
1 
 

Usnea antarctica, an important Antarctic lichen, is vulnerable to aspects of regional 1 

environmental change  2 

Running title: Lichen decline in the maritime Antarctic 3 

Stef Bokhorst1,4, Peter Convey2, Ad Huiskes3 and Rien Aerts4 4 

 5 

1 Norwegian Institute for Nature Research (NINA) Department of Arctic Ecology, Tromsø NO-6 

9296, Norway.  7 

2 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley 8 

Road, Cambridge CB3 0ET, United Kingdom 9 

3 Royal Netherlands Institute for Sea Research, Korringaweg 7, P.O. Box 140, NL-4400 AC 10 

Yerseke, The Netherlands 11 

4 Department of Systems Ecology, Institute of Ecological Science, VU University Amsterdam, 12 

De Boelelaan 1085, NL-1081 HV Amsterdam, The Netherlands 13 

 14 

  15 



2 
 

Abstract 16 

Studies of cryptogam responses to climate change in the polar regions are scarce because these 17 

slow-growing organisms require long-term monitoring studies. Here we analyse the response 18 

of a lichen and moss community to 10 years of passive environmental manipulation using open-19 

top chambers (OTCs) in the maritime Antarctic region. Cover of the dominant lichen Usnea 20 

antarctica declined by 71% in the OTCs. However, less dominant lichen species showed no 21 

significant responses except for an increase of Ochrolechia frigida which typically covered 22 

dying lichen and moss vegetation. There were no detectable responses in the moss or associated 23 

micro-arthropod communities to the influence of the OTCs. Based on calculated respiration 24 

rates we hypothesise that the decline of U. antarctica was most likely caused by increased net 25 

winter respiration rates (11%), driven by the higher temperatures and lower light levels 26 

experienced inside the OTCs as a result of greater snow accumulation. During summer U. 27 

antarctica appears unable to compensate for this increased carbon loss, leading to a negative 28 

carbon balance on an annual basis and the lichen therefore appears to be vulnerable to such 29 

climate change simulations. These findings indicate that U. antarctica dominated fell-fields 30 

may change dramatically if current environmental change trends continue in the maritime 31 

Antarctic, especially if associated with increases in winter snow depth or duration. 32 
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Introduction 39 

The Antarctic Peninsula has been one of the regions of the world experiencing relatively  fast 40 

regional climate warming over recent decades (Turner et al. 2009, 2013) and, due to its 41 

relatively simple ecosystems (Convey 2013), serves as an early warning system in 42 

understanding species and ecosystem responses to climate change. Terrestrial ecosystems in the 43 

Antarctic are dominated by mosses and lichens, with only two vascular plants present in 44 

localised areas of the maritime Antarctic (western Antarctic Peninsula region and associated 45 

outlying islands) (Convey 2013). The latter have undergone increases in population size over 46 

recent decades, and this spread is interpreted to be linked to the strong regional warming trend 47 

(Fowbert and Smith 1994; Grobe et al. 1997; Parnikoza et al. 2009; Torres-Mellado and 48 

Casanova-Katny 2011). However, the response of mosses and especially lichens to 49 

environmental change is often much harder to determine due to their slower growth rates 50 

(Lindsay 1973). Studies performed in the Arctic suggest that lichens are likely to decline in 51 

response to increased competition from vascular plants (Cornelissen et al. 2001), although 52 

winter climate change studies often show opposite patterns (Bjerke et al. 2011). Direct 53 

measurements of lichen and moss responses to climate warming without the confounding 54 

presence of vascular plants are sparse and often short term (Bokhorst et al. 2007a), and have 55 

not helped to clarify their predicted response under future climate scenarios (Lang et al. 2012). 56 

Mosses and lichens play a vital role in many ecosystems and in ecosystem service provision 57 

across the world, for instance as sinks for carbon in northern tundra regions (Cornelissen et al. 58 

2007), suppliers of nitrogen to boreal forests (Lindo et al. 2013), food for vertebrates (Berg et 59 

al. 2011) and as a habitat and food source for many invertebrates (Gerson and Seaward 1977; 60 

Bokhorst et al. 2007b; Salmane and Brumelis 2008; Bokhorst et al. 2014; 2015). In the Antarctic 61 

context, the latter is particularly important, as soil invertebrates are the only macroscopic 62 

terrestrial faunal group (Convey 2013). Any changes in moss and lichen community 63 
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composition and abundance are therefore likely to have major implications for the terrestrial 64 

fauna and food web of Antarctic ecosystems.  65 

Since 2003, a passive experimental environmental manipulation study has been 66 

operated in a moss-dominated and a lichen-dominated community on Signy Island in the 67 

northern maritime Antarctic (Bokhorst et al. 2007a). During the early years of this study no 68 

response to the experimental manipulation was observed in the moss community while, in the 69 

lichen community, some deterioration of the dominant lichen Usnea antarctica was reported 70 

(Bokhorst et al. 2007a, 2012), along with a decline in the abundance of micro-arthropods 71 

(Bokhorst et al. 2008). The lichen decline was suggested to be caused by the thicker snow pack 72 

that accumulates inside the manipulation chambers (open-top chambers, OTCs) in winter, 73 

which insulates the vegetation against the extremes of winter temperatures (Bokhorst et al. 74 

2011, 2013). However, this ‘protection’ allows for more physiological activity during the winter 75 

period when it is hard for primary producers to acquire resources due to the low light levels. 76 

Therefore, respiration rates in the vegetation may increase during winter, using up stored 77 

resources, which may be hard to compensate for during the short periods of activity possible 78 

during the summer growing season when mosses and lichens are also often subject to 79 

considerable periods of desiccation stress (Schroeter et al. 1995; Kappen 2000). The decline in 80 

the micro-arthropod community was proposed to be directly linked to the decline in a potential 81 

food source (U. antarctica) (Bokhorst et al. 2007b, 2008). The lack of decline in the moss 82 

community was assumed to indicate the buffering capacity the thick moss layer has on water 83 

availability for its own growth and that of the micro-arthropods living among them. Therefore, 84 

if the moss vegetation and associated micro-arthropods are less affected by water stress during 85 

the summer months (Bokhorst et al. 2007a), they may be able to compensate for increased 86 

winter respiration rates, and even then increase in abundance due to the opportunities provided 87 

by the warmer summer temperatures generated by the OTCs. However, whether any of these 88 
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changes hold in the longer term is unknown, as it is also recognised that such field manipulation 89 

approaches can generate more extreme responses and artefactual results in the shorter term 90 

(Kennedy 1995; Bokhorst et al. 2011, 2013).  91 

After 10 years of year-round OTC manipulation at Signy Island, we here report on the 92 

impacts on the contained cryptogam and micro-arthropod communities. We hypothesized that: 93 

(1) based on the initially observed declines of lichens in OTCs (Bokhorst et al. 2007a), the 94 

lichen community will deteriorate further following longer term warming but that any impact 95 

on the moss community will be much less due to the larger water availability in the deeper moss 96 

turf ; (2) the lichen decline in the fell-field community is driven by a negative carbon balance 97 

caused by higher winter respiration rates due to warmer (and longer duration) sub-nivean 98 

temperatures inside OTCs; and (3) the micro-arthropod community will decline in tandem with 99 

the lichens, whereas the warming in the moss community is likely to increase their abundance 100 

by reducing temperature limitation on growth and reproduction. 101 

 102 

Materials and Methods 103 

Study site 104 

The study site was located on Signy Island, in the northern maritime Antarctic South Orkney 105 

Islands (60°71'S 45°59'W), on the north facing 'back slope' area near the British Antarctic 106 

Survey (BAS) Signy Research Station. Signy Island has an annual mean temperature of around 107 

-2°C and receives about 400 mm yr-1 of precipitation of which most falls as snow (Walton 1982; 108 

Royles et al. 2013). Two distinct vegetation types have developed on the back slope area: (1) a 109 

moss community dominated by Polytrichum strictum Brid. (63% cover) and Chorisodontium 110 

aciphyllum (Hook. f. & Wils.) Broth. in Engl. (76% cover), which has accumulated to a depth 111 

of approximately 20 cm, underlain by a base layer of quartz-mica-schist, and (2) a fell-field 112 
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lichen community dominated by Usnea antarctica Du Rietz (> 50% cover) on the same rock 113 

type. The two study sites were c. 50 m apart (Bokhorst et al. 2007a).  Environmental 114 

manipulation study 115 

During the austral summer of 2003 six Open Top Chambers (OTCs) (Bokhorst et al. 116 

2013) were deployed in each vegetation type (moss and lichen), where they remained year-117 

round until December 2013. The design of the hexagonal OTCs was based on the widely used 118 

ITEX chambers (Marion et al. 1997). Passive warming chambers, such as OTCs, tend to affect 119 

various micro-climatic conditions besides temperature (Bokhorst et al. 2013) but remain a 120 

widely used and most reliable tool in remote locations such as the Antarctic. To minimise 121 

confounding effects on other micro-climatic variables besides temperature, larger chambers are 122 

most suitable (Bokhorst et al. 2011). Therefore, we deployed relatively large-sized OTCs, 123 

measuring 1.8 m from opposite corners and 1.6 m from opposite sides at the top and 0.5 m high. 124 

Each OTC had a neighbouring control plot in a split plot design. The placement of OTC and 125 

control plots was randomized to avoid any possible consistent effects of OTCs on the 126 

neighbouring control plots, for instance by wind or snow. Temperatures (°C) in the air (+5 cm), 127 

at the soil surface and deeper in the soil (-5 cm) were recorded using copper-constantan 128 

thermocouples, and soil water content (Water Content Reflectometer CS616, Campbell 129 

Scientific UK) was measured at hourly intervals year-round in three paired plots of each 130 

vegetation type. In addition we measured Photosynthetically Active Radiation (PAR; µmol m-131 

2s-1) at the soil surface in one OTC and control plot for each vegetation type (SKP215 Campbell 132 

Scientific UK). All data were recorded on a CR10X Storage module (Campbell Scientific UK). 133 

Precipitation was recorded with a self-registering heated precipitation gauge (PLUVIO, OTT 134 

Hydrometrie) that recorded weight increments at hourly intervals in the vicinity (50 m) of the 135 

experimental plots. Due to intermittent power shortages and damage to sensors, micro-climatic 136 

recordings are incomplete for many of the later years. Therefore, we focus here on micro-137 



7 
 

climate differences for the years 2009-2011, regarded to be representative, as these had the most 138 

complete datasets available across entire years. OTC effects on the microclimate in the early 139 

years of the experiment (2003-2005) were reported by Bokhorst et al. (2007a). 140 

 141 

Vegetation survey 142 

To quantify changes in the cryptogam communities in OTCs and control plots across 143 

time, we measured the percentage cover of each lichen and moss species through the point-144 

intercept method in fixed 30 cm × 30 cm quadrats in each of the plots established in 2003. The 145 

presence/absence of each species was noted for 121 points at 2.5 cm intervals in the fixed 146 

quadrats. In one of the paired OTC-control plots of the fell-field vegetation the vegetation 147 

quadrat could not be accurately relocated in 2013 and therefore was not quantified. 148 

 149 

Usnea antarctica carbon balance  150 

 To quantify potential changes in the carbon budget of U. antarctica - the most dominant 151 

of the lichen species in the fell-field community on Signy Island (Bokhorst et al. 2007a) and an 152 

abundant lichen throughout the maritime Antarctic (Øvstedal and Smith 2001) - due to OTC 153 

effects on the microclimate we calculated potential annual photosynthesis and respiration rates 154 

using the CO2 response curves in relation to temperature and PAR described by Schroeter et al. 155 

(1995). For these calculations we used the hourly temperature data of individual plots (n=3 for 156 

both OTCs and control plots) and PAR values from one paired plot of OTC and control. We 157 

used five PAR categories (<5, 5-100, 100-300, 300-500 and >500 µmol m-2s-1) to calculate CO2 158 

fluxes. To achieve realistic calculations of annual CO2 flux rates we set a number of restrictions: 159 

(1) The lower temperature limit was set to -10°C as the temperature response curves had a 160 

polynomial shape and lower temperatures would have resulted in increased respiration values, 161 

which is unrealistic considering the limited CO2 efflux rates at very low sub-zero temperatures 162 
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for lichens (Schroeter and Scheidegger 1995); (2) summer CO2 flux rates were limited to 163 

periods with precipitation events, as drought is the main limiting factor for lichen physiological 164 

activity (Schroeter and Scheidegger 1995; Schroeter et al. 1997; Kappen 2000; Schroeter et al. 165 

2010). If precipitation was recorded during a specific hour, irrespective of the amount, the 166 

corresponding CO2 flux for that data point was included in the calculations; (3) during the snow 167 

cover period between April and September, we included all CO2 flux values, as the sub-nivean 168 

microclimate provides high relative humidity allowing lichen physiological activity (Kappen et 169 

al. 1995); (4) these calculations were limited to 2004, 2005, 2009 and 2010, the years with the 170 

most complete micro-climatic recordings. Although there are clear limitations to these 171 

calculations they permit comparison of the potential carbon budget of U. antarctica between 172 

OTCs and control plots in a consistent manner and allow a test of hypothesis 2. 173 

  174 

Micro-arthropod abundance 175 

 To quantify changes in the abundance and diversity of the micro-arthropod community 176 

in response to the warming treatment we collected vegetation and underlying soil using a PVC 177 

corer (7 cm diameter). In the moss community we collected the top 5 cm and in the lichen 178 

community all lichens and the first cm of soil and loose gravel in the lichen community of each 179 

plot. Micro-arthropods were extracted in a modified Tullgren extractor for 48 h. Collembola 180 

and Acari were identified to species level except for smaller Prostigmata, which were grouped 181 

together.   182 

 183 

Statistics 184 

Microclimate differences between OTCs and control plots were compared across 185 

seasons using monthly mean values to calculate a seasonal mean (summer: December-February, 186 

autumn: March-May, winter: June-August and spring: September-November). We used 187 
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repeated-measures ANOVA with treatment (OTC vs. control plots) within a plot as a within-188 

subject factor to test for significant differences between OTCs and control plots. As only minor, 189 

non-significant, differences were found in the soil moisture data we only present the summer 190 

mean values. To quantify changes in cryptogam species cover we used repeated measured 191 

ANOVA on the point-intercept data from 2003 and 2013. Differences in total and individual 192 

species abundances of micro-arthropods between OTCs and control plots were quantified 193 

through one-way ANOVA. Potential differences in the calculated values of photosynthesis, 194 

respiration and the net annual carbon budget between treatments were tested using repeated 195 

measures ANOVA. Log transformations were applied where necessary and homogeneity of 196 

variance was compared using Levene’s test. All analyses were carried out in SPSS 21.0 (SPSS 197 

Inc., Chicago, IL, USA). 198 

 199 

Results 200 

Impact of OTCs on microclimate  201 

Mean summer air temperature warming achieved by OTCs was 0.3°C and 0.7°C in the 202 

lichen and moss communities respectively (Table 1). The strongest warming took place during 203 

winter reaching on average 1.0°C higher in the OTCs compared to controls, most likely as result 204 

of snow accumulation inside OTCs. At the soil surface, summer warming reached 0.7°C and 205 

0.2°C in the lichen and moss communities, respectively, and strongest warming also occurred 206 

during winter, 0.9°C and 0.2°C. Deeper in the soil, summer warming by OTCs was 0.6°C and 207 

0.3°C in the lichen and moss communities, respectively, while during winter, warming effects 208 

of 0.7°C and 1.5°C were recorded. Soil moisture was reduced, but not always significantly so, 209 

during the summer months, with 6-20% lower mean values recorded in OTCs compared to 210 

control plots (Table 1). PAR showed small non-significant changes between OTCs and control 211 

plots, ranging between 10% lower and 5% higher mean values during summer (Table 1). Larger 212 
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differences (up to -84%) were recorded between OTCs (2.5 µmol m-2 s-1) and control plots (11.0 213 

µmol m-2 s-1) in winter, again indicating snow accumulation inside OTCs. In addition, freeze-214 

thaw cycles were often reduced during late winter inside the OTCs (see Online Resource 1) 215 

indicating that OTCs were accumulating more snow than the surrounding non-manipulated 216 

habitats.  217 

Response of the lichen community to warming 218 

There were strong responses by parts of the lichen community to the OTC manipulation 219 

(Table 2, Fig. 1). The cover of the dominant lichen species Usnea antarctica declined by 71% 220 

in the OTCs following 10 years’ of warming, while reducing by only 16% in the control plots 221 

(Fig. 2a). The percentage cover of the lichen Ochrolechia frigida increased (Tukey HSD P < 222 

0.01) from 1.3% (SE: ±0.9) to 14.3% (±2.2) in the OTCs between 2003 and 2013 while showing 223 

no significant change in the control plots (4.1±1.7% to 4.6±1.9%) (Fig. 2b). The other lichen 224 

and moss species, which have a low cover in this ecosystem, showed no significant changes in 225 

response to the OTC manipulation (Table 2, Online Resource 2). On average, photosynthetic 226 

rates of U. antarctica were lower (6%) in the OTCs compared to control plots while respiration 227 

increased (11%) (Table 3, Fig. 3). The changes in photosynthetic and respiration rates resulted 228 

in a decreased net carbon budget for U. antarctica in the OTCs compared to control plots, and 229 

in overall carbon loss during 2005 and 2009 (Fig. 3c) and this may have been the underlying 230 

cause for the cover declines observed in the OTCs.  231 

Total Collembola and Acari abundance was not affected by the warming treatment 232 

(Table 4). However the abundance of the less common collembolan Folsomotoma octooculata 233 

decreased by 71% (P < 0.05) in the OTCs compared to control plots.  234 

 235 

Response of the moss community to warming 236 
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There were no species-specific changes in the bryophyte community in response to the 237 

OTC treatment (Table 2). However, there were overall declines of 68±7% and 51±11% in 238 

Polytrichum strictum cover in the control plots and OTCs, respectively (Fig. 4, Online Resource 239 

2). The liverwort Cephaloziella varians had invaded two of the OTC plots replacing P. strictum, 240 

covering up to 9% of the surface (Fig. 4), while this was not observed in the control plots. There 241 

were no abundance differences for Collembola and Acari between control plots and OTCs in 242 

the moss community (Table 4). 243 

 244 

Discussion 245 

We found a clear contrast between Antarctic moss and lichen communities in their 246 

response to 10 years of experimental field environmental manipulation mimicking long-term 247 

climate change scenarios. The currently widespread and common lichen Usnea antarctica was 248 

very vulnerable to the applied manipulation, while none of the moss species showed detectable 249 

responses. The response of the lichen community is in line with reports from the Arctic (Wahren 250 

et al. 2005) but also provides a clear account of lichen responses to climate change without 251 

confounding effects from vascular plants (Cornelissen et al. 2001) thereby highlighting the 252 

vulnerability of lichens to future environmental change. The very limited response detected in 253 

the micro-arthropod community is likewise consistent with results obtained in a three year 254 

manipulation experiment on High Arctic Svalbard (Webb et al. 1998), indicating that these 255 

organisms are resistant or resilient to the magnitude of micro-climatic changes induced by the 256 

OTC methodology on this experimental timescale.  257 

Cryptogam response to climate warming 258 

In support of Hypothesis 1, the dominant lichen U. antarctica declined under the climate 259 

change simulation while the moss community was unchanged. The limited response by the 260 
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moss vegetation to warming indicates that this community is relatively resistant to climate 261 

change, probably as a result of the larger water availability in the deeper moss turf. The large 262 

decline of the moss P. strictum over time was unrelated to the influence of OTCs, indicating 263 

either that there was a natural turn-over in the moss community (Collins 1976) or that local 264 

environmental conditions in this part of Signy Island are becoming less favourable for this moss 265 

species. Large changes in precipitation regime are predicted for the Antarctic Peninsula region 266 

(Thomas et al. 2008; Turner et al. 2009, 2013) and have already been implicated in affecting 267 

moss growth in the South Orkney Islands (Royles et al. 2012, 2013). Together with invasion of 268 

non-native or expansion of native vascular plants these changes may well lead to outcompeting 269 

of these moss communities in the near future if regional climate warming becomes more intense 270 

(Day et al. 2009; Hill et al. 2011).  271 

The lichen decline was driven by that of the dominant species U. antarctica, while many 272 

other sub-dominant crustose lichens in this community did not respond significantly to the OTC 273 

treatment (Online Resource 2) indicating that not all lichens were vulnerable to these climate 274 

change scenarios. In addition, the initially less common O. frigida increased, as has also been 275 

reported in a long-term warming study in the Arctic (Wahren et al. 2005). O. frigida typically 276 

can be found overgrowing dead mosses and lichens and its increase may at least in part be in 277 

response to the high mortality of U. antarctica. The experimental manipulation remained in 278 

place year-round, typically resulting on average in temperature increases of less than 1.0°C. 279 

These changes are well within the current annual temperature variation for these Antarctic 280 

lichens and should therefore not provide a problem for their survival. However, maximum 281 

short-term temperatures (i.e. extreme events) have been reported to increase in OTCs (Bokhorst 282 

et al. 2011) which could have negatively affected the physiology of lichens (Schroeter et al. 283 

1995). Furthermore, some drying of the soil was also measured inside the OTCs which, 284 

although often not reaching significance, could have placed additional restrictions upon the 285 
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already limited water supply for their contained terrestrial communities (Kennedy 1993; 286 

Convey et al. 2014). In addition, the 16% decline of U. antarctica observed in the control plots 287 

may indicate that conditions are already becoming unfavourable for this lichen on Signy Island. 288 

Although the warming achieved with the OTCs was on average not particularly high, it 289 

was most apparent during winter due to thicker snow insulation inside the OTCs (as confirmed 290 

by the much lower PAR values during this period), reduction in freeze-thaw cycles and the loss 291 

of deep freezing temperatures (Bokhorst et al. 2011). Therefore, changes in the winter 292 

temperature and light regime due to snow accumulation were the most likely cause underlying 293 

the observed lichen decline inside the OTCs. Similar lichen declines have been reported in 294 

several Arctic studies, particularly in those that led to alterations in snow regimes (Benedict 295 

1990, 1991; Wahren et al. 2005). The assumed underlying cause of these declines is the 296 

depletion of stored carbon through increased winter respiration (Benedict 1991; Kappen 2000), 297 

itself resulting from the increased insulation and higher temperatures provided by the deeper 298 

snow pack (Kappen 1993). Therefore, it is possible that the same mechanism, carbon depletion 299 

due to increased winter respiration, also affected U. antarctica inside the OTCs, a proposition 300 

which is supported by the CO2 calculations. 301 

Carbon budget of Usnea antarctica under climate warming 302 

In support of hypothesis 2, there was a potential negative carbon balance for U. 303 

antarctica based on the calculated CO2 flux rates. The differences in carbon balance of U. 304 

antarctica between OTCs and control plots were primarily driven by increased winter 305 

respiration rates (11%), themselves most likely a direct result of the higher winter temperatures 306 

in combination with lower light levels (Schroeter et al. 1995) due to the build-up of a thicker 307 

snow pack inside OTCs (Bokhorst et al. 2013). In addition, the decrease in growing season 308 

photosynthetic rates, although small, reduced the total carbon uptake. These combined effects 309 
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resulted in a lower net carbon uptake and for some years a negative carbon balance for U. 310 

antarctica inside the OTCs. Furthermore, the lower photosynthetic rates may have been a 311 

consequence of the lichen mycobiont parasitizing the photobiont as stored carbon became 312 

depleted, as suggested  by Gannutz (1970). Some evidence for deterioration of the photobiont 313 

was observed in 2005 when U. antarctica thalli showed a reduction (42%) in chlorophyll 314 

content inside the OTCs compared to control plots (Bokhorst et al. 2012) indicating that it was 315 

performing poorly, as would be consistent with parasitization by the mycobiont. The calculated 316 

CO2 flux rates here were much lower compared to the maximum potential rate identified by 317 

Schroeter et al. (1995) (323 mg CO2 g-1 dw y-1) and reflect the limitation of carbon uptake by 318 

the infrequent occurrence of precipitation for lichen hydration in our calculations. Although 319 

Antarctic lichens can withstand particularly harsh climatic conditions the OTC treatment 320 

appears to greatly affect the performance of U. antarctica through relative minor changes in 321 

temperature, light availability and water availability during different parts of the year, indicating 322 

that some Antarctic lichens may be very vulnerable to season-specific climatic changes.   323 

Micro-arthropod response to OTC manipulation  324 

The micro-arthropod communities were little affected by our climate manipulations. 325 

Neither the most dominant springtail in this ecosystem, C. antarcticus (Bokhorst et al. 2008), 326 

nor any of the mite species, showed any detectable response to the 10 year manipulation. 327 

However, the significant decline in numbers of the less common springtail F. octooculata in 328 

the lichen OTCs may provide some support for Hypothesis 3. These findings are inconsistent 329 

with the previously reported declines of C. antarcticus in various passive warming treatments 330 

as a result of desiccation (Convey et al. 2002) or the increased abundance observed under 331 

summer warming with water additions (Convey et al. 2002; Day et al. 2009). The limited 332 

response in our OTCs used on Signy Island indicates that the climate manipulations were not 333 

strong enough to have an impact on the micro-arthropod community, indicating that this group 334 
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of invertebrates appears relatively resistant. Initial declines in C. antarcticus abundance 335 

following two years of warming in these OTCs (Bokhorst et al. 2008) may therefore be an 336 

example of an artefactual response, or there may be inter-annual variation in the micro-337 

arthropod response depending on the ambient temperature and moisture conditions 338 

experienced. The latter explanation would suggest that the microclimate of the OTCs was only 339 

capable of affecting these organisms during unfavourable ambient weather conditions, resulting 340 

in abundance declines from which the population could recover during better years. The lack 341 

of response by the micro-arthropod community to the massive decline in U. antarctica suggests 342 

that the species involved either do not depend on this lichen for food (Bokhorst et al. 2007b), 343 

or were not limited by food availability despite the decline (Davis 1981). It may also be possible 344 

that micro-arthropods could benefit from the increase of the lichen O. frigida. Overall, the 345 

minimal responses identified here in either the moss community or the micro-arthropods of 346 

both vegetation communities suggest that both these important elements of Antarctic terrestrial 347 

ecosystems have considerable resistance to changes in abiotic and biotic conditions under 348 

current change scenarios.  349 

In conclusion, the regionally important lichen U. antarctica appears very sensitive to changes 350 

in winter snow depth and associated alterations in light levels and temperature regime. As 351 

climate change is likely to affect the precipitation patterns along the Antarctic Peninsula, U. 352 

antarctica dominated fell-field communities may drastically change in floristic composition 353 

during the coming decades. 354 
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Figures 492 

Figure 1. Cover of the fruticose lichen Usnea antarctica inside an Open Top Chamber on Signy 493 

Island at the start of the environmental manipulation in 2003 (left) and after 10 yearsof the study 494 

(right). Distance between metal pegs is 30 cm. 495 

Figure 2. Lichen cover changes following 10 years of manipulation using OTCs on Signy 496 

Island. a % cover of the lichens Usnea antarctica and b Ochrolechia frigida in control plots (C) 497 

and Open Top Chambers (OTC) from surveys taken in 2003 and 2013. Bars are mean of n = 5 498 

with SE as error bars. * indicate significant (P < 0.05) differences between years. 499 
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Figure 3. Annual CO2 gas fluxes of Usnea antarctica in control plots (C) and Open Top 500 

Chambers (OTC). Values are based on calculations of CO2 exchange using hourly temperature 501 

and photosynthetically active radiation data from six experimental plots on Signy Island and 502 

CO2 response curves of U. antarctica quantified by Schroeter et al. (1995). Bars are mean of n 503 

= 3 with SE as error bars. * indicate significant (P < 0.05) differences between years. 504 

Figure 4. Shifts in the moss community on Signy Island between 2003 and 2013. The top 505 

photograph shows the decline of P. strictum while C. aciphyllum remains dominant in the 506 

control plots. The lower pictures show the invasion of the liverwort Cephaloziella varians 507 

(white square of the lower right figure) in an OTC where previously P. strictum was growing. 508 

Although this only occurred in one OTC it indicates the start of a community shift. The distance 509 

between the wooden pegs is 30 cm. 510 
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