July 2011. We retrieved geolocators from 16 out of 20 birds and in May-June 2012. Three individuals were tracked during the nonbreeding and early breeding periods of both 2010-11 and 2011-12. All the geolocators that were recovered recorded data successfully, but 5 geolocators from the 2011-12 deployments stopped recordings prematurely after 1-3 months. We therefore analyzed 20 complete tracks recorded from 17 birds (10 males and 7 females). The sex of the birds was determined on the basis of bill and head
measurements (Niizuma et al. 1999). The study birds maintained their body mass between device attachment and retrieval on average (average mass change: +12.5 g, range: +75 g to -45 g), although we do not have comparable data from control birds to examine any device effects.

- **Geolocation data analysis.** The geolocators record time, light intensity, immersion in seawater and water temperature. The geolocators were programmed to measure light levels at 1 min intervals, and to record the maximum value after each 10 min period. Immersion in seawater was checked every 3 s and the data were compiled as a proportion over each 10 min period. Water temperature was recorded only after continuous immersion for 20 min as the temperature sensors require 10 min to stabilize. Accuracy of the temperature recordings was 0.5 °C as indicated by the manufacturer. Light and water temperature data were used to estimate the daily bird locations (Yamamoto et al. 2011). Times of sunset and sunrise were estimated from the thresholds in the light curves. Latitude was derived from day length and longitude from time of local midday with respect to Greenwich Mean Time and Julian day, using TransEdit and Locater software (British Antarctic Survey). To improve the location estimates from light levels, the daily median of the water temperature records from the geolocators were compared with remotely sensed sea surface temperature (SST) data (8-day composite, 9-km resolution, measured by Aqua-MODIS, downloaded from the ocean color web http://oceancolar.gsfc.nasa.gov). We retained the longitude estimates obtained from light-based geolocation, and searched the latitude where SST matches with median water temperature records from geolocators. Since SST varies with latitude (cooler towards higher latitude), this procedure enabled us to refine the latitude estimates during the entire period of at-sea trips, including during the equinoxes. Finally, these daily positions were smoothed using a theoretical movement model in a Bayesian framework (Thiebot & Pinaud 2010). This movement model calculates the most probable location estimates along the tracks (without deleting any locations) that meet with the following three conditions: 1) no locations occur on land, 2) the start and end locations of the tracks are the breeding colony, and 3) mean movement speed is 10 km/h (based on flying speeds measured from GPS tracking, Watanuki et al., unpublished data, corrected by the average time spent flying per day over the nonbreeding period, ~4.5 h, this study), with 5 km/h
allowed for variance of the mean (see Thiebot & Pinaud 2010 and references therein for details).

Attendance at the colony was assessed from the immersion records from geolocators. We defined colony attendance as periods in the data when the geolocator was continuously dry for >5 hours across midnight, because most birds that are not at the colony rest on the sea surface during night (Kato et al. 2003). The nonbreeding period was defined as the period from the last attendance at the colony, defined using activity data, after breeding (late July) until the first attendance at the colony in the following year (mid March). Similarly, the early breeding period was defined as the period from the first attendance at the colony to the end of April, as geolocators were mostly retrieved from birds in early May, when birds were normally in the incubation period (Watanuki & Ito 2012).

Stable isotope analysis of feathers. We analyzed stable isotopes of feathers grown during the nonbreeding period. Although accurate molt cycles are not known for rhinoceros auklets, the 10th primary and breast feathers presumably grow during the pre-basic molt (August - October) and pre-alternate molt (February – March), respectively (Pyle 2009, Sorensen et al. 2010). Feathers were stored in a freezer (-20°C) until laboratory analyses. Nitrogen and carbon stable isotope ratios (δ¹⁵N and δ¹³C) were measured at Meijo University (Nagoya, Japan) for 2010-11 samples and at Port and Airport Research Institute (Yokosuka, Japan) for 2011-12 samples. At Meijo University, feathers were washed using 0.25 mol/L sodium hydroxide aqueous solution and distilled water, dried in an oven (60°C) for 24 hours, placed in liquid nitrogen for 1 minute, then homogenized using a sample crasher (TK-AM5, TITEC). At Port and Airport Research Institute, feathers were washed using 0.25 mol/L sodium hydroxide aqueous solution and distilled water, freeze-dried for 36-48 hours, cut as small as possible, then homogenized using a mortar. δ¹⁵N and δ¹³C were measured using a SerCon ANCA-GSL, Hydra 20-20MASS spectrometer (SerCon Ltd.) (Meijo University) or a Delta Plus Advantage mass spectrometer (Thermo Electron) coupled with an elemental analyzer (Flash EA 1112, Thermo Electron) (Port and Airport Research Institute). Stable isotope ratios are expressed in δ notation as the deviation from standard (air) in parts per thousand (‰) according to the following equation: δ¹⁵N or δ¹³C = [R_sample / R_standard – 1] × 1000, where R = ¹⁵N/¹⁴N
or 13C/12C. Replicate measurements of internal laboratory standards indicated that the measurement precision was ± 0.16 ‰ and ± 0.12 ‰ for δ^{15}N (SD) and ± 0.16 ‰ and ± 0.11 ‰ for δ^{13}C (SD) in the laboratories at Meijo University and Port and Airport Research Institute, respectively.

We need to take into account the tissue-specific discrimination factors of isotopic values, to compare isotopic values of different tissues of consumers with that of prey. We used the discrimination factors as follows, based on a study of common murres *Uria aalge* (Becker et al. 2007): 3.7 ‰ and 3.6 ‰ for δ^{15}N and 1.9 ‰ and 1.0 ‰ for δ^{13}C, for primary and breast feathers. We compared the δ^{15}N and δ^{13}C values of feathers with those of egg yolk and blood plasma obtained during breeding season as well as potential prey species (Euphausiids: *Thysanoessa inermis*; 0+ and >1+ sandlance *Ammodytes personatus*; Japan sea greenling *Pleurogrammus azonus*; Japanese anchovy; Squid Coleoideis; juvenile chum salmon *Oncorhynchus keta*), reported in Ito et al. (2009, 2012). Ito et al. (2012) used the following discrimination factors, 3.4 ‰ and 2.8 ‰ for δ^{15}N and 0.1 ‰ and -1.3 ‰ for δ^{13}C, for egg yolk and blood plasma, respectively, based on other avian studies (egg yolk) and their own measurements from rhinoceros auklet chicks (blood plasma).

Primary productivity. To characterize the seasonal patterns in primary productivity, monthly average values of sea surface chlorophyll a concentrations were calculated from January 2003 to December 2012 for an area in the Sea of Okhotsk (area A) and two areas in the Japan Sea (areas B and C; Fig. S1). The areas were chosen on the basis of 50 % kernel density boundaries of bird locations during the nonbreeding (areas A and C) and early breeding (area B) periods. We used the Aqua MODIS level 3 monthly standard mapped image 9-km resolution chlorophyll a data that were downloaded from the ocean color web.

Statistics. Maximum distance reached from the colony by the birds was compared between years or sexes with one-way ANOVA. Two males and one female had repeated measurements (i.e. tracked during both 2010-11 and 2011-12). We show here the statistics that include the six tracks from these three birds as independent. Statistical results were similar, even if we included only one (the track of either 2010-11 or 2011-12) of the two tracks for these three birds in the analyses. Minitab software (Minitab Inc., Pennsylvania, USA) was used for statistical analyses. Kernel
densities for geolocation data were calculated using the ArcGIS Spatial Analyst Density tool (ESRI, California, USA) with a cell size of 0.2 degree and a search radius of 2 degrees. Means (± SE) are shown.

RESULTS

Seasonal movement patterns

After the breeding season, tracked birds departed the colony on 23rd July in both years (± 0.7 and ± 1.4 days for 2010-11 and 2011-12, respectively), indicated by the immersion records of geolocators. In the first phase of migration, the birds moved northward from the colony to the Sea of Okhotsk, which was consistent during both years (Fig. 2, Fig. 3). The birds were distributed mainly at the east or south of Sakhalin Island until September, and then moved southward to the northeastern or southeastern shore of Hokkaido Island in October (Fig. 4). In the second phase, the birds moved southward across the Japan Sea, during November - January. Most birds (7 of 9 birds and 8 of 11 birds in 2010-11 and 2011-12, respectively) reached the sea around the Korean Peninsula and Tsushima Strait (Fig. 3, Fig. 4). The remaining four birds (5 tracks) appeared to spend winter farther east in Japan Sea, with a mean westernmost longitude of 135.6 °E. From February, the birds undertook their third movement phase by migrating northward again along the coast of Japan, and returned to the colony on 11th and 18th March (± 2.3 and ± 1.1 days) in the 2010-11 and 2011-12 seasons, respectively (Fig. 3). Overall, kernel density of locations identified the Sea of Okhotsk and the sea around the Korean Peninsula and Tsushima Strait as key areas during the nonbreeding period in both 2010-11 and 2011-12 (Fig. 4).

The average maximum distance reached from the colony by the auklets during the nonbreeding period did not differ between the two years (1549 ± 77 km vs. 1403 ± 91 km for 9 and 11 tracks in 2010-11 and 2011-12, respectively; F_{1,18} = 1.43, p = 0.25) nor between sexes (1481 ± 96 km vs. 1460 ± 83 km for 8 and 12 tracks from females and males, respectively; F_{1,18} = 0.03, p = 0.87).

After the initial arrival to the colony, the birds made foraging trips during pre-laying and the early incubation periods, until the end of the geolocator records.
During this early breeding period, the birds stayed relatively close to the colony (Fig. 4); half of the daily at-sea locations were within 157 ± 10 km and 237 ± 21 km from the colony, for 2010-11 and 2011-12, respectively. The average maximum distance reached from the colony by the auklets during the early breeding period did not differ between the two years (376 ± 24 km vs. 386 ± 19 km for 9 and 11 tracks in 2010-11 and 2011-12, respectively; F_{1,18} = 0.1, p = 0.75) nor between sexes (407 ± 29 km vs. 365 ± 14 km for 8 and 12 tracks from females and males; F_{1,18} = 2.12, p = 0.16).

Activity and water temperature records

During the nonbreeding period, the leg-mounted geolocators remained dry for 4.42 ± 0.42 h per day (n = 20 tracks). There were no apparent seasonal patterns in the time spent dry, and no clear evidence of flightless periods (Fig. 2). During the early breeding period, the daily time spent dry increased as the birds attended the colony at night or throughout a day for incubation (Fig. 2).

Water temperature recorded by the geolocators showed large seasonal changes in both years (Fig. 5). Water temperature experienced by the birds remained around 11 - 14 °C from October to late February, but dropped to 4 - 6 °C in early March associated with a northward migration of auklets to the breeding colony.

Isotopic value of feathers

Mean measured isotopic values (without adjustment for discrimination factors) were 15.6 ± 0.3 ‰ and 15.1 ± 0.1 ‰ for δ^{15}N and -19.8 ± 0.2 ‰ and -18.8 ± 0.1 ‰ for δ^{13}C in primary feathers, versus 13.5 ± 0.2 ‰ and 14.1 ± 0.1 ‰ for δ^{15}N and -19.5 ± 0.2 ‰ and -18.1 ± 0.2 ‰ for δ^{13}C in breast feathers, in 2010-11 (n = 8) and 2011-12 (n = 16) respectively (Fig. 6). The δ^{15}N values of primary and breast feathers adjusted for discrimination factors (3.7 ‰ and 3.6 ‰ for primary and breast feathers) were higher than those of egg yolk and blood plasma (adjusted for discrimination factors) during the prelaying, incubation and chick-rearing periods (Fig. 6). The δ^{13}C values of primary feathers were lower than those of breast feathers, egg yolk and blood plasma (all values adjusted for discrimination factors) (Fig. 6).

Marine primary productivity
Chlorophyll a concentration was highest in April over the annual cycle in each area of A-C, and the peak values were higher in areas A and B (Sea of Okhotsk and northern Japan Sea) compared to area C (southwestern Japan Sea) (Fig. 7). A second, clear peak in chlorophyll a concentration was observed in autumn (September – November) in area A only.

DISCUSSION

Our results, together with previous results from the chick-rearing period (Kato et al. 2003), suggest that, interannually, rhinoceros auklets from the largest colony in the northwestern Pacific mainly use three marine regions year-round: the Sea of Okhotsk in autumn, the southwestern Japan Sea in winter, and the northern Japan Sea during the breeding season in spring and summer. The auklets consistently used these areas over two successive years. The Sea of Okhotsk, northern Japan Sea and southwestern Japan Sea are highly productive areas (Lee et al. 2009, Radchenko et al. 2010) among which the seasonal patterns of biological productivity differ considerably (Fig. 7). We hypothesize that the auklets are able to connect such seasonal peaks in productivity by a distinctive ‘three-step’ migration pattern.

Migratory movements and regional prey availability

Rhinoceros auklets feed mainly on warm-water Japanese anchovy during the chick-rearing period (Watanuki & Ito 2012), and change their foraging locations from south to north of the colony during May - July, presumably following the northward migration of anchovy (Deguchi et al. 2010). Our results showed that the auklets continued to move northward into the Sea of Okhotsk after the breeding season, which is in accordance with previous ship-based surveys that reported the concentrations of auklets along Soya Strait and in the Sea of Okhotsk in late July – late August (Shuntov 2000, Deguchi et al. 2010). The auklets moved within the Sea of Okhotsk until October (Fig. 3). The Sea of Okhotsk is one of the southernmost seasonal sea ice zones in the northern hemisphere, and supports high biological productivity associated with spring ice-edge blooms as well as autumn blooms (Mustapha et al. 2009, Radchenko et al.)
High summer as well as autumn primary productivity was measured by satellite (area A in Fig. 7) as well as from ship-based observations in this region, associated with the seasonal intrusion of the Tsushima Warm Current and the East Sakhalin Current along the northern coast of Hokkaido Island (Mustapha et al. 2009). The high biological productivity in summer and autumn attracts forage fish, including Japanese anchovy (at shallow depths 0 – 60 m; Nagasawa et al. 1998), and their predators to the Sea of Okhotsk (Radchenko et al. 2010, Sakurai et al. 2013). For example, nonbreeding flesh-footed shearwaters *Puffinus carneipes* from breeding colonies in New Zealand and Australia move into the Sea of Okhotsk in August and September, presumably mostly feeding on fish (Rayner et al. 2011) and other southern hemisphere migrants such as sooty and short-tailed shearwaters (*Puffinus griseus* and *P. tenuirostris*) have been observed through July and August (Shuntov 2000, Sakurai et al. 2013, Carey et al. 2014). Similarly, black-tailed gulls *Larus crassirostris* that breed in a colony in the northern Japan Sea move into the Sea of Okhotsk in August (Kazama et al. 2013). Such enhanced marine food web might also attract rhinoceros auklets in autumn.

From November to December, the auklets moved to the southwest region of the Japan Sea, and 75% of the tracks reached as far as the sea around the Korean Peninsula. They stayed in this region until mid February before migrating back to their breeding colony in mid March. The southwest region of the Japan Sea is known to be productive due to coastal upwelling (Lee et al. 2009). The region is a major fishing ground for warm-water pelagic fish such as Japanese anchovy, Chub and Jack mackerels (*Scomber japonicus* and *Trachurus japonicus*) (Kim et al. 2008). In particular, Japanese anchovy are found distributed around the Korean Peninsula in winter, and are available at shallow depths (5 – 60 m; Iversen et al. 1993). This region is also known as a major autumn spawning ground for Japanese common squid *Todarodes pacificus*, so juvenile squid would be available for auklets in the water column during winter (Kidokoro et al. 2010).

The three-step migration, or three-phased migratory pattern (first northward, second southward, third northward) will increase the total distance travelled during the nonbreeding period, compared with the direct migration from the colony to the southern wintering area. The costs of travelling by flight are expected to be high in alcids that have high wing loading such as rhinoceros auklets (Elliott et al. 2013). The auklets
presumably gain sufficient energy in autumn in the Sea of Okhotsk, which outweighs the energy costs of moving any extra distances to southern wintering areas. The birds appeared to experience a similar temperature range (12 – 14 °C) between October and late February (Fig. 5) due to southward seasonal movement, and relatively constant sea temperature may be favorable for thermoregulation.

The three-step migration is also observed in little auks *Alle alle* breeding in East Greenland (Mosbech et al. 2012). The little auk used an autumn staging area in the Greenland Sea at the northeast of the colony, and then performed a long southerly migration (~2000 km) to winter off Newfoundland. Other alcids show diverse migratory patterns even within a species. For example, common murres in a colony at Svalbard migrate southward (~1000 km from the colony) to the Barents Sea and adjacent areas (Fort et al. 2013), but the same species from a colony in central Norway migrate northward to the Barents Sea (Lorentsen et al. 2012). Atlantic puffins *Fratercula arctica* from the Isle of May off east Scotland stay within the North Sea or move north to the northeast Atlantic (Harris et al. 2013), but the same species from southwest Ireland make long-distance east-west movements to Newfoundland in August-September (2537 km on average; Jessopp et al. 2013). Thick-billed murres *Uria lomvia* from 5 colonies spanning eastern Canadian Coast from the high Arctic to Newfoundland show variable degrees of southward movement (700 – 3500 km) to common wintering areas in the Labrador Sea and the seas off Newfoundland (McFarlane Tranquilla et al. 2013). We suggest that the migratory patterns of alcids are highly flexible depending upon the spatial and seasonal patterns of prey availability relative to their breeding location and timing. However, the maximum migration distances of alcids from the colony (~3500 km) are relatively limited, compared to the distances traveled by proficient-flying procellariiform seabirds (~12000 km from the colony; Guilford et al. 2009, Yamamoto et al. 2010), suggesting that the high energetic costs of flight would constrain the ability of alcids to exploit seasonally available resources through migration.

Trophic position during the nonbreeding period

The nitrogen and carbon isotope signatures of the 10th primary feathers and breast feathers of auklets presumably reflect the diet during autumn and winter, respectively
(see ‘Stable isotope analysis of feathers’ in Materials and Methods). The relatively high δ15N values of both primary and beast feathers (adjusted for discrimination factors), compared with δ15N values of auklet blood samples during the breeding period, suggest that the auklets fed on higher trophic level prey, including fish and/or squid, rather than zooplankton (Fig. 6). This contrasts with isotopic studies of other alcids such as Atlantic puffins or thick-billed murres, which showed seasonal shifts to low δ15N values, suggesting the dependence on lower trophic level zooplankton during the nonbreeding period (Hedd et al. 2010, Hobson & Bond 2012).

We have to note that the relatively low δ13C values in both primary and breast feathers (adjusted for discrimination factors) may reflect the carbon source for primary producers, varying with habitat (nearshore/benthic vs. offshore/pelagic) and/or season (summer vs. autumn and winter). Information on regional differences in measured δ15N and δ13C values of particulate organic matter (POM) are not available in Japan Sea or the Sea of Okhotsk. Nearshore/benthic marine habitat is known to show higher δ13C values than offshore/pelagic habitat in general (Graham et al. 2011). However, rhinoceros auklets fed on pelagic fishes and yet showed higher δ13C values (adjusted for discrimination factors) during the breeding period than during the nonbreeding period (Fig. 6). In northern Japan Sea, the δ13C values of sinking particles were higher in early summer bloom period than the rest of the year (range: -25 - -23 ‰; Nakanishi & Minagawa 2003), which may partly explain the lower adjusted δ13C values observed during the nonbreeding period.

Estimation of prey species based on δ15N and δ13C values are difficult without more data on isotopic baseline and potential prey species in both the Sea of Okhotsk and southwestern Japan Sea. Nagasawa (1998) suggests that rhinoceros auklets would be a major predator of juvenile chum salmon migrating along the coasts of Hokkaido during the summer and autumn season, although the nitrogen isotopic value of juvenile chum salmon (collected during chick-rearing season at colony) was not as high as that of the primary feathers (Fig. 6). Ogi (1980) found juvenile Atka mackerel Pleurogrammus monopterigius in the stomach contents of thick-billed murres, horned Fratercula corniculata and tufted Fratercula cirrhata puffins caught entangled in the Sea of Okhotsk in summer. Juvenile chum salmon and Atka mackerel would also be potential prey for rhinoceros auklets, but isotopic data are lacking in the Sea of Okhotsk.
Japanese anchovy sampled in southwestern Japan Sea in summer had δ^{15}N and δ^{13}C values of 9.73 – 10.16 ‰ and -17.75 – -17.44 ‰, respectively (Tanaka et al. 2008). The δ^{15}N values of breast feathers of auklets (adjusted for discrimination factors) were similar to that of anchovy, but the adjusted δ^{13}C values were 1.3 – 3.0 ‰ lower than that of anchovy collected in southwestern Japan Sea.

To compare the isotopic values of feathers with that of prey, we used the discrimination factors of feathers obtained from a closely-related species (common murre, Becker et al. 2007) but not from rhinoceros auklets. The discrimination factors of feathers can be variable among different seabird species or different studies on the same species, especially for δ^{13}C (Becker et al. 2007), and this might have been another confounding factor.

Adjustment of breeding timing and location

Rhinoceros auklets return to their breeding colony in mid-March. Thereafter, they forage around the breeding colony during the prelaying, incubation (Fig. 4), and chick-rearing periods (Kato et al. 2003, Watanuki et al. 2009). The auklets experienced the lowest sea temperatures (4-6 °C) during the early breeding period compared with the rest of the year (11-18 °C), based on the water temperature records from the geolocators (Fig. 5). Therefore, the thermoregulatory energy costs may be highest during the early breeding period, as the lower end of thermoneutral zone of the auklets has been estimated to be 15 °C based on body mass (Shirai et al. 2013). The auklets often attended to the nest burrow during nighttime, and this might improve thermoregulatory efficiency in the early breeding period. Still, it remains unclear as to why auklets choose to return in March to breed in the northern Japan Sea, given the relatively high thermoregulatory costs.

One explanation could be the availability of euphausiids around the breeding colony in early spring. In the northern Japan Sea, euphausiids Thysanoessa longipes and T. inermis come to the surface to spawn when spring phytoplankton blooms occur (area B in Fig. 7) and when sea surface temperatures are 4-8 °C (Hanamura et al. 1989). The auklets feed on euphausiids and low trophic level juvenile fish in early spring based on the egg yolk isotope values (Fig. 6). The carotenoid-rich euphausiids may be suitable prey for females during egg production (Ito et al. 2009), and could be an important
factor determining the timing of auklets’ migration to the northern Japan Sea. Another,
not mutually exclusive, explanation could be that the auklets need to adjust their
chick-rearing period to the arrival of migrating warm water forage fish in early summer
(Watanuki et al. 2009). Japanese anchovy, a profitable prey during the chick-rearing
period, migrates to the sea around Teuri Island when warm waters (> 13 °C) from the
Tsushima Warm Current intrude into the foraging area in late May and mid June
(Watanuki et al. 2009). If the auklets are to adjust chick-rearing to the warm water
arrival, they need to be back in the colony and have laid their eggs by mid April to early
May, even though the sea temperature are still low at this time, given that incubation
takes 45 days on average (Gaston & Jones 1998).

Proficient-flying procellariiform seabirds can move long distances and shift their
foraging ranges seasonally, even while attending the colony. For example, streaked
shearwaters *Calonectris leucomelas* from the colony on the Pacific coast of Japan, shift
their foraging area from south to the north of the colony in April – July, while attending
the colony (Yamamoto et al. 2011). They fly up to a mean distance of 600 km from the
colony, presumably following the northward migration of Japanese anchovy
(Yamamoto et al. 2011). Rhinoceros auklets shift their foraging area seasonally during
the early to late breeding period (Deguchi et al. 2010, this study), but the range of shift
is much smaller, reflecting higher flight costs (up to a median distance of 240 km from
the colony, see results). We suggest that the adjustment of breeding timing and location
are an important factor affecting the migratory patterns, especially in a species with a
short foraging range during the breeding period. In fact, the seasonal mismatch between
breeding timing and anchovy migration has important fitness consequences in
rhinoceros auklets (Watanuki et al. 2009).

Conservation implications

The breeding population of rhinoceros auklets at Teuri Island is the largest in the
northwestern Pacific, comprising more than 90 % of the total population in Asia
(Gaston & Jones 1998). High concentrations of the nonbreeding auklets in the Sea of
Okhotsk in autumn and in the southwestern Japan Sea in winter (Fig. 4) indicate that
these two regions offer critical nonbreeding habitat for the population of Teuri Island.
We suggest that the auklets are susceptible to 1) ocean warming and climatic regime
shifts, and 2) oil spill threats, which have been observed in both the Sea of Okhotsk and southwestern Japan Sea.

Significant warming and reductions in winter sea-ice production have been observed in the Sea of Okhotsk, and this may negatively influence the biological productivity of these regions (Radchenko et al. 2010, and references therein). In the northern part of the Sea of Okhotsk, increased sea surface temperatures negatively affected the breeding performance of planktivorous alcids, but the opposite was the case for piscivorous alcids (Kitaysky & Golubova 2000). Climatic regime shifts are suggested to occur in the Japan Sea, and may have influenced the stock size of epipelagic fish including Japanese anchovy (Kim et al. 2008) and the migration patterns of Japanese common squid (Kidokoro et al. 2010).

Oil platform development is planned for the Sea of Okhotsk, east of Sakhalin Island (Sakurai et al. 2013), where auklets concentrate in autumn. Therefore if oil spills occur in this region in autumn, it would have severe implications for the global population of auklets. Also, in the southwestern Japan Sea, oil spills from tankers passing through the Tsushima Strait may also affect the population if the spill happens in winter. Indeed, 1326 and 482 oiled carcasses of rhinoceros auklets were recovered from the shore of the southwestern Japan Sea, during oil spills from unknown sources in January 1986 (Sato 1999) and from a tanker in January 1997 (Fries et al. 1998), respectively. Therefore, the information presented here is crucial for identifying key areas of global significance for seabird conservation.

CONCLUSION

Our results suggest that rhinoceros auklets followed spatial and seasonal changes in prey availability by a distinctive ‘three-step’ migration after breeding; moving northward to the Sea of Okhotsk in autumn, southward to the southwestern Japan Sea in winter, and then returning northward to the breeding colony in the northern Japan Sea in early spring. The auklets appeared to continue feeding on higher trophic level prey including fish and/or squid during the autumn and winter nonbreeding periods, but switched to lower trophic level prey in early spring when they were confined to forage close to the colony. The accessibility of foraging habitats with different seasonal productivity patterns would be important for nonbreeding seabirds that have high
energetic constraints on migratory movements.

Acknowledgements. We would like to thank M. Aotsuka, Y. Kusakabe, M. Shikata, and K. Hoshina for their help during the fieldwork at Teuri Island. Anonymous referees and A. Burger provided helpful comments to the manuscript. The fieldwork was conducted under the permits of the Ministry of the Environment and the Agency of Cultural Affairs. This study was supported by Grant-in-Aid for Scientific Research (20241001 and 24370016).
LITERATURE CITED

\(^{15}\text{N} \text{ and} \ ^{13}\text{C}\) fractionation in common murres and other seabirds. Condor
109:451-456

Burger AE, Shaffer SA (2008) Application of tracking and data-logging technology in
research and conservation of seabirds. Auk 125: 253-264

Carey MJ, Phillips RA, Silk JR D, Shaffer SA (2014) Trans-equatorial migration of
Short-tailed shearwaters revealed by geolocators. Emu 114: 352-359.

Charrassin JB, Bost CA (2001) Utilization of the oceanic habitat by king penguins over
the annual cycle. Mar Ecol Prog Ser 221:285-297

High flight costs, but low dive costs, in auks support the biomechanical hypothesis
for flightlessness in penguins. Proc Natl Acad Sci USA 110:9380-9384

Fort J, Steen H, Strom H, Tremblay Y, Gronningsaæter E, Pettex E, Porter WP,
Grémillet D (2013) Energetic consequences of contrasting winter migratory
strategies in a sympatric Arctic seabird duet. J Avian Biol 44: 255-262

Fries J, Uematsu K, Takaki J, Tobai S (1998) Oil spills and the protection of wildlife:
What have we learned since the Nakhodka Spill? The Nippon Foundation, Tokyo.
(In Japanese)

Guilford T, Meade J, Willis J, Phillips RA, Boyle D, Roberts S, Collett M, Freeman R,
Perrins CM (2009) Migration and stopover in a small pelagic seabird, the Manx
276:1215-1223.

González-Solís J, Croxall JP, Oro D, Ruiz X (2007) Trans-equatorial migration and

isocapes to trace the movements and foraging behavior of top predators in oceanic
ecosystems. In: West JB, Brown GJ, Dawson TE, Tu KP (eds) Isoscapes:
understanding movement, pattern and processes on Earth through isotope mapping.

Harris MP, Daunt F, Bogdanova MI, Lahoz-Monfort JJ, Newell MA, Phillips RA,

history-environment interactions in seabirds. In: Schreiber EA, Burger J (eds)

\textit{Thysanoessa inermis} off west coast of Hokkaido, northern Japan. Mar Biol 102:
369-376.

Hedd A, Fifield DA, Burke CM, Montevecchi WA, McFarlane Tranquilla LA, Regular
PM, Buren AD, Robertson GJ (2010) Seasonal shift in the foraging niche of Atlantic
puffins \textit{Fratercula arctica} revealed by stable isotope (\(\delta^{15}\text{N} \text{ and} \ ^{13}\text{C}\) analyses.
Aquat Biol 9:13-22

Hobson KA, Bond AL (2012) Extending an indicator: year-round information on

Lorentsen SH, May R (2012) Inter-breeding movements of common guillemots (Uria aalge) suggest the Barents Sea is an important autumn staging and wintering area. Polar Biol 35: 1713-1719

Nagasawa K (1998) Fish and seabird predation on juvenile chum salmon
(Oncorhynchus keta) in Japanese coastal waters, and an evaluation of the impact. N
Pac Anadr Fish Comm Bull 1:480-495
and squids in the Okhotsk Sea and western North Pacific Ocean off the Kuril Islands
and southeast Hokkaido. Bull Nat Res Inst Far Seas Fish 35: 113-130
Nakanishi T, Minagawa M (2003) Stable carbon and nitrogen isotopic compositions of
measurements of adult rhinoceros auklets breeding in Teuri Island. Jpn J Ornithol
48:145-150
Ogi H (1980) The pelagic feeding ecology of thick-billed murres in the North Pacific,
March-June. Bull Facul Fisheries Hokkaido Univ 31:50-72
Ornithol 37:219-225
Radchenko VI, Dulepova EP, Figurkin AL, Katugin ON, Ohshima K, Nishioka J,
McKinnell SM, Tsoy AT (2010) Status and trends of the Sea of Okhotsk region,
268-299
Rayner MJ, Taylor GA, Thompson DR, Torres LG, Sagar PM, Shaffer SA (2011)
Migration and diving activity in three non-breeding flesh-footed shearwaters
Rayner MJ, Taylor GA, Guummer HD, Phillips RA, Sagar PM, Shaffer SA, Thompson
DR (2012) The breeding cycle, year-round distribution and activity patterns of the
Sakurai Y, Ohshima KI, Ohtaishi N (2013) Ecosystem and its conservation in the Sea of
Yamashina Inst Ornithol 31:134-141 (In Japanese with English abstract)
Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller
integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Natl
Acad Sci USA 103: 12799-12802
Shirai M, Ito M, Yoda K, Niizuma Y (2013) Basal metabolic rate of the rhinoceros
auklet Cerorhinca monocerata, as measured using respirometry. Mar Ornithol 41:
151-153
Shuntov VP (2000) Seabird distribution in the marine domain. In: Kondratyev AY,
Litvinenko NM, Kaiser GW (eds) Seabirds of the Russian Far East. Canadian
Wildlife Service Special Publication. p 83-104.
Sorensen MC, Hipfner JM, Kyser TK, Norris DR (2010) Pre-breeding diet influences
ornament size in the Rhinoceros Auklet Cerorhinca monocerata. Ibis 152:29-37
trophic ecology of Japanese anchovy, Engraulis japonicus, inferred from carbon and
Thiebot JB, Lescroël A, Pinaud D, Trathan PN, Bost CA (2011) Larger foraging range
but similar habitat selection in non-breeding versus breeding sub-Antarctic penguins.
Antarct Sci 23: 117-126
Thiebot JB, Pinaud D (2010) Quantitative method to estimate species habitat use from

Fig. 1. *Cerorhinca monocerata*. Oceanographic features of study area. Warm and cold currents displayed in pink and blue, respectively. TWC and ESC indicate the Tsushima Warm Current and the East Sakhalin Current, mentioned in the text. Teuri Island (breeding colony) is marked with a star.
Fig. 2. Cerorhinca monocerata. An example of time-series data obtained by geolocators for one bird. Latitude and longitude were estimated using light level and water temperature, and were smoothed using a movement model (see Materials and Methods for details). Water temperature recorded by the geolocator and time spent dry per day are also shown. Horizontal arrows indicate the early breeding period (after the first return to the breeding colony).
Figure 3
Fig. 3. *Cerorhinca monocerata*. Monthly locations of nine rhinoceros auklets during the nonbreeding and early breeding periods in August 2010 – April 2011. Each colour shows locations from different individuals. Teuri Island is marked with a star. Satellite-derived monthly-averaged sea surface temperature contours are also shown.
Cerorhinca monocerata. Kernel density distribution of auklet locations during the nonbreeding (NB) and early breeding (EB) periods of first and second study year (2010-11 and 2011-12). Kernel densities indicate 25 %, 50 %, and 75 % from darker to lighter colours. Teuri Island is marked with a star.
Fig. 5. Cerorhinca monocerata. Seasonal patterns in water temperature recorded by the geolocators during a) August 2010 – April 2011 and b) August 2011 – April 2012 (means ± SE; n = 9 and 11 birds, respectively).
Fig. 6. *Cerorhinca monocerata*. \(\delta^{15}N\) and \(\delta^{13}C\) values of primary and body feathers of rhinoceros auklets collected in 2010-11 and 2011-12, before (black closed squares) and after (grey closed squares) applying the adjustment of discrimination factors (indicated by grey arrows). \(\delta^{15}N\) and \(\delta^{13}C\) values of auklet egg yolks and blood plasma collected during the incubation (INCU) and chick-rearing (CR) periods (open squares; adjusted for discrimination factors), and those of prey species (open circles, with names in italics) are also shown. The prey samples were obtained at the colony during the chick-rearing periods in 2004 and 2005 (Ito et al. 2009). Means ± SE are shown. Isotopic values of prey, the egg and blood plasma of auklets (open symbols) are based on Ito et al. (2009, 2012).
Fig. 7. *Cerorhinca monocerata*. Mean monthly-average chlorophyll a concentrations of three different foraging areas (defined by 50% kernel boundary of auklet locations) in the Sea of Okhotsk (Area A) and the northern and southwestern Japan Sea (Areas B and C) over 10 years (2003-2012). Mean values are shown with a thick line, and values of Mean ± 1 SD are shown with dotted lines, to show inter-annual variability. The arrows below each graph show the approximate period when the auklets stayed in each of Area A, B, and C. Please refer to Fig. S1 for the locations of the Areas A-C. Note the occurrence of autumn bloom in Area A.
Fig. S1. Kernel density distribution of auklet locations during the nonbreeding period of the first and second study year combined (2010-11 and 2011-12 combined). Kernel densities indicate 25%, 50%, and 75% from darker to lighter colours. Chlorophyll a concentrations were calculated for Area A (red), Area B (black) and Area C (blue). The areas were chosen on the basis of 50% kernel density boundaries during nonbreeding (Areas A and C) and early breeding (Area B: see Fig 4) periods. Teuri Island is marked with a star.