- 1 Alluvial fan records from southeast Arabia reveal multiple
- 2 windows for human dispersal
- 3 Ash Parton¹, Andrew R. Farrant², Melanie J. Leng³, Matt W. Telfer⁴, Huw S.
- 4 Groucutt¹, Michael D. Petraglia¹, and Adrian G. Parker⁵
- ⁵ ¹School of Archaeology, Research Laboratory for Archaeology and the History of Art,
- 6 University of Oxford, Oxford OX1 2HU, UK
- 7 ²British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
- 8 ³NERC (Natural Environment Research Council) Isotope Geosciences Laboratory,
- 9 British Geological Survey, Nottingham NG12 5GG, UK
- ⁴School of Geography, Earth and Environmental Sciences, Plymouth University, Drake
- 11 Circus, Plymouth, Devon PL4 8AA, UK
- 12 ⁵Human Origins and Palaeo-Environments (HOPE) Research Group, Faculty of
- 13 Humanities and Social Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3

14 *OBP*, *UK*

15 ABSTRACT

The dispersal of human populations out of Africa into Arabia was most likely linked to episodes of climatic amelioration, when increased monsoon rainfall led to the activation of drainage systems, improved freshwater availability, and the development of regional vegetation. Here we present the first dated terrestrial record from southeast Arabia that provides evidence for increased rainfall and the expansion of vegetation during both glacial and interglacial periods. Findings from extensive alluvial fan deposits indicate that drainage system activation occurred during Marine Isotope Stage (MIS) 6

23	(ca. 160–150 ka), MIS 5 (ca. 130–75 ka), and during early MIS 3 (ca. 55 ka). The
24	development of active freshwater systems during these periods corresponds with
25	monsoon intensity increases during insolation maxima, suggesting that humid periods in
26	Arabia were not confined to eccentricity-paced deglaciations, and providing
27	paleoenvironmental support for multiple windows of opportunity for dispersal out of
28	Africa during the late Pleistocene.
29	INTRODUCTION
30	Considerable debate surrounds the dispersal of human populations out of Africa.
31	There are two predominant hypotheses concerning the timing of dispersal, each
32	contrasting in their emphasis on the role of the Arabian interior and its changing climate.
33	In one scenario, human populations expanded from an ancestral base in Africa, dispersing
34	rapidly along the coastlines of Arabia to southern Asia ca. 60–50 ka (e.g., Mellars et al.,
35	2013). Another model posits that dispersal into the Arabian interior began much earlier
36	(ca. 130–75 ka), possibly during multiple phases (Groucutt and Petraglia, 2012), when
37	increased rainfall provided sufficient freshwater to support expanding populations. Dated
38	archeological sites in Arabia (Armitage et al., 2011; Petraglia et al., 2011, 2012; Rose et
39	al., 2011) support an earlier model, and correspond with humid phases during Marine
40	Isotope Stages (MIS) 5e (ca. 128–115 ka), 5c (ca. 105–95 ka), and 5a (ca. 85–74 ka).
41	Speleothem and lacustrine records confirm that during interglacial periods such as
42	MIS 5e there were significant increases in humidity in Arabia, following northward

43 incursions of monsoon rainfall (e.g., Burns et al., 2001; Fleitmann et al., 2003; Rosenberg

- 44 et al., 2011). However, archives such as speleothems require >350 mm of rainfall to
- 45 initiate growth (e.g., Vaks et al., 2010; Fleitmann et al., 2011), and periods of lesser

46	rainfall that may be sufficient to sustain human populations but not speleothem growth
47	are absent from these records. Consequently, some studies have suggested that climatic
48	conditions during mid-high-latitude glacial periods represent a natural barrier to humans
49	(e.g., Rosenberg et al., 2011), despite the presence of archeological sites dated to early
50	MIS 3 (between ca. 55 and 40 ka) in the United Arab Emirates and Yemen (Armitage et
51	al., 2011; Delagnes et al., 2012). By contrast, alluvial fan sequences have the potential to
52	record a wide range of landscape changes and climatic events. Here we present a unique
53	alluvial fan aggradation record from southeast Arabia spanning the past ca. 160 k.y.
54	Situated along the proposed southern dispersal route, the Al Sibetah record is to date the
55	most comprehensive terrestrial archive from the Arabian Peninsula, and provides
56	evidence for multiple humid episodes during both glacial and interglacial periods.
57	ENVIRONMENTAL SETTING AND METHODS
58	Extensive bajadas emanate from the western flanks of the Hajar Mountains and
59	extend to the Wahiba Sands in Oman (Fig. 1). Situated at the interface of the mountains

and the Rub al Khali sand sea, these fans are particularly sensitive to changes in rainfall

61 patterns and thus are excellent indicators of monsoon variability. Modern alluvial fans are

62 largely relict under present climatic conditions; however, previous larger fans extended

63 much further west and are now concealed beneath dunes. Several studies have

64 highlighted the importance of these deposits as potentially important climatic indicators

65 (Maizels, 1987; Burns and Matter, 1995; Preusser et al., 2002; Blechschmidt et al., 2009).

66 The Al Sibetah quarry (N24.33346, E55.76125) exposes a 42 m succession within the

67 partially buried Al Ain fan, comprising interbedded sands, conglomerates, and paleosols

68 in multiple fining-upward cycles.

69	Paleoenvironmental (geochemical, carbonate isotope, magnetic susceptibility,
70	phytolith, laser granulometry) analyses of the fine-grained sediment component (<2 mm)
71	were used to detect the response of fan aggradation processes to climatic changes. The
72	chronology is constrained by 12 single aliquot regenerative optically stimulated
73	luminescence dates. Full methods and additional paleoenvironmental and chronological
74	information are presented in the GSA Data Repository ¹ .
75	PALEOENVIRONMENTAL RECONSTRUCTIONS AND CHRONOLOGY
76	The Al Sibetah quarry comprises medial-distal alluvial fan sediments visible in
77	multiple exposures 20–100 km downfan (Fig. 1). The fan is very low gradient (0.2°-
78	0.5°), featuring imbricated gravel beds \sim 20 km from the fan apex, indicative of a fluvial
79	(climatic) rather than a gravity-driven (base-level change) regime. The mixed clast and
80	fine-grained sedimentary composition of the sequence is typical of mixed-load streams
81	with braided reaches. Stream gravels, typified by high susceptibility values, fine upward
82	into calcareous silts and sands, paleosols, or eolian material over 13 aggradation
84	phases (Fig. 2), each indicating a grad ual waning of stream flow. Thick
85	homogeneous paleosols with extensive rootlets and bioturbation represent gradual
86	sedimentation, landscape stabilization, and grassland development, which typically
87	occurs over many years. Six periods of stream channel aggradation followed by soil
88	and grassland development occurred during late MIS 6, with a mean depositional age
89	of 158.7 ± 12.9 ka. This is in keeping with a peak in summer monsoon intensity and
90	insolation between ca. 160 and 150 ka (e.g., Clemens and Prell, 2003). Phytolith data
91	indicate a mix of C_3 (more humid) and C_4 (more arid) grassland types, with C_3 pooid

92	phytolith morphotypes accounting for between 27% and 60%, and panocoid and
93	chloridoid values ranges being 4.7%–10% and 3%–10%, respectively. The δ^{13} C values
94	from pedogenic carbonates indicate an overall increase in the proportion of C ₄ grasses
95	across the landscape throughout late MIS 6 (-4.89‰ to +0.99‰). Soil and grassland
96	formation and increased regional humidity are generally accompanied by a depletion of
97	δ^{18} O values, increased hydrolysis, and decreased salinization, and decreased particle size
98	and magnetic susceptibility values following the cessation of detrital and clastic influx
99	(Fig. 2).
100	Three phases of stream channel activation and grassland development occurred
101	between ca. 130 ka and ca. 88 ka, representing wet phases during MIS 5e (ca. 128-115
102	ka), MIS 5c (ca. 105–95 ka), and MIS 5a (ca. 85–74 ka). MIS 5e channel gravels are
103	asymmetric in cross section with greater imbrication and depth, reflecting a localized
104	increase in gravel accumulation and point-bar development indicative of a larger
105	meandering channel. Soil formation and vegetative processes were restricted during MIS
106	5 (likely due to a more mobile channel with strong currents), and the zone of grassland
107	formation was farther downfan. The δ^{13} C values during MIS 5 are between -3.45% and
108	+0.58% and indicate a dominance of C ₄ grasses throughout the landscape; however, a
109	higher proportion of detrital and clastic material makes climatic interpretations from
110	isotope data problematic. Panicoid values are highest (13%) during MIS 5e, with an
111	overall higher proportion of woody taxa in the region during MIS 5 than MIS 6, and the
112	highest values during MIS 5e. More mesic conditions are observed during MIS 5e and
113	MIS 5a, and more xeric conditions during MIS 5c. This is supported by generally lower
114	hydrolysis and greater salinization during MIS 5c.

115	DOI:10.1130/G36401.1 MIS 5 sediments are overlain by a 2-m-thick sequence of eolian material dated to
116	ca. 73 ka, reflecting dune mobilization and increased aridity during MIS 4. These are
117	overlain by stream-channel gravels, which represent the redevelopment of a braided
118	channel network during a subsequent humid phase. This stratigraphic unit was identified
119	in distal exposures of the Al Sibetah fan at Remah (Fig. 1) ~40 km to the
120	southwest and dated to ca. 55 ka (Farrant et al., 2012), and is indicative of increased
121	rainfall during early MIS 3. No Holocene-age fan aggradation was recorded at Al
122	Sibetah; however, an age of ca. 5 ka was recorded in overlying dune sands, representing a
123	phase of dune formation during the mid-Holocene that broadly corresponds with the end
124	of increased Holocene rainfall in Arabia (Parker, 2009).
125	DISCUSSION
126	The sequence at Al Sibetah provides a unique record of climate-driven landscape
127	changes in Arabia between MIS 6 and MIS 3. This period coincides with key processes in
128	human evolution: the origin of Homo sapiens in Africa (ca. 200-150 ka), the early
129	
	dispersal of humans out of Africa (ca. 130-80 ka), and the post-MIS 5 dispersal into Asia
130	dispersal of humans out of Africa (ca. 130–80 ka), and the post-MIS 5 dispersal into Asia during MIS 3 (ca. 60–50 ka). The availability of freshwater in the southern dispersal zone
130 131	
	during MIS 3 (ca. 60–50 ka). The availability of freshwater in the southern dispersal zone
131	during MIS 3 (ca. 60–50 ka). The availability of freshwater in the southern dispersal zone during these periods would have been critical to the demographic expansion of early
131 132	during MIS 3 (ca. 60–50 ka). The availability of freshwater in the southern dispersal zone during these periods would have been critical to the demographic expansion of early human populations. Increased vegetation and grassland development within range of the
131 132 133	during MIS 3 (ca. 60–50 ka). The availability of freshwater in the southern dispersal zone during these periods would have been critical to the demographic expansion of early human populations. Increased vegetation and grassland development within range of the mountains would have provided an attractive location for hunting, while the development
131132133134	during MIS 3 (ca. 60–50 ka). The availability of freshwater in the southern dispersal zone during these periods would have been critical to the demographic expansion of early human populations. Increased vegetation and grassland development within range of the mountains would have provided an attractive location for hunting, while the development of shallow aquifers along the bajada would have extended potable water resources for

138	DOI:10.1130/G36401.1 humidity at this time is documented in the Levant, central Negev, and southern Jordan
139	(Bar-Matthews et al., 2003; Petit-Maire et al., 2010; Vaks et al., 2010), speleothem data
140	from southern regions of Arabia suggest a continually hyperarid climate, with monsoon
141	rainfall displaced substantially south due to increased glacial boundary conditions
142	(Fleitmann et al., 2011). This study presents significant evidence for increased rainfall
143	during MIS 6 in southern Arabia, demonstrating that the inland convection of monsoon
144	rainfall is not prevented during glacial periods. This corresponds with marine evidence
145	for monsoon intensification ca. 165–150 ka (e.g., Malaizé et al., 2006; Caley et al., 2011),
146	and incipient soil formation reported in the Wahiba between ca. 160 and 140 ka (Preusser
147	et al., 2002; Radies et al., 2004).
148	Fan activation throughout MIS 5 is consistent with speleothem and lake records
149	from Oman, Yemen, and Saudi Arabia (i.e., Fleitmann et al., 2011; Rosenberg et al.,
150	2011), and with an early expansion of human populations out of Africa (Groucutt and
151	Petraglia, 2012). MIS 5e channel flow was typified by a larger fluvial system, which at
152	times may have extended to the Persian Gulf coast (Farrant et al., 2012),
153	facilitating demographic connectivity between mountainous and coastal regions.
154	Drainage activation in the southernmost reaches of the bajada during MIS 5 led to the
155	formation of the \sim 1400 km ² paleolake Saiwan (Rosenberg et al., 2012), while to the
156	north, extensive braided stream development occurred at Wadi Dhaid (Atkinson et al.,
157	2013). Findings from Al Sibetah also indicate that MIS 5c was the weaker of the three
158	MIS 5 humid periods, with decreased woody taxa and more xeric conditions than MIS 5e
159	or 5a. It is important that the timing of freshwater availability and grassland development
160	at Al Sibetah coincides with the occupation of Jebel Faya ca. 130–90 ka (Figs. 1 and 3),

161 suggesting that fan drainage processes may have facilitated population movements

162 through the region during that time.

163	Other studies have stated that ca. 75–10 ka, intense aridity prevailed in Arabia
164	(e.g., Fleitmann et al., 2011; Rosenberg et al., 2011), preventing population movements
165	through the interior. The posited major expansion of human populations out of Africa ca.
166	60-50 ka is in keeping with this notion, suggesting an exclusively coastal route (Mellars
167	et al., 2013). However, paleoenvironmental evidence from Arabia indicates that sufficient
168	freshwater resources existed in the interior to support expanding populations. Drainage
169	activation between ca. 60 and 50 ka is recorded in several regions (Krbetschek, 2008;
170	McLaren et al., 2009; Farrant et al., 2012; Parton et al., 2013), congruent with an increase
171	in monsoon intensity recorded in marine records (e.g., Clemens and Prell, 2003; Govil
172	and Naidu, 2010), speleothem data from Socotra (Burns et al., 2003), and a Middle
173	Paleolithic site in Yemen dated to ca. 55 ka (Delagnes et al., 2012). Therefore, the notion
174	that arid conditions during MIS 3 would have prevented dispersals through the Arabian
175	interior is no longer tenable and thus challenges an exclusively coastal route of migration.
176	It is significant that the periodicity of increased rainfall presented by the Al Sibetah and
177	surrounding regional records suggests that incursions of monsoon rainfall, and in turn,
178	periods of demographic expansion through the interior of Arabia, may have been driven
179	by insolation maxima (Fig. 3), rather than mid-high-latitude deglaciations.
180	CONCLUSIONS
101	The Al Silvetch ellussial for accusance manyides equipment and consistive macand of

181 The Al Sibetah alluvial fan sequence provides a unique and sensitive record of 182 landscape change in southeast Arabia between MIS 6 and MIS 3. Phases of monsoon-183 driven alluvial fan aggradation occurred during both glacial and interglacial periods, in

- 184 line with insolation maxima. The occurrence of humid periods not previously identified 185 in lacustrine or speleothem records highlights the complexity and heterogeneity of the 186 Arabian paleoclimate, and suggests that interior migration pathways through the Arabian 187 Peninsula may have been viable approximately every 23 k.y. since at least MIS 6. 188 **ACKNOWLEDGMENTS** 189 We acknowledge the support of the Natural Environment Research Council 190 (NERC), the European Research Council (grant 295719), and the Ministry of Energy, 191 United Arab Emirates, Farrant and Leng publish with the approval of the Executive 192 Director of the British Geological Survey (NERC). We thank Paul Breeze for 193 contributions to an earlier draft of this paper. 194 **REFERENCES CITED** 195 Armitage, S.J., Jasim, S.A., Marks, A.E., Parker, A.G., Usik, V.I., and Uerpmann, H.-P., 196 2011, The southern route "out of Africa": Evidence for an early expansion of modern 197 humans into Arabia: Science, v. 331, p. 453-456, doi:10.1126/science.1199113. 198 Atkinson, O.A.C., Thomas, D.S.G., Parker, A.G., and Goudie, A.S., 2013, Late 199 Quaternary humidity and aridity dynamics in the northeast Rub' al-Khali, United 200 Arab Emirates: Implications for early human dispersal and occupation of eastern 201 Arabia: Quaternary International, v. 300, p. 292–301, 202 doi:10.1016/j.quaint.2012.12.014. 203 Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C.J.,
- 204 2003, Sea- land oxygen isotope relationships from planktonic foraminifera and
- 205 speleothems in the eastern Mediterranean region and their implication for

- 206 paleorainfall during interglacial intervals: Geochimica et Cosmochimica Acta, v. 67,
- 207 p. 3181–3199, doi:10.1016/S0016-7037(02)01031-1.
- 208 Berger, A., and Loutre, M.F., 1991, Insolation values for the climate of the last 10 million
- 209 years: Quaternary Science Reviews, v. 10, p. 297–317, doi:10.1016/0277-
- 210 3791(91)90033-Q.
- 211 Blechschmidt, I., Matter, A., Preusser, F., and Rieke-Zapp, D., 2009, Monsoon triggered
- formation of Quaternary alluvial megafans in the interior of Oman: Geomorphology,
- 213 v. 110, p. 128–139, doi:10.1016/j.geomorph.2009.04.002.
- Burns, S., and Matter, A., 1995, Geochemistry of carbonate cements in surficial alluvial
- 215 conglomerates and their paleoclimatic implications, Sultanate of Oman: Journal of
- 216 Sedimentary Research, v. 65, p. 170–177, doi:10.1306/D426805E-2B26-11D7-
- 217 8648000102C1865D.
- 218 Burns, S., Fleitmann, D., Matter, A., Neff, U., and Mangini, A., 2001, Speleothem
- 219 evidence from Oman for continental pluvial events during interglacial periods:
- 220 Geology, v. 29, p. 623–626, doi:10.1130/0091-
- 221 7613(2001)029<0623:SEFOFC>2.0.CO;2.
- Burns, S.J., Fleitmann, D., Matter, A., Kramers, J., and Al-Subbary, A.A., 2003, Indian
- 223 Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13:
- 224 Science, v. 301, p. 1365–1367, doi:10.1126/science.1086227.
- 225 Caley, T., Malaize, B., Zaragossi, S., Rossignol, L., Bourget, J., Eynaud, F., Martinez, P.,
- 226 Giraudeau, J., Charlier, K., and Ellouz-Zimmermann, N., 2011, New Arabian Sea
- 227 records help decipher orbital timing of Indo-Asian monsoon: Earth and Planetary
- 228 Science Letters, v. 308, p. 433–444, doi:10.1016/j.epsl.2011.06.019.

- 229 Clemens, S., and Prell, W.L., 2003, A 350,000 year summer-monsoon multi-proxy stack
- from the Owen Ridge, northern Arabian Sea: Marine Geology, v. 201, p. 35–51,
- doi:10.1016/S0025-3227(03)00207-X.
- 232 Delagnes, A., et al., 2012, Inland human settlement in southern Arabia 55,000 years ago:
- 233 New evidence from the Wadi Surdud Middle Paleolithic site complex, western
- 234 Yemen: Journal of Human Evolution, v. 63, p. 452–474,
- doi:/10.1016/j.quaint.2012.12.012.
- 236 Farrant, A.R., Ellison, R.A., Thomas, R.J., Pharaoh, T.C., Newell, A.J., Goodenough,
- 237 K.M., Lee, J.R., and Knox, R.O., 2012, The geology and geophysics of the United
- Arab Emirates: Geology of the Western and Central United Arab Emirates, Volume
- 239 6: Keyworth, Nottingham, UK, British Geological Survey, 371 p.
- 240 Fleitmann, D., Burns, S.J., Neff, U., Mangini, A., and Matter, A., 2003, Changing
- 241 moisture sources over the last 330,000 years in northern Oman from fluid-inclusion
- evidence in speleothems: Quaternary Research, v. 60, p. 223–232,
- 243 doi:10.1016/S0033-5894(03)00086-3.
- 244 Fleitmann, D., Burns, S.J., Pekala, M., Mangini, A., Al-Subbary, A., Al-Aowah, M.,
- 245 Kramers, J., and Matter, A., 2011, Holocene and Pleistocene pluvial periods in
- 246 Yemen, southern Arabia: Quaternary Science Reviews, v. 30, p. 783–787,
- doi:10.1016/j.quascirev.2011.01.004.
- 248 Govil, P., and Naidu, P.D., 2010, Evaporation-precipitation changes in the eastern
- Arabian Sea for the last 68 ka: Implications on monsoon variability:
- 250 Paleoceanography, v. 25, PA1210, doi:10.1029/2008PA001687.

251	Groucutt, H.S., and Petraglia, M.D., 2012, The prehistory of the Arabian Peninsula:
252	Deserts, dispersals and demography: Evolutionary Anthropology, v. 21, p. 113-125,
253	doi:10.1002/evan.21308.
254	Krbetschek, M.R., 2008, Optically stimulated luminescence (OSL) dating of sediments
255	from Jebel al-Emaylah (UAE), in Uerpmann, HP., and Jasim, S.A., eds., The
256	natural environment of Jebel al-Buhais: Past and present: Tübingen, Germany, Kerns
257	Verlag, p. 43–45.
258	Maizels, J.K., 1987, Plio-Pleistocene raised channel systems of the western Sharqiya
259	(Wahiba), Oman, in Frostick, L., and Reid, I., eds., Desert sediments: Ancient and
260	modern: Geological Society of London Special Publication 35, p. 31-50,
261	doi:10.1144/GSL.SP.1987.035.01.04.
262	Malaizé, B., Joly, C., Vénec-Peyré, M.T., Bassinot, F., Caillon, N., and Charlier, K.,
263	2006, Phase lag between intertropical convergence zone migration and subtropical
264	monsoons onset over northwestern Indian Ocean during marine isotopic substage 6.5
265	(MIS 6.5): Geochemistry, Geophysics, Geosystems, v. 7, Q12N08,
266	doi:10.1029/2006GC001353.
267	McLaren, S.J., Al-Juaidi, F., Bateman, M.D., and Millington, A.C., 2009, First evidence
268	for episodic flooding events in the arid interior of central Saudi Arabia over the last
269	60 ka: Journal of Quaternary Science, v. 24, p. 198–207, doi:10.1002/jqs.1199.
270	Mellars, P., Gori, K.C., Carr, M., Soares, P.A., and Richards, M.B., 2013, Genetic and
271	archaeological perspectives on the initial modern human colonization of southern
272	Asia: National Academy of Sciences Proceedings, v. 110, p. 10,699–10,704,
273	doi:10.1073/pnas.1306043110.

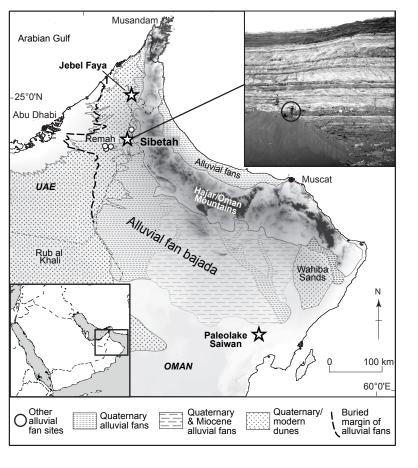
274 Parker, A.G., 2009, Pleistocene climate change in Arabia: Developing a framework for 275 Hominin dispersal over the last 350 ka, in Petraglia, M.D., and Rose, J.I. eds., The 276 evolution of human populations in Arabia: London, Springer, p. 39–51. 277 Parton, A., Farrant, A.R., Leng, M.J., Schwenninger, J.-L., Rose, J.I., Uerpmann, H.-P., 278 and Parker, A.G., 2013, An early MIS 3 pluvial phase in southeast Arabia: Climatic 279 and archaeological implications: Quaternary International, v. 300, p. 62–74, 280 doi:10.1016/j.quaint.2013.02.016. 281 Petit-Maire, N., Carbonel, P., Revss, J.L., Sanlaville, P., Abed, A., Bourrouilh, R., 282 Fontugne, M., and Yasin, S., 2010, A vast Eemian palaeolake in southern Jordan 283 (29°N): Global and Planetary Change, v. 72, p. 368–373, 284 doi:10.1016/j.gloplacha.2010.01.012. 285 Petraglia, M.D., Alsharekh, A.M., Crassard, R., Drake, N.A., Groucutt, H., Parker, A.G., 286 and Roberts, R.G., 2011, Middle Paleolithic occupation on a Marine Isotope Stage 5 287 lakeshore in the Nefud Desert, Saudi Arabia: Ouaternary Science Reviews, v. 30, 288 p. 1555–1559, doi:10.1016/j.quascirev.2011.04.006. 289 Petraglia, M.D., et al., 2012, Hominin dispersal into the Nefud desert and middle 290 Palaeolithic settlement along the Jubbah palaeolake, northern Arabia: PLoS ONE, 291 v. 7, p. e49840, doi:10.1371/journal.pone.0049840. Preusser, F., Radies, D., and Matter, A., 2002, A 160,000-year record of dune 292 293 development and atmospheric circulation in southern Arabia: Science, v. 296, 294 p. 2018–2020, doi:10.1126/science.1069875.

- 295 Radies, D., Preusser, F., Matter, A., and Mange, M., 2004, Eustatic and climatic controls
- on the development of the Wahiba Sand Sea, Sultanate of Oman: Sedimentology,
- 297 v. 51, p. 1359–1385, doi:10.1111/j.1365-3091.2004.00678.x.
- 298 Rose, J.I., Usik, V.I., Marks, A.E., Hilbert, Y.H., Galletti, C.S., Parton, A., Geiling, J.M.,
- 299 Cerny, V., Morley, M.W., and Roberts, R.G., 2011, The Nubian complex of Dhofar,
- 300 Oman: An African Middle Stone Age industry in southern Arabia: PLoS ONE, v. 6,
- 301 no. 11, p. e28239, doi:10.1371/journal.pone.0028239.
- 302 Rosenberg, T.M., Preusser, F., Fleitmann, D., Schwalb, A., Penkman, K., Schmid, T.W.,
- 303 Al-Shanti, M.A., Kadi, K., and Matter, A., 2011, Humid periods in southern Arabia:
- 304 Windows of opportunity for modern human dispersal: Geology, v. 39, p. 1115–1118,
- 305 doi:10.1130/G32281.1.
- 306 Rosenberg, T.M., Preusser, F., Blechschmidt, I., Fleitmann, D., Jagher, R., and Matter,
- 307 A., 2012, Late Pleistocene palaeolake in the interior of Oman: A potential key-area
- 308 for the dispersal of anatomically modern humans out-of-Africa?: Journal of
- 309 Quaternary Science, v. 27, p. 13–16, doi:10.1002/jqs.1560.
- 310 Vaks, A., Bar-Matthews, M., Matthews, A., Ayalon, A., and Frumkin, A., 2010, Middle-

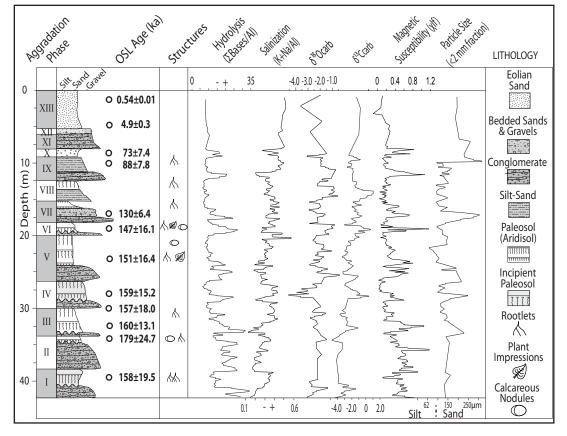
311 Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert:

312 Reconstruction from speleothems of Negev Desert, Israel: Quaternary Science

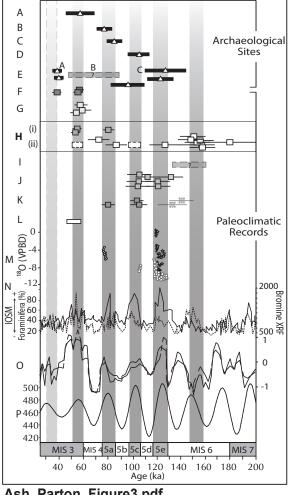
313 Reviews, v. 29, p. 2647–2662, doi:10.1016/j.quascirev.2010.06.014.


- 314 Ziegler, M., Lourens, L.J., Tuenter, E., Hilgen, F., Reichart, G.J., and Weber, N., 2010,
- 315 Precession phasing offset between Indian summer monsoon and Arabian Sea
- 316 productivity linked to changes in Atlantic overturning circulation: Paleoceanography,
- 317 v. 25, PA3213, doi:10.1029/2009PA001884.

318 **FIGURE CAPTIONS**


- 319 Figure 1. Map showing location of the study site and extent of bajada system in southeast
- 320 Arabia, including other identified sections of the Al Ain fan (UAE—United Arab
- 321 Emirates). Inset is photo of the exposed quarry site (person circled for scale). Jebel Faya
- 322 (Armitage et al., 2011) and paleolake Saiwan (Rosenberg et al., 2012) are also shown.
- 324
- 325 Figure 2. Stratigraphic record and photograph of the sequence at Al Sibetah (southeast
- Arabia), showing aggradation phases 1–13,
- 327 optically stimulated luminescence (OSL) ages, geochemical data
- 328 (hydrolysis, salinization), carbonate isotope values ($\delta^{18}O_{carb}$, $\delta^{13}C_{carb}$), magnetic
- 329 susceptibility values, and particle size analysis of <2 mm fine sediment fraction.
- 333
- 334 Figure 3. Comparison of paleoenvironmental records and dated Middle Paleolithic
- 335 archeological sites from Arabia. Gray bars indicate humid periods relevant to this study.
- 336 MIS—Marine Isotope Stage; VPDB—Vienna Peedee belemnite; XRF—X-ray
- 337 fluorescence; IOSM—Indian Ocean Summer Monsoon
- 338 Archeological sites: A—Shi'bat Dihya, Yemen (Delagnes et al., 2012); B—
- 339 JQ1, northern Saudi Arabia (Petraglia et al., 2011); C—JKF, northern Saudi Arabia
- 340 (Petraglia et al., 2012); D—Aybut Auwal, southern Oman (Rose et al., 2011); E—Jebel

341	Faya (assemblages A–C), United Arab Emirates (UAE) (Armitage et al., 2011).
342	Paleoclimatic records: F-fluvial deposits, central Saudi Arabia (McLaren et al., 2009);
343	G—Aqabah paleolake, UAE (Parton et al., 2013); H—Al Ain alluvial fan (UAE) at
344	Remah (i), (Farrant et al., 2012) and Al Sibetah (ii); I-paleosols, Wahiba Sands, Oman
345	(Preusser et al., 2002), J—paleolake Saiwan, Oman (Rosenberg et al., 2012); K—
346	paleolakes Mundafan and Khujaimah, southern Saudi Arabia (Rosenberg et al., 2012);
347	L-Moomi Cave speleothems, Socotra, Yemen (Burns et al., 2003); M-speleothems
348	from Hoti Cave (Oman) and Mukalla Cave (Yemen) (Fleitmann et al., 2011); N-
349	Arabian Sea productivity records from foraminiferal assemblages (solid line) (Caley et
350	al., 2011) and bromine X-ray fluorescence counts (dashed line) (Ziegler et al., 2010);
351	O-summer monsoon stack (dashed line), summer monsoon factor (black line) (Clemens
352	and Prell, 2003); P—summer insolation at 30°N (Wm ⁻²) (Berger and Loutre, 1991).
	Dashed boxes represent either age uncertainties or inferred ages.
356	


- ¹GSA Data Repository item 2015xxx, details on methodologies, optically stimulated
- 358 luminescence geochronology, and phytolith analysis, is available online at
- 359 www.geosociety.org/pubs/ft2015.htm, or on request from editing@geosociety.org or
- 360 Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Ash_Parton_Figure1.pdf

Ash_Parton_Figure2.pdf

Ash_Parton_Figure3.pdf