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Abstract 27 

The installation of a network of UV spectrometers on the western flank of the Soufrière Hills 28 

volcano has produced a robust dataset of sulfur dioxide fluxes over a thirteen year period (2000-29 

2013). The emission of SO2 has been quasi-continuous over the course of the eruption which is 30 

in contrast to the highly discontinuous eruption of lava. Analysis of the flux time series indicates 31 

that a degree of periodicity is present in the SO2 signal, ranging from hours to years.  Previous 32 

studies show that pulses in the SO2 flux of ≤ 50 days can be correlated with other volcanic 33 

activity such as seismic activity and extrusion.  We identify two longer period signals in the SO2 34 

data, one at ~ 5 months and the other at ~ 2 years, which are independent of lava extrusion and 35 

ground deformation. We investigate possible causes of these periodic degassing signals, e.g. 36 

hydrological, atmospheric, and magmatic controls.  We hypothesize that the trends in the 37 

degassing time series are sourced from deeper levels in the volcanic plumbing system, related to 38 

deformation of the lower reservoir which brings about localized pressure changes. We also 39 

discuss the mechanisms by which the sulfur-rich gases might reach the surface. 40 

 41 

INTRODUCTION  42 

Understanding volcanic sulfur dioxide (SO2) degassing processes is an important tool for the 43 

monitoring of volcanoes e.g. (Casadevall et al., 1983; Bluth et al., 1994; Fischer et al., 1994; 44 

Young et al., 1998a; Aiuppa et al., 2009; Werner et al., 2013).  Sulfur emissions from volcanoes 45 

have been used to forecast the onset of impending eruptions (e.g. Caltabiano et al., 1994) or to 46 

assess the level of activity during an ongoing eruption (e.g. Casadevall et al., 1983; Gerlach and 47 

McGee, 1994; Mc Gee and Sutton, 1994; Hirabayashi et al., 1995; Luckett et al., 2002; Zobin et 48 

al., 2008; Komorowski et al., 2010). In recent years, long time series of SO2 emissions have been 49 
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built owing to recent developments in low-cost automated spectrometer networks which operate 50 

in the ultra-violet region of the electromagnetic spectrum, allowing SO2 fluxes to be measured 51 

every few minutes through daylight hours using Differential Optical Absorption Spectroscopy 52 

(DOAS; e.g. Edmonds et al., 2003a; Galle et al., 2003; Mc Gonigle et al., 2003).  Soufrière Hills 53 

Volcano was the first focus of this volcano-monitoring development (Edmonds et al., 2003a; 54 

Christopher et al., 2010), and consequently there now exists an unprecedented 18-year long time 55 

series of SO2 emissions, the last 11 years a result of the spectrometer network. Over the course of 56 

the eruption, the time series has lent insight into magma supply and eruption processes 57 

(Edmonds et al., 2001; Edmonds et al., 2003b; Young et al., 2003; Edmonds et al., 2010; 58 

Christopher et al., 2010; Nicholson et al., 2013), and has been used for volcano monitoring and 59 

hazard assessment. 60 

 61 

The andesite erupted over the course of the 1995-current eruption exhibits a wealth of 62 

disequilibrium features on a range of scales, as well as decimeter-sized mafic enclaves (Murphy 63 

et al., 1998; Murphy et al., 2000; Humphreys et al., 2009a; Barclay et al., 2010; Plail et al., in 64 

press). The andesite is the result of a complex magma genesis, dominated by magma mixing and 65 

fractional crystallization during its long residence in an upper-mid crustal magma reservoir 66 

(Murphy et al., 1998; Murphy et al., 2000; Zellmer et al., 2003; Humphreys et al., 2009a; 2009b; 67 

Humphreys et al., 2012; Christopher et al., in press), in common with other andesite systems 68 

(e.g. Fichaut et al., 1989; Sato et al., 1999; Martel et al., 2006; Kent et al., 2010; Ruprecht & 69 

Plank , 2013). The resulting hybrid magma contains ~ 45 vol% phenocrysts of plagioclase, 70 

orthopyroxene and hornblende (Murphy et al., 1998; 2000), in a rhyolitic melt.  71 

 72 
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The volatile budget of such an open system is likely to be complex. The low concentrations of 73 

sulphur in the plagioclase-hosted melt inclusions (<100 ppm, Edmonds et al., 2001) is not 74 

sufficient to account for the mass of sulfur degassed during the eruption (which would require 75 

melt concentrations of >1000 ppm sulfur; Christopher et al., 2010).  This observation of “excess 76 

sulfur” is in common with most other oxidized intermediate-silicic volcanic systems worldwide 77 

(e.g. Andres et al., 1991; Gerlach & McGee, 1994; Wallace, 2001; Wallace, 2005; Shinohara et 78 

al., 2008a; Wallace and Edmonds, 2011). Much of the sulfur in the system exists in the vapour 79 

phase prior to magma ascent and eruption, and the vapour is probably replenished by intruding 80 

mafic magma, either through second boiling during crystallization at the interface between the 81 

two magmas, or by changes in solubility caused by the contrasting temperatures and/or oxygen 82 

fugacity (Christopher et al., 2010; Edmonds et al., 2010; Edmonds et al,. in press).  83 

 84 

This kind of mechanism for volatile transfer has also been proposed to explain the sulfur budget 85 

of Pinatubo (e.g. Westrich & Gerlach, 1992; Wallace & Gerlach, 1994; Kress, 1997) and Unzen 86 

(e.g. Sato et al., 2005; Ohba et al., 2008; Shinohara et al., 2008b). The strong partitioning of 87 

sulfur into a hydrous vapor is consistent with thermodynamical and experimental studies which 88 

suggest that for oxidized silicic melts, the solubility of sulfur is low (Scaillet & Pichavant, 2003; 89 

Clemente et al., 2004; Moretti & Papale, 2004). 90 

 91 

The flux of SO2 gas from the volcano is observed to be variable on a range of timescales. The 92 

variability has been attributed to shallow magma permeability during “stick-slip” eruptive 93 

behavior (Watson et al., 2000), changes in lava extrusion rate (Young et al., 1998a; Luckett et 94 

al., 2002) and over months to years timescales, sealing caused by the precipitation of silica in the 95 
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conduit and dome between eruptive phases (Edmonds et al., 2003b). Cyclic changes in SO2 on a 96 

timescale of ~50 days have been linked to cyclicity in lava extrusion and seismicity (Luckett et 97 

al., 2002; Norton et al., 2002; Loughlin et al., 2010; Nicholson et al., 2013).  98 

 99 

There remains, however, some unanswered questions regarding the emission patterns of volcanic 100 

gases from Soufrière Hills, and some features of the dataset that make this eruption unique in our 101 

view. The first is that over timescales of months to years, the emission of SO2 appears to be 102 

decoupled from the eruption of lava. In general, as much SO2 degasses when the volcano is not 103 

erupting as when it is erupting. Eruptive pauses last 12 to >24 months, and during these 104 

relatively long periods SO2 fluxes are frequently sustained at levels of >500 t/d for weeks to 105 

months. This observation requires some deep-seated permeability or advection of the gas phase 106 

to be operating, allowing gas to migrate through crystal-rich andesite at depth. Over the dataset 107 

as a whole, there are three long period cycles of SO2 increase and decrease that bear no obvious 108 

relation to the eruptive periods (Figure 1).  109 

 110 

The second, related puzzle is that, in the 18th year of quasi-continuous degassing, and in the 111 

absence of volcanic activity since February 2011, it would be a useful exercise to evaluate what 112 

sort of degassing signature might herald the end of the eruption. Are the continued high fluxes of 113 

SO2 at the surface (>300 t/d) indicative of continued supply of mafic magma at depth, or is it 114 

possible that the long-lived, large magma reservoir might be able to supply gas in the absence of 115 

new magma, for this kind of extended period? These questions have important implications for 116 

monitoring and hazard. In this paper, we present the full time series of SO2 data, from July 1995 117 

to July 2013. We evaluate the possible controls on the long timescale periodicity in the 118 
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timescale, including gas scrubbing/hydrological control, modulation by a lava dome, and deep 119 

magma supply and convection processes. We then discuss the implications of our model for the 120 

longevity of the degassing process after the end of the eruption. 121 

 122 

ERUPTION OVERVIEW  123 

The Soufrière Hills volcano is an andesitic lava dome complex on the island of Montserrat in the 124 

lesser Antilles arc. The current eruption began on the evening of July 18th 1995 with ash venting 125 

followed by phreatic explosions over the next weeks and months (Young et al., 1998b; 126 

Robertson et al., 2000).  Juvenile material arrived at the surface around November 15th 1995 127 

(Young et al., 1998b) building the first lava dome of the eruption. The eruption has been 128 

characterized by 1-2 years of lava effusion and associated dome growth interrupted by 1-2 year 129 

long or less periods of no extrusion. This pattern of eruption is in contrast to the quasi-130 

continuous emissions of SO2 throughout the eruption (Figure 2).  131 

 132 

The effusive episodes are punctuated by pyroclastic flows generated by dome collapse or 133 

vulcanian explosions. Episodes of lava extrusion and dome growth at Soufrière Hills are referred 134 

to as phases (numbered I to V) while the periods of no magma production are referred to as 135 

pauses. During each period of extrusion, deformation and seismic activity correlates strongly 136 

with lava extrusion (Figure 3). The volcanic activity of phases I to V is described in detail 137 

elsewhere ( e.g. Aspinall et al., 1998; Young et al., 1998b; Miller et al., 1998; Calder et al., 2002; 138 

Norton et al., 2002; Sparks & Young, 2002; Herd et al., 2005; Loughlin et al., 2010; Ryan et al., 139 

2010; Wadge et al., 2010).  140 
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The first three phases of dome building were characterized by extended periods (on the order of 141 

20 months) of extrusion and pause (Figures 1, 3). Phases IV and V were much shorter: phase IV 142 

was characterized by two separate episodes of low extrusion rates punctuated by explosions, the 143 

first in July-August 2008 and the second in December 2008-January 2009 (Komorowski et al., 144 

2010). An approximate volume of 30 x106 m3 of andesitic lava was erupted for each episode 145 

(Wadge et al., 2010).  Phase V was also short lived (early October 2009 till mid February 2010), 146 

and was associated with the extrusion of ~ 70 x106 m3 of lava. As was the case with phase IV, 147 

Phase V was characterized by sporadic explosive activity during extrusion (Stinton et al., in 148 

press).  149 

 150 

METHODOLOGY FOR THE MEASUREMENT OF SULFUR DIOXIDE FLUX 151 

From July 1995 till December 2001, intermittent SO2 flux measurements were made with the 152 

correlation spectrometer (COSPEC) and have been presented elsewhere (e.g. Gardner et al., 153 

1998, Young et al., 1998b).  Traverses with the COSPEC under the plume were done by car, boat 154 

and helicopter.  A detailed description of the COSPEC technique can be found in Stoiber et al. 155 

(1987) and Young et al. (2003). Subsequent to the COSPEC; miniature, low cost ultraviolet 156 

(UV) spectrometers were used to obtain SO2 fluxes. The data are reduced using the Differential 157 

Optical Absorption Spectroscopy (DOAS) technique (Platt, 1994). Two automated and 158 

telemetered UV spectrometers, coupled with scanning devices, were installed on the western 159 

flanks of the Soufrière Hills volcano at Lovers Lane and Brodericks (Figure 2) and they collect 160 

spectra continuously during daylight hours, thus providing daily flux measurements with an 161 

estimated error of <35% (Galle et al., 2002; Edmonds et al., 2003a). Details of installation of the 162 

network, instrument specifications, spectral evaluation, mass flux calculation, associated errors 163 
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and other information relating to the Soufrière Hills UV scanning network is described in detail 164 

by Edmonds et al. (2003a). The UV network provided a more robust and continuous dataset 165 

compared to the COSPEC and has produced a virtually continuous record of SO2 fluxes for more 166 

than 10 years.  It must be noted that the error varies on a daily basis in the measurements due to 167 

variable conditions and precision is more reliable than accuracy for the flux measurements. 168 

 169 

THE SULFUR DIOXIDE FLUX TIME SERIES  170 

Phases I & II / Pauses I & II 171 

Initial degassing measurements were performed at the Soufrière Hills from July 29th 1995 to 172 

early September 1995 (Young et al, 1998a; Gardner and White, 2002).  The measurements were 173 

carried out during the period of early phreatic activity in the eruption, prior to the onset of dome 174 

growth. SO2 fluxes were 300 - 800 t/d and peaked at 1200 t/d on August 6th.  The SO2 emission 175 

rate shows a general increase from 1996 to 1997 during the first extrusion phase (Figure 1). The 176 

mean daily SO2 flux during the first extrusion episode was 569 t/d.  The highest measured daily 177 

output was 4150 t/d on July 13th 1998; this high value followed closely a large dome collapse 178 

which occurred on July 3rd 1998 (Norton et al., 2002; Edmonds et al., 2003b).  The SO2 flux 179 

showed an overall downward trend during the first pause period with a daily mean of 699 t/d, 180 

with a peak value of 4150 t/d occurring on July 13th 1998. From 1997 to mid 1999 (most of 181 

phase I and all of pause I), the SO2 signal is generally defined by large pulsed signal over the 182 

duration (Figure 1). 183 

 184 
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The SO2 flux during the Phase II also define pulse like signals over durations of years, the first 185 

from late 1999 to mid 2001 which peaked in late August – early September 2000, with a value of 186 

2570 t/d (Figure 1). Another SO2 pulse started in early 2002 and extends into the second pause 187 

period.  The SO2 flux during Phase II had a daily mean of 472 t/d. The SO2 flux during Phase II 188 

peaked in early September 2000 (2570 t/d) after which the SO2 flux decreased until around April 189 

2001. This was followed by a general increase in SO2 flux until the end of the extrusive episode 190 

in early August 2003 (Figure 1).  191 

 192 

The mean daily SO2 flux during the entire second pause was 562 t/d. The general increase in SO2 193 

flux that began during Phase II continued into the second pause period until early September 194 

2003 when there was a general decreasing trend until June 2004.  The mean daily flux from the 195 

start of the pause period until June 2004 was 696 t/d, after which the daily fluxes defined a fairly 196 

flat trend (~400 t/d), which continued until April 2005. The mean SO2 flux over this month was 197 

377 t/d. After April 2005, SO2 flux began increase once again (up to 534 t/d) leading up to the 198 

onset of Phase III of lava extrusion (Figure 1).  The peak SO2 flux of the pause period (12,999 199 

t/d) occurred on October 8th 2004, during the time when the mean daily flux for the month was 200 

otherwise 388 t/d. This is the highest daily mean flux measured during the eruption to date.  201 

 202 

Phases III & IV / Pauses III, IV and V 203 

The general trend of increasing SO2 flux from the second pause, continued into Phase III. The 204 

SO2 flux increased up to October 2005 to a maximum flux of 1522 t/d, after which it broadly 205 

decreased up until July 2006 after which another period of low flux values (~ 300 t/d) occurred 206 
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and lasted until July 2007.  The mean daily flux for the whole of Phase III is 440 t/d.  The peak 207 

flux value during Phase III (3980 t/d), occurred on the last day of lava extrusion (April 4th 2007).  208 

It must be however noted that the mean daily flux for the first ten days of April 2007 was ~ 2000 209 

t/d.   210 

 211 

The SO2 flux at the start of pause III were elevated over the eruption mean, however the flux 212 

decreased again and remained fairly low (274 t/d) until July 2007 when another general increase 213 

in the daily flux values began. This increasing trend in SO2 flux continued until late May 2008; 214 

the mean daily flux during this period was 688 t/d.  There was another trend of decreasing flux 215 

values from mid April 2008 till July 18th 2008, when the SO2 flux was 412 t/d.  This was 216 

followed by a significant elevation in the SO2 flux over the next ten days (1100 t/d) that led up to 217 

the vulcanian explosion of July 29th 2008 that heralded the start of Phase IV a (Figures 1, 3).  218 

 219 

The SO2 flux remained elevated until early October 2008 when SO2 flux again decreased with 220 

time, which continued throughout all of Phase IV a, IV b and their subsequent pauses (Figures 1, 221 

3). This decreasing trend was brought to an end by the onset of Phase V when the activity 222 

incapacitated the spectrometer network with constant heavy ash fall.  The mean daily flux from 223 

the onset of Phase IVa to the onset of Phase V is 675 t/d. The mean daily flux for Phase IVa is 224 

923 t/d while the mean daily for Phase IV b is 451 t/d, which is consistent with a trend of waning 225 

daily flux. Flux measurements resumed in mid March 2010 and since then there has been no new 226 

lava production at the volcano (Figures 1, 3). The mean daily flux between March 17th 2010 and 227 
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August 31st 2010 was ~ 400 t/d and has remained fairly constant (+/- 281 t/d), (Figures 1, 3). 228 

Over the entire eruption, the mean daily SO2 flux has been ~ 500 t/d.   229 

 230 

The SO2 flux time series clearly show three pulses on time scales of 1.5-3 years (Table 1). The 231 

amplitude of the pulses are (200-300 t/d) above the background of 300-400 t/d. The third and 232 

most recent pulse had a longer period and higher amplitude than the previous two. Pulses on this 233 

timescale appear to have ceased in early 2010, coincidental with the end of Phase V. The mean 234 

daily SO2 output since then is similar to that of the periods intermediate between pulses. 235 

Superimposed on these pulses that lasts 2-3 years are shorter timescale variability in the SO2 236 

signal on the order of days to months which is less systematic and appears better correlated with 237 

other volanological phenomena such as lava extrusion and seismicity , volcano-tectonic (VT) 238 

earthquakes in particular, which have been occurring since 2007 in short intense bursts lasting 239 

less than 1 hour and are referred to as VT strings (Figure 4).  VT strings are defined as a short 240 

intense swarm of VT earthquakes lasting less than one hour, occurring during a low background 241 

level of VT activity with four or more triggered events (Cole et al., 2010).  242 

 243 

TIME SERIES ANALYSIS  244 

Volcanic SO2 flux time series typically contain error-induced noise that makes it difficult to 245 

recognize and constrain periodicities without a statistical analysis. The time series presented here 246 

also contains significant gaps that render statistical analysis by simple Fourier Transform 247 

methods non-effective. Degassing time series datasets obtained from volcanoes have been 248 

analyzed by wavelet analysis previously and have proven very useful in constraining 249 
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periodicities in volatile fluxes that relate to episodic volatile delivery (e.g. Oppenheimer et al., 250 

2009; Boichu et al., 2010).  251 

 252 

2( ) 1t dtψ
∞

− ∞

| | =∫           (1) 253 

 254 

Wavelet analysis decomposes a time series into time–frequency space, thus making it possible to 255 

determine both the dominant modes of variability and how those modes vary in time (Torrence 256 

& Compo, 1998).  Wavelet transforms are mathematical techniques, based on group theory and 257 

square integrable representations, which allows unfolding of a signal into both space and scale, 258 

by using analyzing functions called wavelets, which are localized in space (Farge, 1992).  A 259 

wavelet is a wave-like oscillation whose amplitude changes from zero to some maximum then 260 

back to zero, or in other words decays over a finite duration.   261 

 262 

( ) 0t dtψ
∞

− ∞

=∫           (2) 263 

 264 

This is mathematically achieved by imposing two restrictions on the wavelet function ψ (t). 265 

Equation (1) shows that the wavelet function must depart from zero for a limited duration while 266 

equation (2) requires a matching negative departure, thus creating a small wave.  Generally, 267 

wavelets are crafted purposefully to have relevant properties that make them useful for 268 

processing a specific signal. The term wavelet function is generally used to refer to either 269 

orthogonal or nonorthogonal wavelets.  270 
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The nonorthogonal transform is useful for time series analysis, where smooth, continuous 271 

variations in wavelet amplitude are expected and hence this is the type of wavelet function 272 

employed in this study.  A nonorthogonal wavelet function can be used with either the discrete or 273 

the continuous wavelet transform (CWT) (Farge 1992).  Thus the continuous wavelet transform 274 

offers a continuous and redundant unfolding in terms of both space and scale.  275 

 276 

1/4 0 2( ) / 2i t tt e eωψ π − −=            (3) 277 

 278 

Wavelet transforms have the advantage of being able to analyze a time series with multiple 279 

embedded signals. A Morlet wavelet is a symmetrical (CWT), comprising of an exponential 280 

carrier wave modulated by a Gaussian function, equation (3). The Morlet wavelet has the added 281 

ability to distinguish components of a time series as they change with time at differing scales. 282 

The scale decomposition is obtained by dilating or contracting the chosen analyzing wavelet 283 

before convolving it with the signal (Farge 1992).  284 

 285 

The limited spatial support of wavelets is important because then the behavior of the signal at 286 

infinity does not play any role. Therefore the wavelet analysis or syn-thesis can be performed 287 

locally on the signal, as opposed to the Fourier transform, which is inherently nonlocal due to 288 

the space-filling nature of the trigonometric functions (Farge 1992; Percival & Walden, 2000). 289 

 290 

 291 

 292 

 293 
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Wavelet results  294 

The wavelet analysis was applied to the entire dataset after running the data through an 11-day 295 

median filter. Gaps in the time series were filled using random values from a population with the 296 

same standard deviation as the data. For the wavelet analysis of such a random series, white 297 

noise does not exhibit any cycles and hence produces gaps in the plot. The plots generated by the 298 

wavelet analysis (Figure 5) confirm that there are two cycles in excess of 50 days: one at ~ 4-5 299 

months and the other in the range ~ 2-3 years, with both being present throughout the entire SO2 300 

time series and are independent of magma extrusion (Figures 1 & 6).  301 

 302 

Nicholson et al. (2013) identified cyclicity on time scales on the order of 2-3 years, 6-8 weeks 303 

(50 days) and 10-14 days.  Their Fourier Transform methods used for time series analysis differs 304 

somewhat from our own. The gaps less than 14 days in the dataset were filled using linear 305 

interpolation, however they employed reconstructive analysis methods to account for the larger 306 

gaps. And a Short term Fourier Transform (STFT) was employed; a sliding window of spectral 307 

snapshots over a specified duration, with each snapshot having varying degrees of overlap with 308 

its neighbors. Window lengths of 256-128 days and overlaps of 50% to 99% were used.  309 

 310 

DISCUSSION   311 

In this section we explore the controls on the 4-5 months and the ~ 2-3 year periodicity in the 312 

SO2 time series. We consider shallow controls: changes in the degree of scrubbing of SO2 from 313 

the gases on long cycles controlled by changes in the groundwater level or other hydrological 314 
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factors; and changes in the shallow permeability of the conduit and lava dome (i.e. “open vent” 315 

conditions might promote high gas fluxes, the presence of a lava dome might subdue 316 

outgassing). We then consider deeper controls: the sulfur is thought to be linked ultimately to the 317 

supply of mafic magma at depth (e.g. Edmonds et al., 2001; 2010).  318 

 319 

Models of ground deformation suggest there are two linked magma reservoirs, one at ~6 and one 320 

at ~12 km depth (Elsworth et al., 2008; Foroozan et al., 2010; Paulatto et al., 2010; Foroozan et 321 

al., 2011).  Dual reservoirs feeding silicic volcanoes have been proposed elsewhere: Tomiya et 322 

al. (2010) put forward petrological evidence for a dual reservoir configuration beneath Mt Usu 323 

volcano in Japan. The depth at which the mafic magma interacts with the andesite is however not 324 

well constrained thus while the SO2 flux at the surface may be a proxy for deep magma supply, 325 

there is likely to be a time lag for S-rich vapour to escape from the system through a large body 326 

of crystal-rich andesite.  327 

 328 

During eruptive periods magmatic vapour is advected by upward-moving magma and augmented 329 

by syn-eruptive degassing, which can be clearly seen in the correlations between lava extrusion 330 

rate, seismicity and SO2 flux recorded previously (e.g. Gardner and White, 1998; Young et al., 331 

1998; Watson et al., 2000; Young et al., 2003; Nicholson et al., 2013). However, SO2 outgassing 332 

during periods of no magma extrusion (pauses) are clearly not advected by moving magma. In 333 

this case it must migrate through a crystal-rich andesitic magma body to the surface.  334 

 335 
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 We therefore investigate the characteristic time scales for a batch of gas to move through a large 336 

andesite magma body.  We also explore the possibility that the mafic magma body is convecting 337 

at depth, and perturbations as a result of this convection might give rise to cyclic degassing.  And 338 

lastly we explore the timescales of magma convection in a crystal-rich andesite using existing 339 

models (Kazahaya et al., 1994; Stevenson & Blake, 1998; Couch et al., 2001). 340 

 341 

Metrological /Aquifer control 342 

It has been shown that the abundance of SO2 in volcanic plumes can be influenced by 343 

groundwater aquifer levels, the hydrothermal system and atmospheric humidity, in a process 344 

referred to as scrubbing (e.g. Doukas & Gerlach, 1992; Sutton et al., 1997; Symonds et al., 2001; 345 

Gerlach et al., 2002; Duffell et al., 2003; Werner et al., 2006; Rodriguez et al, 2008; Werner et 346 

al., 2012). Scrubbing involves the chemical interaction of SO2 in the volcanic plume with water 347 

and oxygen, described in equations 4 and 5.  The interaction of SO2 with H2O yields the 348 

hydrolysis reaction in equation 4, which results in the reduction of SO2 and the formation of 349 

hydrosulfuric acid (H2SO3), an inherently weak acid. This can be further oxidized to form mild 350 

sulfuric acid (H2SO4) although this is slow process.  351 

 352 

Scrubbing at the Soufrière Hills Volcano has been shown to account for SO2 loss rates exceeding 353 

10-3 s-1 (Oppenheimer et al., 1998), with a mean of 10-4 s-1 (Rodriguez et al., 2008). The 354 

spectrometers typically measure the plume within 5 minutes of the gas being emitted from the 355 

vent, and so using these loss rates we estimate that scrubbing might account for a typical 356 

underestimate of up to 70%of the SO2 degassing from the vent (Rodriguez et al., 2008) .   357 
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The loss rate of SO2 might vary between the wet and the dry season. The relative humidity is 358 

heavily dependent on the rainy season, which coincides with the Atlantic hurricane season and 359 

thus varies sub-annually. This variation in humidity through the year might explain the 360 

differences in loss rates obtained by the afore-mentioned studies (Oppenheimer et al., 1998; 361 

Rodriguez et al., 2008).  Increased rainfall would thus act to lower the SO2 abundance in the 362 

plume by scrubbing either in the subsurface hydrothermal system or in the atmosphere. 363 

Oppenheimer et al. (1998) performed their measurements, finding the highest loss rates, during 364 

the peak of the rainy season when the relative humidity would be highest for the year while 365 

Rodriguez et al. (2008) performed their measurements on ash-free plumes during the dry season.  366 

 367 

SO2 + H2O = H2SO3                        (4) 368 

2 H2SO3 + O2 = 2 H2SO4           (5)   369 

 370 

 SO2 might also be removed prior to outgassing, in a subsurface hydrothermal system. 371 

Geochemical studies the early 1990s revealed the existence of a large hydrothermal/geothermal 372 

system in the entire southern portion of the island, beneath the Soufrière Hills volcano (Chiodini 373 

et al,. 1996). The hot springs in Soufrières (fumaroles) on the flanks of the volcano prior to the 374 

onset of the current eruption contained sulfate and chloride species, indicative of dissolution of 375 

magmatic gases into the water (Chiodini et al., 1996). Cold spring outputs on Montserrat are 376 

directly correlated with the groundwater levels.  The rainy season coincides with the Atlantic 377 

hurricane season and thus the 5 month pulsation might be modulated by the change in rainfall. A 378 

comparison of the monthly output of two proximal springs over the same duration as the SO2 379 
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dataset from the spectrometer network (Figure 7) shows no correlation between the datasets and 380 

we therefore reject control by the hydrothermal/geothermal system as a primary control on the 381 

SO2 flux periodicity on 5 month timescales.  382 

 383 

Dome-modulated gas storage or release 384 

Dome collapses and explosions at the Soufrière Hills volcano are frequently accompanied by 385 

releases of large quantities of SO2 (e.g. Herd et al., 2005; Carn & Prata, 2010; Komorowski et 386 

al., 2010).  Lava domes may trap volatiles in the shallow plumbing system by loading the 387 

volcanic edifice, causing the closing of fractures around the volcanic conduit which inhibits 388 

volatile leakage, the effectiveness of which is dependent on the dome height and foot print 389 

(Woods and Huppert, 2003; Taisne & Jaupart, 2008). A wider and higher dome is more efficient 390 

at loading the edifice and thus acts to reduce SO2 outgassing. 391 

 392 

There is no detailed data regarding the width of the base of the lava dome; however the 1 km 393 

diameter crater puts constraints on the dome foot print, and there have been a number of 394 

occasions when the base of the dome has filled the entire crater, for example during extrusion 395 

phase II (late May 2002 till July 2003) and also in Phase III  from February 2007 to April 2007 396 

the dome had a volume of ~200 x106 m3 which is the largest to date (Ryan et al., 2010; Wadge et 397 

al., 2010).  The large dome persisted through the next pause period and through extrusive Phases 398 

IV and V, with a net volume of 38 x 106 m3 of lava added to the dome during both episodes 399 

(Stinton et al., in press).  400 

 401 
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The dome height was >1000 m a.s.l on April 4th 2007 (Ryan et al., 2010) and has been 402 

consistently greater than this since, particularly during Phase V (Stinton et al., in press). The low 403 

SO2 flux during late 2006 and early 2007 is consistent with a dome-modulated SO2 signal. 404 

However, the dome has had a volume of ~ 200 x 106 m3 and a height of > 1000 m a.s.l since 405 

2007, yet another pulse of SO2 occurred from June 2007 till Jan 2010, during a period when of 406 

one of the largest emplaced domes of the eruption was present in the crater (Wadge et al., 2010; 407 

Figure 8). 408 

 409 

 Thus the size of the lava dome may not be exerting a first order control on SO2 flux.  In mid-410 

2003 the SO2 flux was increasing contemporaneously with an increasing dome volume and 411 

height (Figure 8). The highest extrusion rates during the eruption occurred in early 2006 leading 412 

up to the May 20th 2006 collapse and also during Phase V.   Both these periods coincide with a 413 

waning SO2 flux (Figure 9), which is contrary to what you would expect for a first order control 414 

since increased extrusion rates should enhance degassing at the surface.  Conversely the general 415 

trend of increasing SO2 fluxes observed between Phases III and IV occurred during a period of 416 

no lava extrusion. Thus as is the case with the dome volume, there is also no correlation between 417 

the SO2 and andesite extrusion rate (Figure 9).  We therefore propose that the 1.5-2.5 year pulses 418 

in the SO2 signal are neither modulated by the lava dome or extrusion rate.  419 

 420 

SO2 origin and degassing timescales  421 

Petrological work on the eruptive products of Phase I showed that the enclaves and mafic 422 

groundmass are indicative of the intrusion of mafic magma, which may trigger and fuel the 423 
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eruption (e.g. Barclay et al., 1998; Murphy et al., 1998; Murphy et al., 2000; Devine et al., 2003).  424 

Melt inclusions hosted by plagioclase contain very little sulfur (Edmonds et al., 2001), certainly 425 

not enough to account for the large fluxes of SO2 outgassing at the surface. Hence the andesite 426 

residing in the Soufrière Hills reservoir is thus thought to be in equilibrium with a significant 427 

exsolved gas phase (e.g. Anderson, 1975; Gerlach, 1994; Wallace, 2001; 2005; Edmonds et al., 428 

2008; Wallace & Edmonds, 2011; Witham, 2011).   429 

 430 

The intruding mafic magma almost certainly supplies heat and volatiles to the overlying andesite, 431 

by a process similar to either gas sparging (e.g. Bachman & Bergantz., 2006; 2008) where the 432 

gases act as a “defrosting” agent, transferring heat to the overlying silicic magma (e.g. Bachman 433 

& Bergantz., 2003), the development of volatile-rich melt plumes at the interface (.e.g. Philips & 434 

Woods, 2002) or during second boiling which is caused by quench crystallization at the basalt – 435 

andesite interface (e.g. Martin et al., 2006; Edmonds et al., in press).  436 

 437 

There is evidence, from e.g. diffusion profiles in Fe-Ti oxides (Devine et al., 2003) and the 438 

preservation of the K2O-rich heterogeneities interpreted to be due to mafic intrusion and 439 

diffusive mixing (Humphreys et al., 2010) that the time scale between intrusion, heating of the 440 

andesite, quench-driven degassing and eruption of the hybrid magmas is on the order of hours to 441 

months. Patterns of ground deformation (Figure 3) reflect the eruption of andesite at the surface 442 

(periods of deflation accompanying eruption) and recharge of mafic magma (inflation during 443 

eruptive pauses) (e.g. Voight et al., 1999; Elsworth et al., 2008; Foroozan et al., 2011). The SO2 444 

pulses do not exhibit a correlation with ground deformation (Figure 3) indicating that there is no 445 
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first order control by the intrusion of magma at depth on the long cycles in the SO2 flux at the 446 

surface. 447 

 448 

CYCLIC ACTIVITY AT Soufrière Hills AND AT OTHER LAVA-DOME BUILDING ERUPTIONS 449 

Cyclic lava extrusion and or degassing displaying periodicities on several different time scales is 450 

well documented at a number of different type of volcanoes (e.g. Denlinger & Hoblitt, 1999; 451 

Voight et al., 1999; Voight et al., 2000; Barmin et al., 2002; Harris & Neri, 2002; Sparks & 452 

Young, 2002; Lazute et al., 2004; Harris et al., 2005; Sweeney et al., 2008; Oppenheimer et al., 453 

2009; Wadge et al., 2010; Melnik & Costa, in press) and pulsations in magma discharge rates 454 

appears to be characteristic of dome-building eruptions (Barmin et al., 2002).  455 

 456 

Cyclic patterns in lava effusion and SO2 emissions were evident from the onset of and has 457 

characterized the Soufrière Hills eruption (e.g. Miller et al., 1998; Young et al., 1998; Voight et 458 

al., 1998; 1999;  Roberston et al., 2000; Lensky et al., 2008; Loughlin et al., 2010). For example, 459 

Voight et al. (1998) identified a 6–14 h inflation cycle caused by magma pressurization at 460 

shallow depths (< 0.6 km below the base of dome) during the first episode of dome building 461 

(Phase I), which was related to non‐linear dynamics of magma flow with stick‐slip flow (e.g. 462 

Denlinger & Hoblitt, 1999; Voight et al., 1999).  Druit et al. (2002) reported cycles (10 hour 463 

mean) in the vulcanian explosions of 1997 at the Soufrière Hills.   464 

 465 

Sparks & Young (2000) identified a 6 to 7 week magma extrusion cycle in 1997 while Loughlin 466 

et al. (2010) also showed that there was a two to six week pulsed signal in the magma discharge 467 

rate during Phase III. More recently in Phase V, magma delivery to the surface occurred in three 468 
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major pulses ranging from 30-45 days duration (Stinton et al., in press), with sub-daily cycles on 469 

the order or 4-14 hours (Odbert et al., in press). Odbert et al., (in press) further showed that 470 

cyclic behavior at the Soufrière Hills volcano can range from sub-daily (hours) to muti-decadal.   471 

It is not uncommon to encounter multiple superimposed cycles hence a single explanation will 472 

not be satisfactory since multiple processes are likely involved (Costa et al., 2007).  It has been 473 

shown by many recent studies that pulsed out flux can exist in a system with a constant influx of 474 

magma into a magma reservoir (Melnik & Sparks, 1999; Melnik & Sparks, 2002; Barmin et al., 475 

2002, Melnik & Costa, in press).  476 

 477 

A number of models exist that explain how the none-continuous delivery of lava to the surface 478 

throughout the Soufrière Hills eruption .  The models employ the nonlinear effects of 479 

crystallization and gas loss which leads to   rheological stiffening, and pressurization (e.g. 480 

Melnik & Sparks, 1999; Voight et al., 1999).  Rheological stiffening increases magma 481 

overpressure (Melnik & Sparks, 2002), changes in magma pressure and crystallization kinetics 482 

causes a strong feedback mechanism and multiple steady solutions for discharge rate (Melnik & 483 

Sparks, 2002).  Large changes in discharge rate and eruptive behavior can occur as the 484 

consequence of small changes in chamber pressure thus promoting none linear extrusion of 485 

magma at the surface (Melnik & Sparks, 2002). The system can thus fluctuate between low and 486 

high discharge rates at the surface (Melnik & Sparks, 2005). 487 

 488 

Stick-slip magma flow in the upper conduit might result from degassing-induced changes in 489 

crystal content and hence bulk viscosity of the magma (Sparks & Young 2002; Sparks, 2003) 490 

When the magma overpressure drops to the dynamic strength of the slip surfaces, the plug sticks 491 
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and blocks the vent thus initiating another episode of increasing magma pressure and another 492 

eruptive cycle (Lensky et al., 2008). Costa et al. (2007) porposed a model for the 6- 7 week 493 

cycles and attributed it to the elastic deformation of the dyke which connects the upper reservoir 494 

to a conduit that leads to the surface, the dyke behaves like a capacitor that deforms and stores 495 

magma eventually releasing it when the pressure increases to an optimum value.  496 

 497 

Pulsed lava effusion is documented for the Mt St Helens (1980-1987) eruption and the 498 

Santiaguito (1922-2000) eruption.  Barmin et al. (2002) used a mathematical model to describe 499 

the pulsatory behavior of Mt St Helens, which incorporates the non-linear response to magma 500 

extrusion to chamber pressure, owing to the changes in rheological properties and development 501 

of overpressures during degassing and ascent (Melnik and Sparks, 1999; Melnik and Sparks, 502 

2002; Slezin, 2003). They showed that for a fixed chamber pressure, three different magma 503 

ascent velocities can occur. For a steady magma influx, decreases in conduit diameter, crystal 504 

growth rate and crystal number density in the magma can generate periodic behavior.  505 

 506 

Elsworth et al. (2008) suggests a fairly steady and continuous influx of mafic magma into the 507 

lower reservoir with a flux rate in the range of (1.2-2.0) m3s-1 (Foroozan et al., 2011; Melnik & 508 

Costa, in press). The short timescales between reheating and extrusion (e.g. Devine et al., 2003; 509 

Rutherford & Devine 2003) indicate that basalt influx into the andesite reservoir and the 510 

extrusion of andesite are correlated in time and likely occur for similar durations, this is 511 

consistent with the model of Melnik & Costa (in press) where influx of fresh magma into the 512 

andesite reservoir results in dome extrusion. The short term pulsations in the SO2 signal, < 50 513 

days (Nicholson et al., 2013) that can be correlated with seismic phenomena (e.g. Luckett et al., 514 
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2002; Norton et al., 2002; Loughlin et al., 2010) are likely driven by the shallower and smaller 515 

andesite reservoir.   516 

 517 

The duration of the effusion phases have however decreased since 2007, suggesting variability in 518 

one or more parameters relevant for modulating oscillatory periods of the lava effusion. We did 519 

mention that the duration of the SO2 pulses are similar to that of the first three extrusion episodes 520 

and the last pulse occurred just after the nature of the extrusion changed. It would thus be also 521 

fair to conclude that the durations of the initial three extrusion phases and the durations of the 522 

pulses in the SO2 signal are not coincidental.  523 

  524 

 Reservoir connectivity model   525 

Barmin et al. (2002) showed that lava extrusion rate can be variable at constant pressure in the 526 

andesite reservoir; however we have demonstrated that the SO2 pulses are not being controlled 527 

by the andesite reservoir.  Recent geophysical studies (e.g. Foroozan et al., 2010, Melnik & 528 

Costa, in press) have shown that the deformation signal which correlates with extrusion at the 529 

Soufrière Hills (Figure 3) can be attributed to both reservoirs.  Melnik and Costa, (in press) 530 

assumed a steady influx into the deep chamber and used numerical modeling to show that both 531 

reservoirs are deforming and the level of connectivity between the two reservoirs are via an 532 

elastic dyke determines how much of an influence the deformation of the lower reservoir has on 533 

the signal at the surface at any time during the deformation cycle in Figure 3. Thus connectivity 534 

between the reservoirs at any point in time is dependent on the dyke width.  535 

 536 
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Variations in the connectivity of the reservoirs can also influence the pressure within each 537 

reservoir and the dyke.  When the connectivity is weak the overpressure in the deep reservoir 538 

reaches high values (~ 70 MPa) and remains fairly constant during the cycle and the influx of 539 

fresh magma into the shallow reservoir is also nearly constant, high chamber overpressure 540 

influences the horizontal extension of the dyke and a consequent improvement of connectivity 541 

between two magma chambers. For a strong connectivity between the chambers their 542 

overpressures increases or decreases during the cycle in a synchronous way. Influx into the 543 

shallow chamber stays close to the extrusion rate at the surface.  544 

 545 

Though the solubility of sulphur solubility is not mainly controlled by pressure (e.g. Scaillet et 546 

al., 1998; Scaillet & Pichavant, 2005) there is no petrological evidence indicating systematic 547 

changes in melt composition, temperature, fO2 and fS2 that correlate with the SO2 pulses.  We 548 

therefore propose that the (1.5- 2.5 year) pulses in SO2 are related to localized pressure changes 549 

in the lower reservoir or dyke.  The similarity in duration of the first three extrusion phases with 550 

the SO2 pulses is consistent with the driving mechanism for both being similar.   551 

 552 

Conclusions 553 

We have used statistical techniques to demonstrate that like with magma production, there are 554 

pulsations in the SO2 signal that vary on times scales of months to years.  The pulses are 555 

however not correlated with extrusion which makes interpretation a bit tedious. We have 556 

however being able to rule out processes such as meteorological and aquifer control for 557 

controlling the SO2 signal. We have also ruled out modulation by the lava dome. We therefore 558 

rely on the already established geophysical models   of (Foroozan et al., 2010, Melnik & Costa, 559 
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in press) which established the presence of two reservoirs and how they physically interact with 560 

each other given a certain degree of connectivity. We therefore embrace the model of (Melnik & 561 

Costa, in press) where pressure changes occur in the lower reservoir and connecting dyke that 562 

can influence sulfur solubility in the resident magma.  563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 
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Tables 

 

Pulse/Int Mean flux  t/d # of values % Data 
Obtained  

Approximate 
duration/ yrs 

1st Int  (June 2004 – April 2005) 427 250 69 0.99 

2nd Int (Jul 2006 – Jul 2007)  304 317 92 0.94 

     

1st pulse (June 2002 –  May 2004) 561 625 86 2 

2nd pulse (April 2005 – Jul 2006) 560 435 76 1.58 

3 rd pulse (Jul 2nd 2007 - Jan 2010)*  664 732 87 2.31 

     

2010 restart (mid march) - present  401 1040 82 3.47 

Table 1 Break down of the relevant parameters of the pulses and intermediate periods that were 

 observed in the uv network data. * denotes pulse where data was lost due to ash from Phase V 
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Figure 1 The Entire SO2 time series showing continuous and variable SO2 output throughout the eruption. Red line is 11 day filter though the COSPEC data and
green line if 11 day filter through the spectrometer network data.



Figure 2 Google Earth image of southern Montserrat showing the location of the two network spectrometers relative to the volcano. The spectrometers are
named based on their location (LL – Lovers lane, BR – Brodericks) . The prevailing winds are easterlies which normally puts the plume over Plymouth. In this
image the plume is to the north of the network.



Figure 3 Multi plot diagram used by the MVO showing how the seismic (top), deformation (middle) and SO2 varied throughout the whole eruption



Figure 4 A comparison of mean daily post Phase V SO2 flux values with VT earthquakes showing a fairly good correlation



Figure 5 wavelet plot of the whole SO2 dataset showing the ~ 2 year signal in the time series.



Figure 6 Wavelet plot of the SO2 data from 2004 – 2005 showing the ~ 5 month cycle occurring during the second pause
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Figure 7 Comparisons of UV network flux data with production data from two center hills springs from 2001 till present
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Figure 8 A comparison of dome volume and SO2 flux from 2001 till present.
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Figure 9 Andesite extrusion rate compared to daily SO2 flux rates from 2001 till present
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