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Abstract: Knowledge of impervious surface areas (ISA) and on their changes in magnitude, 

location, geometry and morphology over time is significant for a range of practical 

applications and research alike from local to global scales. Despite this, use of Earth 

Observation (EO) technology in mapping ISAs within some European Union (EU) countries, 

such as the United Kingdom (UK), is to some extent scarce. In the present study, a 

combination of methods is proposed for mapping ISA based on freely distributed EO 

imagery from Landsat TM/ETM+ sensors. The proposed technique combines a traditional 

classifier and a linear spectral mixture analysis (LSMA) with a series of Landsat TM/ETM+ 

images to extract ISA. Selected sites located in Wales, UK, are used for demonstrating the 

capability of the proposed method. The Welsh study areas provided a unique setting in 

detecting largely dispersed urban morphology within an urban-rural frontier context.  

In addition, an innovative method for detecting clouds and cloud shadow layers for the full 

area estimation of ISA is also presented herein. The removal and replacement of clouds and 

cloud shadows, with underlying materials is further explained. Aerial photography with a 

spatial resolution of 0.4 m, acquired over the summer period in 2005 was used for validation 

purposes. Validation of the derived products indicated an overall ISA detection accuracy in 
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the order of ~97%. The latter was considered as very satisfactory and at least comparative, 

if not somehow better, to existing ISA products provided on a national level. The hybrid 

method for ISA extraction proposed here is important on a local scale in terms of moving 

forward into a biennial program for the Welsh Government. It offers a much less subjectively 

static and more objectively dynamic estimation of ISA cover in comparison to existing 

operational products already available, improving the current estimations of international 

urbanization and soil sealing. Findings of our study provide important assistance towards the 

development of relevant EO-based products not only inaugurate to Wales alone, but 

potentially allowing a cost-effective and consistent long term monitoring of ISA at different 

scales based on EO technology.  

Keywords: Wales; Landsat; impervious surface estimation; multi-temporal imagery;  

object-orientated method  

 

1. Introduction 

In 2011, it was recorded that around half of the World’s population (~3.5 billion people) were living 

in urban environments [1]. Impacts of this growth and urban expansion over the last century have been 

the loss of fertile and otherwise green-space to concrete for ever increasing areas of housing and 

infrastructure. The covering of land with impervious surfaces (i.e., roads, pavements, buildings, and 

other concreted areas) seals the soil and prevents many essential ecosystem services: the production of 

food; habitat for plants; micro climate regulation. The quantifiable amount of these impervious surface 

areas (ISA) is therefore considered extremely important in a context of monitoring climate change. As a 

mark of their importance, the United Nations Framework Convention on Climate Change (UNFCCC) 

have requested information on ISA figures, from all members states, to be included amongst other 

significant land use categories for submission into the Greenhouse Gas Inventory for the years  

1990–2011 [2]. As a result of this, the EU also demands accurate figures for feeding in to the Greenhouse 

Gas Inventory. 

Others, e.g., [3], identify ISA as a key environmental indicator. ISAs are defined mainly as artificial 

structures and surfaces, such as buildings, pavements and car parks that do not allow the downward 

transfer of water and therefore prevent the ecological services of the underlying soil. Thus, those are one 

of the main contributors to environmental degradation [4]. Because increases in ISA’s are often 

indicative of urban and industrial development, they are also one of the main indicators of urbanisation 

and urban sprawl [5,6]. With the World’s urban population only predicted to grow and expand into an 

ever dwindling green environment [7], and given the environmental impacts, it is evidently a key 

requirement nowadays to quantify global ISA’s in a cost-effective and consistent manner. 

Earth Observation (EO) technology provides an economically effective solution, has the potential to 

be more accurate than traditional mapping methods, and can be instantaneously adapted given dynamic 

objectives. The capability of EO technology for large scale operational application and the plethora of 

additional EO datasets available, make it an appropriate solution to mapping ISAs [8,9]. Image 

classification is the most commonly applied approach in deriving spatially distributed maps of land use 
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and land cover [10–12]. Many methods have been developed for extracting ISA from EO imagery, a 

comprehensive review of which can be found in [13]. While pixel-based classifications have long been 

utilized to interpret landscapes and distinguish between habitats, segmentation techniques in 

combination with object-based image analysis (OBIA) provide information on targets according to 

shape, spectral difference and a variety of user defined variables [9]. Due to the salt and pepper effect 

prominently created by a pixel-based classification approach [14], OBIA is generally considered to 

produce results that are much easier to subsequently manipulate in a Geographical Information Systems 

(GIS) environment. Results produced by OBIA are then much easier to understand and visually interpret 

in comparison to pixel-based methods. By virtue of this, OBIA has been documented to improve the 

accuracy of classifications by around 2–3% [15–18], or more [6,8,19] compared to per-pixel techniques. 

Examples of studies that utilize OBIA for the extraction of urban features are legion. However, it has 

been suggested that while OBIA is useful for image classification, it should be utilised only for masking 

of other non-target materials, such as vegetation and water; therefore creating a fusion technique of 

OBIA and sub-pixel analysis [20]. 

The detection of ISA’s using EO data has also aided the modelling of rainfall-runoff in the field of 

urban hydrology [21–23] and prediction [24]. Many of the most prolific studies on ISA EO research 

have focused on large urban settlements in the USA and China [19,25–27]. A relatively small number 

of studies have also been concerned in exploiting EO technology for urban land-use studies in the United 

Kingdom (UK) as well [28–31]. For example, the first study of its kind in the UK; [28] used SPOT HRV 

data to monitor “urban encroachment” in south-east. Authors concluded that the application of EO 

imagery and derived land-use detection techniques for rural-urban change in the UK was valuable and 

promising option. However, another 14 years passed before the next EO-based urban study was 

published [30]. In this work, authors used radar data from the ESA’s ERS satellite to map urban change. 

This study focused on the UK and more specifically in Cardiff, the capital of Wales. While [29] used 

Landsat TM data to produce a land-use map for the UK, ISA surfaces were still not the main focus of 

these authors’ study. Therefore, the need for an accurate up-to-date estimate of urban land cover 

composition in Wales and other EU member states is prolific, especially when the current EU standing 

on impervious surfaces, is considered. 

Cloud-free EO imagery is useful for time-series analysis due to homogeneity in spectral signatures 

across given study areas and therefore the classification of general land cover types [32]. However, 

access to cloud-free imagery is either difficult or in some cases nearly impossible for an entire country 

if located near the poles. A variety of image processing methods have been proposed in detecting clouds 

from EO imagery [33–37]. Many methodologies have been presented to remove these clouds and their 

derived shadows, the most ingenious of which are based on sun illumination angle, topography, and 

cloud elevation [32,38–40]. Clouds are common across the Welsh coast due to Atlantic depressions, 

forming a large proportion of the showers and thunderstorms that are characteristic of the region.  

This makes the acquisition of cloud-free imagery for the whole country a challenging task, if not  

near-impossible and thus methods similar to the formerly discussed have to be employed. 

Obtaining high resolution EO data is sometimes not an option due to budgetary and other constrains. 

Freely distributed EO data in these cases are preferred. However, freely available data are often of a 

much coarser resolution than more expensive counterparts. The impediment of coarse/medium 

resolution imagery is that of mixed pixels. In order to extract impervious surface cover from 
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coarse/medium resolution imagery, many studies have been based on sub-pixel analysis 

techniques [5,41–47]. Linear spectral mixture analysis (LSMA) is a method of sub-pixel analysis often 

employed in studies using medium or coarse resolution multi- and also when hyper-spectral data is 

available. Producing a user-defined number of fractional images this method has proven valuable for 

extracting ISAs being able in particular to separate them from spectrally similar materials such as soil. 

The most common example of imagery used for this analysis is that of the Landsat series [43,45,47]. 

The LSMA approach assumes that the spectral information measured by the receiving sensor is mixed 

in a linear combination of the spectra of all components. These components are otherwise known as  

end-members. [48] assumed that the urban landscape was composed of three main materials; vegetation, 

soil and impervious surfaces. In order to attain a more accurate representation of the urban landscape 

from EO data, contemporary studies [46,49,50] use four end-members including vegetation,  

high-albedo, low-albedo and soil. The high-albedo fraction highlights surfaces with high spectral 

reflection such as bright impervious surfaces, while the low-albedo fraction highlights dark impervious 

surfaces. This method is generally considered superior to that of Normalized Difference Indexes  

(e.g., NDXI, [19]) due to the user-defined selection of training samples. Although this requires more 

user input and therefore project time, the result is often superior and is therefore utilised regularly across 

the literature [19]. 

Currently existing products for extracting ISA in the UK include: 

• The Phase 1 habitat survey [51,52], the primary spatial dataset for lowland and upland habitats in 

Wales and the UK. 

• The Ordinance Survey (OS) MasterMap product, the most prolific and contemporary GIS-based 

boundary dataset in the UK [53,54]. 

• The National Land Use Database (NLUD), developed by the Geoinformation group and providing 

a national set of predefined land-use polygons [55]. 

• The “imperviousness” high resolution layer form the Copernicus Land Monitoring Service; a 

simple inversion of NDVI. Attempts have been made to improve the methodology [56,57]. 

• Finally, the Coordinated Information on the European Environment (CORINE) land cover map, 

which is part of a European objective for monitoring land use across Europe. 

These products, available to the UK scientific community for land-use and therefore deriving  

land-use change such as ISA, are insufficient in their construction and accuracy. They cater for 

subjectively static rather than objectively dynamic project interrogation of land-use materials and serve 

only as a useful boundary resource. Given the present EU focus on soil sealing and impervious surfaces, 

alternative data must be developed. Although this has been attempted by Copernicus Land Services, this 

service is not being planned to be widely distributed until 2015 and currently only covers the years  

2000–2012, rather than the inventory years of 1990–2011. Over an area as large as Wales, traditional 

survey techniques are no longer viable and therefore EO technologies must be endorsed.  

In preview of the above, the present study was aimed at proposing a new GIS/EO data hybrid method 

for the extraction and estimation of ISA concentration and demonstrates the applicability of this 

technique over selected study sites in Wales, UK. The study also demonstrates the use of an innovative 

method for mapping and masking clouds and cloud shadows [32]. 
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2. Study Sites and Datasets 

2.1. Study Sites  

Based on growth rank from statistics on new builds provided by the Welsh Government, study sites 

were selected to provide a broad representation of Wales. The statistics roughly cover the temporal scale 

(1990–2012) of the study and Green House Gas inventories model [2]. Based on these statistics, the 

unitary authorities of Cardiff, Swansea, Rhondda Cynon Taf, Caerphilly, Wrexham, Neath Port Talbot 

and Aberystwyth (Figure 1) were chosen. The major concentration of population and industry in Wales 

is in the five contiguous study sites of South Wales (Cardiff, Swansea, Rhondda Cynon Taf, Caerphilly 

and Neath Port Talbot). It is therefore imperative that ISA’s in these areas, including the capital Cardiff 

are quantified for the Green House Gas inventories.  

Figure 1. Map showing the distribution of our study areas (shown in yellow color)  

across Wales. 
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The town of Aberystwyth in particular has increased dramatically in size over the past two decades 

due to the sale of agricultural land located to the east of the main town centre. From expert local 

knowledge, this has included the development of a large commercial estate and two housing estates.  

The Wrexham study area is within North Wales which contains the Snowdonia national park to the 

North. A large quarry, of which the main material is bare earth, which often provides a strong obstacle 

in ISA research and extraction also resides to the north of the town centre. 

2.2. Datasets 

To satisfy the objectives of this study, freely distributed EO imagery and a digital terrain model 

(DEM) were acquired. This dataset included 13 Landsat TM and ETM+ scenes of varying levels of cloud 

cover, supplied by the United States Geological Survey (USGS). The main criteria for selecting scenes 

were closest to 0% cloud cover within the primary leaf-on season (UK summer period,  

July–September), allowing the most recorded reflectivity possible [19,58]. Scenes from the primary  

leaf-on season that were partially—fully covered in cloud were replaced by scenes from other dates 

within the same year with closest to 0% cloud cover (Table 1). In addition, a mosaicked coverage of 

DEM data at a spatial resolution of 5 m, supplied by NEXTMap (a local Welsh company) was also utilised.  

In addition to the Landsat scenes, aerial photography coverage for all study sites, acquired over the 

summer period of 2006 with a spatial resolution of 40 cm (captured by COWI and supplied by the Welsh 

Government) was used to assess the performance of the ISA estimation. To further assess, in part the 

accuracy of the classification and in part the inadequacy of the currently existing GIS-based products for 

ISA estimation, the OS MasterMap product was used. Details of this dataset are referred to in the works 

of [53,54,59]. 

Table 1. Landsat data acquired for the classification and estimation of impervious surface 

areas (ISA) concentration. 

Sensor Path Row Date

Landsat-5 TM 204 23 10 February 1989 

Landsat-5 TM 204 23 28 April 1989 

Landsat-5 TM 204 24 28 April 1989 

Landsat-7 ETM+ 204 23 24 July 1999 

Landsat-7 ETM+ 204 24 24 July 1999 

Landsat-7 ETM+ 204 23 10 September 1999 

Landsat-7 ETM+ 204 24 10 September 1999 

Landsat-7 ETM+ 204 23 13 March 2003 

Landsat-7 ETM+ 204 24 13 March 2003 

Landsat-7 ETM+ 203 23 22 March 2003 

Landsat-7 ETM+ 203 24 22 March 2003 

Landsat-5 TM 204 23 28 April 2011 

Landsat-5 TM 204 24 28 April 2011 
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3. Methodology  

3.1. Data Pre-Processing 

In order to compensate for inter-platform gains and bias difference and to therefore enable  

multi-temporal comparisons, an absolute atmospheric correction method was required. Visibility data 

was therefore needed as an input for the atmospheric correction models utilized with the fast line-of-sight 

atmospheric analysis of spectral hypercubes (FLAASH) module developed in ENVI [60,61]. This data 

was supplied by the met office integrated data archive system (MIDAS) stations situated around the 

country. To mask out all known 0% ISA’s, the land parcel identification system (LPIS) [62] was used in 

conjunction with extracted water layer from the OS MasterMap product (Technical specification available 

at: http://www.ordnancesurvey.co.uk/docs/user-guides/os-mastermap-topography-layer-user-guide.pdf). 

3.2. ISA Extraction 

The process tree for the classification and estimation of ISA (Figure 2) was built on the basis of a 

multiple part classification, similar to that of a hierarchal segmentation [58]. Each progressive part acted 

as a mask for its subordinate and refined the impervious surface estimation area further. Part I provided 

simple integration of the existing data layers, Part II produced the classification of remaining 0% 

impervious surface features, and Part III estimated the ISA from 1–100% (Figure 3) Parts I and II were 

implemented using an OBIA approach to classification while Part III was performed separately in the 

ENVI platform to enable sub-pixel analysis for ISA estimation. 

Part I of the process tree integrated the existing GIS data layers to mask known 0% ISA’s from the 

rest of the scene. Areas deemed physically impossible or unlikely to host large ISA’s areas > 20% slope 

were also removed. This utilised the DTM for areas above an altitude of 350 m.a.s.l., as suggested by [58], 

for the South Wales and Wrexham study areas, and areas above 300 m.a.s.l. for the Aberystwyth study 

area; these varied in height due to the employment of expert local knowledge from the author and 

colleagues from the Welsh Government. Remaining areas were then interrogated for the existence of 

areas above an average slope of 20°. Using OS MasterMap data, the high tide lines (for coastal study 

sites) and inland water bodies (for all study sites) were masked out of the rest of the scene. LPIS polygon 

data, supplied by the Welsh Government were then utilized to mask out areas of known agriculture. 

By virtue of the general climate of Wales and the return periodicity of the Landsat satellites, it was 

not constantly possible to obtain optical data for cloud-free summer dates. A further series of  

sub-routines in Part I of the process were therefore required in order to assess the need for alternative 

data. Clouds and associated shadows were detected in scenes by utilising the innovative method first 

presented in [32]. This approach required measurements taken by the Landsat satellite at the time of 

acquisition as well as averaged user derived measurements from corresponding points on selected cloud 

and shadow. When alternative data was required over the entire scene winter season images were 

utilized. An assessment of acquisition time solar azimuth derived topographic shadow was therefore 

required and used to once again assess the need for further alternative data. 
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Figure 2. Flow chart showing the methods of pre-processing, classification, and validation 

in the present study, where image processing and classification; Part I is the simple 

classification and alternative data sub-setting, Part II is the advanced classification of 

remaining objects and the use of alternative data, and Part III is the linear spectral mixture 

analysis. Post classification analysis Part I is the comparison between the user classification 

and OS MasterMap, and Part II is the concentric circle analysis and comparison between the 

user classification and the aerial photography. 
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Figure 3. The hierarchal parts of the methodology where: Part I (top), a simple masking of 

all known 0% ISA’s; Part II (middle), further masking of vegetation and bare earth features; 

and Part III (bottom) extraction and estimation of ISA’s in the remaining urban areas. 

 

To assess the alternative data based on cloud and shadow, Part II of the process tree was firstly split 

into two sets of parallel sub-routines: 

 Spectral thresholding for the primary data in summer seasons 

 Spectral thresholding for the alternative data in other seasons 

Both of these parallel sub-routines involved the extraction of any vegetation that was not masked out 

within Part I and the extraction of bare earth and rock features from the scene. While the extraction of 

the former areas presents itself as a relatively simple task, extraction of the latter is not. Each scene was 

therefore individually analysed for the unique spectral signatures of known bare earth and rock features 

which lye spectrally between low density urban and high density urban features, and generally cover a 

large uniform area, such as quarries and slag piles. These are characteristic of the more industrialized 

sites and therefore made a significant contribution to the final output. 

Finally, Part III of the process tree involved the estimation of ISA coverage from the remaining areas, 

not masked by Parts I and II. Following the principals of [48] and later, [63], remaining pixels were 

estimated as a linear mixture of three principal materials; vegetation, ISA and soil. The  

V-I-S model can also be expressed as the linear mixture model [64]: ܴ௨ =෍൫ݎ௜ ௨݂௝ + ݁௨൯௡
௝ୀଵ  (1)



Remote Sens. 2014, 6 11740 

 

 

where Ru is the reflectance of pixel u; rj is the spectral reflectance of surface component j; fuj is the 

fraction of surface component j in pixel u; eu is the un-modeled residual for pixel u; and n is the number 

of surface components. 

These were split according to the Biophysical Composition Index (BCI), first proposed by [63], 

involving the post-processing of the Landsat optical data by examination and inclusion of the Tasseled 

Cap (TC) transformation, originally developed for Landsat 5 MSS imagery, by [65] and later for Landsat 

7 ETM+ imagery by [66]. ܫܥܤ = ܪ) + (ܮ 2 − ܪ)⁄ܸ + (ܮ 2 + ܸ⁄  (2)

where H is “high albedo”, the normalized TC1; L is “low albedo”, the normalized TC3; and V is 

“vegetation”, the normalized TC2. These are therefore normalized in the following formula that: ܪ = 1ܥܶ − 1௠௔௫ܥ1௠௜௡ܶܥܶ − 1௠௜௡ (3)ܥܶ

ܸ = 2ܥܶ − 2௠௔௫ܥ2௠௜௡ܶܥܶ − 2௠௜௡ (4)ܥܶ

ܮ = 3ܥܶ − 3௠௔௫ܥ3௠௜௡ܶܥܶ − 3௠௜௡ (5)ܥܶ

3.3. Validation 

3.3.1. Accuracy Assessment 

In order to review the accuracy of the classification, platform supplied error matrices have 

traditionally been used [67,68]. However, the more traditional forms of error and confusion matrices to 

assess the accuracy of classification were judged too simplistic [69]. Alternative methods that use a 

concentric circle concept upon which sample plots are drawn in the eight cardinal directions have been 

presented in more contemporary literature [13,70,71]. Herein was followed this guideline and 10 × 10 pixel 

(300 m × 300 m) plots were randomly selected to cover all study areas. The classification results were 

converted from WGS 1984 UTM zone 30N to British National Grid to make the coordinate system 

consistent with the aerial photography. The plots were selected based on the intersection of straight lines, 

following the eight cardinal directions (N, NE, E, SE, S, SW, W, NW), and concentric circles, with a 

distance of 100 pixels (3000 m) between two circles, from the centroid, to the extreme of each study 

area. Due to the 2-year gap between the Landsat ETM+ data (2003) and the geo-referenced  

ortho-rectified aerial photography (2005), a careful inspection was conducted based on expert local 

knowledge of the study areas. Where problems were detected, the plots were replaced with another 

randomly selected plot, drawn from a random sampling tool available in ArcGIS. The LSMA was 

modified by the results of Parts I and II of the classification and average values were extracted from each 

of the plots. An unsupervised Nearest Neighbour classification was performed on the corresponding 

areas of the aerial photography and ISA’s identified and averaged across individual plots. From these 

two results, the root mean square error (RMSE), the mean absolute error (MAE), and the coefficient of 

determination (R2), between the ISA’s in both datasets were calculated, using Microsoft Office Excel. 

The formulae are given below: 
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ܧܵܯܴ = ඨ∑ መܫ) − ௜)ଶே௜ୀଵܫ ܰ  (6)

ܧܣܯ = ܰିଵ෍หܫ௜ − መ௜หேܫ
௜ୀଵ  (7)

ܴଶ = ∑ ൫ܫመ௜ − ∑௜̅൯ே௜ୀଵܫ ௜ܫ) − ௜̅)ଶே௜ୀଵܫ  (8)

where Îi is the estimated ISA fraction for sample i; Ii is the ISA proportion calculated from the 

unsupervised classification of the aerial photography; Ī is the mean value of the samples; and N is the 

number of samples [6]. 

3.3.2. Assessment of Agreement 

In our study, a quantitative comparison between the classification results and the OS MasterMap 

product was firstly performed in order to assess the appropriateness of the currently most widely used 

GIS product on the UK for the purposes of ISA extraction. A technique first employed for assessing the 

accuracy of calculated burn scar areas [17,72,73] was utilised to detect the efficiency of the user 

classification compared to the ISA’s outlined by the OS MasterMap product. In order to carry out this 

accuracy assessment, it was necessary to derive three parameters from the user classification and the OS 

MasterMap product and input into three separate formulae. These included the Detected Area Efficiency 

(DAE), False Area Rate (FAR, commission error) and the Skipped Area Rate (SAR, omission error), 

which were derived from the following equations: ܧܣܦ = ܣܫܦܣܫܦ + ܣܫܵ ܴܣܨ(9)  = ܣܫܦܣܫܨ + ܴܣܵ(10) ܣܫܨ = ܣܫܦܣܫܵ + ܣܫܵ  (11)

where: DIA is the detected impervious area (common area between the generated impervious area dataset 

by the proposed method application and the reference OS MasterMap), SIA is the skipped impervious 

area (the area included in the OS MasterMap but not in the generated impervious area dataset by the 

proposed method application), and FIA is the false impervious area (the area included in the generated 

impervious surface area by the proposed method application but not in the OS MasterMap). DAE, FAR 

and SAR take values between 0 and 100%, where values greater than 80% represent generally a very 

good agreement between by the impervious surface area predicted by the proposed method application 

and reference MasterMap dataset [72,73]. This step was performed in ArcGIS software platform 

(ESRI Inc., v. 10.1) 

4. Results 

The three part classification process method quantified the sub-pixel fractions of high albedo, 

vegetation and low albedo; as described in [63]. Figures 4 and 5 show the results of the masking and 
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subsequent estimation of ISA’s, in Wrexham and the South Wales study sites. A large fraction of ISA’s 

are distributed within the city centres and satellite industrial areas; medium fractions of ISA’s are 

distributed amongst the residential areas of towns and cities within the all study area; and agricultural 

areas (the largest land cover type in Wales) that were not masked by Parts I or II (arable and non-arable), 

have an extremely low fraction of ISA. The largest changes in all study areas occurred during the 1990s 

(1989–1999). While the net urban area increased consistently at variable amounts, ISA fractions 

increased toward the middle of the study period and subsequently decreased at the end of the study 

period, with period-end values still higher than the original period-start values. The largest study area 

percentage coverage of ISA’s was found in the Welsh capital Cardiff. However, the largest mean values 

of ISA fractions over single study areas occur in the major industrial areas of South Wales, fluctuating 

between ~64% and 55% from 1989–2011 and Wrexham, north Wales, fluctuating between 70% and 

63% from 1989 to 2011. 

The accuracy of the three part classification process method by comparing its results to high 

resolution aerial photography (supplied by the Welsh Government) was also evaluated. Figure 6 shows 

the accuracy assessment of ISA estimated by our proposed approach. A greater number (98 out of 144) 

of assessment plot windows were located within the five contiguous South Wales study areas due to the 

large area percentage (73%) of the entire study represented. There was some overestimation in the lower 

percentages of ISA and a small number of underestimated plots in the higher percentages of ISA 

estimation. However, this still resulted in an r2 value of 0.95 with an RMSE of 0.054. 

Figure 4. ISA extraction from the contiguous South Wales study sites for; 1989 (top left), 

1999 (top right), 2003 (bottom left), and 2011 (bottom right). 
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Figure 5. ISA extraction over the Wrexham study area for 1989 (top left),  

1999 (top right), 2003 (bottom left), and 2011 (bottom right). 
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Figure 6. Accuracy assessment of extracted ISA in comparison to high resolution aerial 

photography, (over 144 sample plots) where the grey line represents a 1:1 ratio and the black 

is the linear trend line. 

	
In order to assess the appropriateness of utilizing OS Master Map for the extraction of ISA within the 

UK, as is currently done, a number of scores were generated for all the seven study areas selected for 

the 2011 results, following [72,73]. The DAE’s were highly variable between study areas with only 21% 

for Wrexham and 85% for Swansea. Average scores for the seven study areas were 62%, 37% and 61% 

for DAE, SAR and FAR respectively (Table 2). 

Table 2. Detected Area Efficiencies (DAE), False Area Rates (FAR), and Skipped Area 

Rates (SAR), converted to percentage scores; for all seven study sites in 2011, when 

compared to OS MasterMap. 

Study Site DAE SAR FAR

Wrexham 21.67 78.33 62.49 

Aberystwyth 58.10 41.90 66.42 

Swansea 86.12 13.88 59.26 

Neath Port Talbot 78.61 21.39 63.69 

Rhondda 77.08 22.92 60.23 

Caerphilly 72.65 27.35 61.59 

Cardiff 46.64 53.36 54.75 

Average 62.98 37.02 61.20 

5. Discussion 

5.1. Analysis of Dynamic Changes in ISA  

ISA expansion can be easily observed both visually and quantitatively across the South Wales study 

sites (Figure 4). Average concentrations of ISA within the urban extent increased from 1989 to 2011 

with a peak of ISA in 1999. This peak correlates with a housing development “boom” that occurred in 

1999 [30] in the UK with many housing developments being commissioned across the UK, while the 
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relative lulls of 1989 and 2011 also coincide with the beginning of economic recession. The reflection 

of this in the results presented is therefore information of high priority to sustainable planning and urban 

management. While the outer extents of many of the urban areas in Wales have not altered significantly 

over the past 22 years, the ISA within them has significantly expanded. This would therefore suggest that 

policies on urban restriction have led to the infilling of existing urban boundaries [74] and the green spaces 

within them in order to accommodate expanding populations. 

5.2. Comparisons with OS MM 

Figure 7 shows comparisons between the results of the proposed method and the OS MM product in 

selected sample locations. This highlights the lack of detail in residential areas of the OS MM product, 

with around 80% of the falsely classified areas being gardens. With private land use changing fairly 

frequently, responsive with social and financial trends, it would seem important to track these changes 

in terms of ISA [30]. The OS MasterMap product may not ever hope to do this as the main remit of the 

product is to identify land parcels rather than materials [54,75]. Under normal circumstances, high FAR 

scores would be indicative of a poor classification but this is on the contrary here due to the lack of detail 

in residential areas for the OS MM product. This is reflected in Table 2, with the false area rates often 

exceeding 50%. With minimal effort compared to manually digitising many different materials within 

all urban environments, the classifier has proven capable of quantifying these variables. 

Figure 7. Comparison of extracted ISA between a, b, c: high resolution aerial photography 

(for reference), d, e, f: OS MasterMap and g, h, i: the results of the presented methodology. 
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The performance of both datasets compared well with the high resolution area photography in areas 

of industrial land use and areas of minimal ISA, such as roads (Figure 7). When an unsupervised, Nearest 

Neighbour classification was performed on the three example windows (Table 3), this was clearly shown 

in the percentage of ISA in each window. 

Table 3. Percentage of ISA in each example window (from Figure 6) where Classifier is the 

result of the methodology presented in this paper, OSMM is the OS MasterMap product, 

and AP is the result of the nearest neighbour classification on the high resolution 

aerial photography. 

Example Window (Figure 7) Classifier OSMM AP 

1 56.31 32.69 50.29 

2 63.24 60.35 62.84 

3 11.37 15.88 13.61 

When analysing the skipped areas of ISA from the OS MasterMap, it was revealed that around 50% 

of these areas were small dispersed minor roads, while the other 50% were predominantly farm 

buildings/yards and hard standings. While example Windows 1 and 2 slightly overestimated (falsely 

classified) ISA, Window 3 illustrates the masking of farm buildings/ yards and hard standings in the  

1st part of the classification with the small underestimation of ISA. Overestimation in the examples may 

be accounted for while considering the weather conditions of the acquisition date with high radiation 

values produced from clear skies in the visible light channels. 

5.3. Limitations and Recommendations  

As the findings of this study suggested, much of the underestimated/skipped ISA is resultant from 

minor roads and farm infrastructure. While the former is not resolvable while using the Landsat archive, 

given the resolution, the latter can be resolved by filtering the masking LPIS polygons to include farm 

buildings/yards and other concrete surfaces, for further analysis. This will enable the inclusion of these 

areas within study site ISA estimations. While the impact of this on pixels containing ISA, may be 

significant (~20% more), impact on ISA estimations is not predicted to be. However, to gain a thorough 

estimation over a national scale, to which the methodology is intended to be extended, the authors 

suggest that this is a necessary improvement for future iterations of the methodology. Due to the limited 

frequency of 100% cloud free data from Landsat satellites over Wales and the UK, a yearly report of 

ISA was unable to be achieved in the instance of this study. The replacement of cloud-tainted data is 

achievable through the method proposed by [32], and performed to an extremely high level. However, 

this was not achievable on a perennial base. A recommendation to resolve this would be to conduct the 

estimation of ISA over a number of years. With most national reporting conducted on a bi-quinquennial 

basis, it is acceptable within a policy context that the methodology is also carried out on the same 

temporal scale. [45], the integration of land surface temperature and LSMA-derived fraction images, 

creates an effective tool for the refinement of a high-quality impervious surface image. In future 

iterations of the methodology, moving towards the proposed bi-quinquennial cycle, land surface 

temperature may therefore be key for further success and greater levels of accuracy. 
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Finally there were a small number of underestimations in ISA highlighted in Figure 6, towards the 

higher percentages. This is due, to the removal of potential ISA by overhanging vegetation; a side effect 

of the leaf on capture period of the high resolution aerial photography [76]. For future study, it is 

suggested that this be addressed by utilizing leaf off imagery where possible and therefore correcting for 

this. For the overestimations in the lower percentages, it is suggested that this is due to the 

misclassification of some large areas of railway track within the assessment windows. In future iterations 

of the methodology, ancillary data identifying railway tracks would remedy this problem. 

6. Conclusions 

In this study, a combination of methods was proposed for mapping ISA based on freely distributed 

Earth Observation (EO) imagery by combining a traditional classifier and a linear spectral mixture 

analysis (LSMA). The usefulness of the proposed technique in mapping ISA was demonstrated for 

several regions in Wales, UK using a series of Landsat TM/ETM+ images to extract ISA over these 

study sites.  

With the continuation of the Landsat programme, the protraction of the proposed methodology has 

been assured. The new sensor also has superior facilities for detecting clouds in the sub-blue 

wavelengths. These areas may then be replaced by other frequently repeated scenes and a full 

classification of the study area can be achieved. The inclusion of other data, such as Synthetic Aperture 

Radar (SAR) may both further improve the accuracy of the current technique and lead to a more detailed 

classification hierarchy. Finally, the present study not only inaugurates the local retrieval of ISA for 

Wales, but also meliorates the existing EU international figures, and expands relatively stationary 

“global” US/China centric ISA research. The practical usefulness of the method proposed here remains 

to be seen in the near future. 
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