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ABBREVIATIONS

Pvs.E(TO saturation absolute humidity at T°K
API Antecedent Precipitation Index

API30 30-day Antedent Precipitation Index
API5 5-day Antecedent Precipitation Index
ASCII American Standard Code for Information Interchange

fraction of the catchment area which has soil of HOST class x
CWI Catchment Wetness Index

daylength
DPRcw, dynamic percentage runoff term relating to catchment wetness
DPRp dynamic percentage runoff term dependent on event rainfall
ESRI Environmental Systems Research Institute
GIS Geographical Information System
HOST Hydrology of Soil Types

Institute of Freshwater Ecology
IH Institute of Hydrology
LDNPA Lake District National Parks Authority
MLURI Macaulay Land Use Research Institute
NERC Natural Environment Research Council
OP orthophosphate
OS Ordnance Survey

precipitation
PAT polygon attribute table
PETH potential evapotranspiration

PRRURAL percentage runoff in a rural catchment
r2 coefficient of determination
SMD Soil Moisture Deficit
SOIL soil index
SPR standard percentage runoff
SSEW Soil Survey of England and Wales
SSLRC Soil Survey and Land Research Centre
SSSI Site of Special Scientific Interest
STW sewage treatment works
'cc air temperature (°C)
T k air temperature (°K)
TP total phosphorus
WRAP winter rainfall acceptance potential
WRAR, proportion of the total catchment area in WRAP class n



SUMMARY

The spatially referenced dataset created within a Geographical Information System (GIS) by

May et ,al. (1995) has been extended to include information on soils within the catchment of

Bassenthwaite Lake. Fifteen different soil series were found within the catchment boundary.

These were used in their entirety for the rainfall-runoff calculations, but were grouped into 10

summary soil types, based on their dominant soil subgroup, for the total phosphorus (TP) export

calculations.

Three main soil types dominated the catchment area. These were shallow, acid, peat (23%) on

the uplands, well-drained loam with bare rocks, crags and scree (38%) on the lower slopes and

fine loam (16%) in the valleys.

TP export coefficients for each soil type were calculated from values for orthophosphate (OP)

which had been determined for this catchment by Lawlor & Tipping (1996). These markedly

improved the estimates of TP losses from subcatchments 4 and 5 compared to those determined

by May et al. (1995) using export coefficients from the literature. This improvement was due,

mainly, to the better estimation of TP losses from coniferous forest. The data from the 1995

survey (Lawlor & Tipping, 1996) suggested that actual TP losses from this type of land cover

were only 10% of that given by Harriman (1978). Some of this apparent reduction in TP load

may be due to recent changes in forestry practice which was aimed at reducing soil erosion and

nutrient runoff.-

There seemed to be a close relationship between soil type and land cover. Shallow, upland peat

was dominated by upland moor (84%), while well-drained loam with bare rocks, crags and scree

was primarily used for forestry (74%) and improved pasture was usually found on fine loam

(52%).

The publication of the Hydrology of Soil Types (HOST) classes report (Boorman et al., 1995)

during the latter half of this study provided an opportunity to test a rainfall-runoff model for the

catchment based on rainfall records and soil type. There was a good correlation between the

measured and predicted flows when the method was applied in its original form. However, the

level of correlation could be improved by introducing an antecedent running mean into the flow

predictions. This tended to smooth out the rather sudden changes in predicted runoff which

occured due to short term variations in the rainfall data. This appeared to be a better reflection

of the real situation.
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1. INTRODUCTION

1.1 Background

Bassenthwa te Lake is one of the larger water bodies in the English Lake District. It is classified

as a Grade 1 SSSI on account of its resident Vendace (Coregonus albula) population, which is

one of only 2 remaining populations in the UK (Maitland & Lyle, 1991). Although a protected

species (Wildlife & Countryside Act, 1981), the Vendace are now threatened by gradual

increases in hypolimnetic de-oxygenation (Hilton & McEvoy, 1993) which are thought to be an

effect of eutrophication.

As a result of concerns about eutrophication, a nutrient loading study was undertaken in 1993

(Hilton, May & Bailey-Watts, 1993). This study showed that phosphorus was the main nutrient

limiting algal abundance in the lake, especially during the summer months. Further analysis of

the data suggested that, of the 18,400 kg total phosphorus (TP) entering the lake, 49% was

attributable to sewage discharges (point sources), while the remainder came from non-point

(diffuse) sources within the catchment (Figure la).

Point sources of TP were targeted first for control, because these were eas er to quantify and

manage than diffuse sources. As more than 75% of the TP load from sewage treatment

works (STWs) emanated from a single, large works at Keswick, plans were put in place to

upgrade this STW. It was estimated that this upgrade would reduce the TP output by about 80%.

Once this upgrade had been achieved, diffuse sources within the catchment would contribute a

relatively greater proportion of the TP load to the lake (74% cf 51%) (Figure 1). So, the next step

in the lake restoration process was to identify and quantify these TP losses. Using a Geographical

Information System (GIS)-based 'export coefficient' approach, incorporating land cover

information provided by the Lake District National Parks Authority (LDNPA) and published TP

loss coefficients from the literature, May et al. (1995) estimated the total TP load to the lake from

diffuse sources within the catchment to be approximately 6,800 kg yr* This was about 1/3of the

measured TP load (18,400 kg) in 1993. Diffuse TP losses, together with those thought to come

from sewage effluent, accounted for only 86% of the TP entering the lake. The authors concluded

•EC 13 GI 1
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that the remaining 14% of the TP load may have come from septic tanks within the catchment

(Figure 2).

Table 1. Land use categories and related export coefficients used by May a at (1995).

ARC/Info


Land-use


Code

Land class

category

TP Export


Coefficient


(kg he yr')

Reference

100
Urban/rural settlement

(runoff, only)
0.83

Bailey-Watts, Sargent , Kirika & Smith (1987)

200 Upland moor .0.1 Harper & Stewart (1987)

300 Improved pasture 0.25 Harper & Stewart (1987)

400 Coniferous forest 0.42 Harriman (1978)

500 Cleared/new forest 2.0 Harriman (1978)

600 Broadleaved forest 0.15 Dillon & Kirchner (1975)

700 Mixed forest 0.15 Hancock (1982); Dillon & Kirchner (1975)

800 Bogs 8, peat 1.0 Casey, O'Connor & Green (1981)

900 Inland bare rock 0.1




1000 Rough grazing 0.07 Cooke & Williams (1973)

1100 Arable 0.25 Cooke & Williams (1973)

1200 
 Other 0.1




May et al. (1995) also found that the TP export coefficients obtained from the literature (Table 1)


did not accurately reflect the measured TP losses from some land cover types within this


catchment. In particular, they found that they had significantly overestimated TP losses from
-

subcatchments 4 and 5 which contained relatively high proportions of coniferous forest

(32% and 27%, respectively) (Figure 3). This suggested that the published coefficient for

coniferous forest (0.42 kg ha' y') was much higher than the actual TP loss from this type Of land

use, in this catchment. Additional work to improve estimates of TP losses from different land use

and soil types within the catchment were recommended. This work was carried out during 1995

by Lawlor & Tipping (1996). Although the full report of this study was not available at the time

of writing, the nutrient export coefficients determined by these authors are used in the present

study.

NArt2WITOTRITIMBASSIITMG13111RIVOMIWPILTDT.FIN on:



In spite of the problems outlined above, May et al. (1995) clearly showed the potential of the

GIS-based export coefficient approach in improving estimates of TP losses from diffuse sources

within lake catchments. In view of this, further work, aimed at refining TP loss estimates within

the catchment began in early 1995. The results of these investigations are reported here.

In order to achieve the long term aim of integrating the nutrient loss model for the catchment

with the dynamic model for the lake (Hilton et al., 1993), it is necessary to introduce some form

of temporal variation into the predictions of nutrient loss. One possible method of achieving this

is to develop a model relating nutrient loss to temporal variation in stream flow (runoff).

However, the collection of detailed stream flow data over a 1 year period for input to the model

would be a time consuming and expensive operation. For this reason, it was decided that the most

cost effective solution to this problem would be to develop a method of predicting temporal

changes in runoff from daily measurements of rainfall. The opportunity of achieving this was

provided by the timely publication of the Hydrology Of Soil Types (HOST) classes report at the

end of 1995 (Boorman et al., 1995). This work is discussed in detail in Section 5 of this report.

1.2 Objectives

The original aims of the project were as follows:

to extend the spatially referenced dataset created by May et al. (1995) to include

information on soils within the catchment

to examine the effect of sub-catchment differences in soil type on the export of nu tr ents

from the Bassenthwaite catchment

to evaluate a range of hydrological models and select the most appropriate model for

predicting the seasonal change in runoff and streamflow

to improve NRA's population equivalent figures for the main sewage treatment works by

including data from the 1991 census and the most recent estimates of tourist numbers

N:\PJ2NPROTECI IAIIASSENTIAGISOIRIMIT2  SOII.TEATFIN 3
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5. to examine the possible effect of seepage from septic tanks on the export of phosphorus

from selected subcatchments.

Unfortunately, the data required to complete objectives 4 and 5 could not be obtained within the

time constraints of the project. For this reason, the present study focuses on objectives 1, 2 and 3,

above.

DUIMSENTMGIS1REPORTI\SOILTRXT.FIN
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2. DATABASES

Most of the spatial datasets used in this study are described by May et al. (1995). Only additional

datasets used in the present study are detailed below.

2.1 Soils data

Data provision

A digital soil map for the Bassenthwaite catchment was supplied, under licence, by the Soil

Survey and Land Research Centre (SSLRC) of Cranfield University, England. The data

comprised the dominant soils association, in 100 x 100 m blocks, for an area of the Lake District

bounded by OS grid reference NY 100 000 in the south-west and NY 500 400 in the north-east.

The data were supplied in ASCI1 format, each data point consisting of an Ordnance Survey (OS)

grid reference and an associated numeric soil code. A key to allow cross-referencing between

these soil codes and the published legend for the 1:250,000 soil map of England and Wales

(SSEW, 1983) was provided in ASCII format.

Data description

The soils data are part of a 100 m resolution digital soils map of England and Wales prepared,

mostly, from reconnaissance mapping over a wide geographical area and at a scale of 1:250,000.

Although the mapping is based on soil analyses carried out for a large number of sites, in the

past, the choice of sampling sites has often been determined, at least in part, by the local land

cover (Hollis, pers. comm.). More recently, soils have been sampled at 5 km intervals allied to

the National Grid, this providing a more objective sample of the properties of British soils

(Boorman et al., 1995).

NAP.12,[1.1t ECI 11? Pl 5



Classification of soils

In England and Wales, soils are differentiated by observable and measurable characteristics of

the upper 1.5 m of the soil profile. These are described in detail by Avery (1980). In summary,

they can be divided into 2 main types:

characteristics inherited from the soil parent material

characteristics resulting from alteration of the original parent material by soil forming

processes such as decomposition of plant matter, weathering, etc.

The soils are differentiated according to a 4 level heirarchical system comprising: major group,

group, subgroup and series [see Avery (1980), Clayden & Hollis (1984), for details]. In general,

the first 3 classes are based on broad textural groups, presence or absence of certain diagnostic

horizons and soil water regime, while the latter is distinguished by textural classes, mineralogy

and substrate lithology.

The data supplied by SSLRC comprised 15 different soil associations. These are summarised in

Table 2 (see 'Description'), together with the following information:

alphanumeric soil code

geological properties influencing soil characteristics

soil properties affecting rooting depth cultivations and drainage

predominant cropping and landuse_patterns

Data manipulation

The original ASCII dataset was imported into a polygon representation of a 100m grid. The

boundaries between adjacent polygons of the same soil series were then dissolved to provide a

polygon coverage for all soils. A coverage containing only those soils which occurred within the

Bassenthwaite catchment was created by clipping this rectangular soils coverage to the shape of

the catchment using a digitised catchment outline. The original data comprised 15 different soil

I CASNTIIS Er nirASOILTEXEFIN 6 41/017
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associations (Table 2). These were used without modification for the rainfall/runoff predictions

using HOST classes (Section 5), but were grouped into 10 summary soil types, based on their

dominant soil type (Table 3), for use in the nutrient export studies (Section 4.2).

Table 3. Grouped soil types used in the nutrient export studies.

Soil type Soil associations. Soil code
(This study) (SSEW, 1983) (SSEW, 1983)

Shallow, acid upland peat SKIDDAW 331b
BANGOR 311e

Well-drained loam, some bare rock EARDISTON 541c
WALTHAM 541q
ELLERBECK 541u

Reddishime & coarse loam CLIFTON 711n

Fine loam BRICKFIELD 7131

Fine loam with peaty horizon WILCOCKS 721c

Stoneless, fine silt & clay CONWAY 811b

Stoneless, clay, fine silt & loam FLADBURY 813d

S. Thick, very acid peat soils LONGMOSS 1011a
WINTERHILL 1011b

Gritty loam, very acid HEXWORTHY 651b

Well-drained loam with bare rocks, crags & scree MALVERN 611a
MANOD 611c

2.2 HOST Classes

Hydrology of soil type (HOST) classes (Boorman et al., 1995) were supplied by SSLRC for each soil

association within the catchment (Table 4). However, these comprised a single value which reflected

the dominant HOST class of each soil association. Although these values were used at the start of the

project, they were later superseded by the more detailed information on HOST classes which was

published by the Institute of Hydrology (IH) in November 1995 (Boorman et. al., 1995). These

updated HOST classes are also shown in Table 4.
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Table 4. HOST classes supplied by SSLRC and Boorman et al. (1995) for soil associations
within the catchment of Bassenthwaite Lake.

Soil Series HOST Class HOST Class
Relative


Composition

.(SSLF1C,ere'.'conim.) i.? : (Boorrnan.et al.; 1995)

BANGOR 27 27 57.14%




9 42.86%

BRICKFIELD 24 24 53.30%




21 26.67%




6 20.00%

CLIFTON 24 24 68.42%




18 21.05%




10 10.53%

CONWAY 9 9 76.47%




8 23.53%

EARDISTON 1 4 4 67.16%




18 17.91%




3 14.93%

ELLERBECK 5 5 100.00%

FLADBURY 9 9 85.00%




8 15.00%

HEXWORTHY 15 15 100.00%

LONGMOSS 12 10 .100.00%

MALVERN 19 19 . 71.43%




4 28.57%

MANOD 17 17 87 50%




22 12.50%

SKIDDAW 27— 27 53.33%




15 33.33%




29 13.33%

WILCOCKS 26 26 88.89%




10 11.11%

WINTER HILL 29 29 100.00%

9



2.3 TP Export coefficients for soil types

Estimates of orthophosphate (OP) loss rates in relation to soil types 1, 2, 4, 5, 6, 7, 8 and 10

were provided by Lawlor & Tipping (1996). These had been derived from a detailed survey of

stream water chemistry at the sites shown in Figure 4. The exact location of these sites, and the

main soil types drained by each stream, are shown in Table 5. Subcatchment boundaries

upstream of the sampling points used by Lawlor & Tipping (1996) were derived from the

stream network and elevation contours on a 1:50,000 Ordnance Survey Landranger Series

paper map (Map no. 90).

Table 5. Water chemistry sampling points used by Tipping et al. (1996) to determine OP
and TP export coefficients in relation to soil type; major soil type of each stream
catchment is also shown.

Site

no.

River / Stream Site NGR
Soil


Type

Export coe ficients

(kg he 11-1)

OP TP

1 Thornsgill Beck Rocking House Farm NY382254 8 0.052 0.135

2 Kitto Beck At Troutbeck NY388263 4(a) 0.07 0.182

3 Glenderamackin Mill Bridge (Threlkeld) NY324252 4(b) 0.054 0.14

4 Beck Wythop At A66 NY214284 10(a) 0.016 0.042

5 Wythop Beck Eskin Bridge NY185293 5 0.084 0.218

6 Wythop Beck Wythop Mill NY178295





7 Wythop Beck Netherscale NY177301





8 Wythop Beck At A66 NY198311 7 0.543 1.412

9 Field Drain Broadness Farm— NY225298 2 0 093 0.242

10 Skill Beck Forestry Cafe NY235282 10(b) 0.031 0.081

11 Dement Low Stock Bridge NY237268





12 Wath Beck High Stock Bridge NY244250 6(b) 0.19 0.494

13 Field Drain At Wath Beck NY245261 6(a) 0.064 0.166

14 Helvellyn Gill At Nature Trail NY317169 1 0.016 0 042

To enable comparison with earlier work by May et al. (1995), it was necessary determine a


conversion factor for estimating TP loss rates from the measured export coefficients for OP.


This factor (2.6) was calculated as the mean TP/OP ratio for feeder streams with no known

10 SrpirrnIA, ILPOG



influence of sewage effluent, using data from the 1993 nutrient loading survey (May et al.,

1995). The resultant OP and TP export coefficients for each soil type are shown in Table 5.

2.4 Rainfall data

Daily rainfall data from December 1992 to August 1993 was provided by NRA, North West

Region, for 5 sites either inside or close to the Bassenthwaite catchment. Some of these sites

(i.e. those relating to the calculation of flow for the River Derwent at Portinscale) are shown

in Figure 11.

2.5 Air temperature data

Mean daily air temperatures for Ambleside were suppl ed by the Institite of Freshwater Ecology

(WE), Windermere laboratory.

11
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3. INVESTIGATIVE METHODS AND ANALYSIS

3.1 The Goegraphical Information System (GIS)

This project was carried out using ARC/INFO (v. 7.0), a Geographical Information System

(GIS) which was developed by the Environmental Systems Research Institute Inc. (ESRI). The

GIS of the Bassenthwaite catchment was originally created by May a al. (1995) and contained

the follow ng map overlays (coverages):

lake outlines

drainage networks

catchment and subcatchment boundaries

land cover

sources of sewage effluent

rain gauge locations

flow and water quality sampling sites for 1993

The following coverages have been added during the present study and reg stered to the

existing data coverages:

soils

water quality sampling sites for 1995

The attribute data provided with the spatial -data for soils were associated with the appropriate

soil codes so that particular soil series and their related descriptions (Avery, 1980) could be

identified. These coverages were combined, subtracted or subsampled to perform the spatial

analyses described below.
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4. SOILS OF THE BASSENTHWAITE CATCHMENT

4.1 Description

Fifteen different soil series were found within the catchment of Bassenthwaite Lake (Table 2).

For the nutrient export calculations, these were grouped into 10 summary soil types, based on

their dominant soil subgroup (Table 3). The geographical extent of each of these soil types is

shown in Figure 4.

The total area of each soil type was determined for the whole catchment (Table 6), and for each

of the subcatchments shown in Figure 4 (Appendix I), by combining the soils coverage with

the catchment and subcatchment boundaries and invoking the STATISTICS command from

within ARCEDIT. In general, the soils of the catchment were composed of 3 main types. These

were

Table 6. Aerial extent of different soil types within the catchment of Bassenthwaite Lake.

SOIL SOIL AREA AREA
TYPE DESCRITION (HA.) (%)

1 Shallow, acid, upland peat 8249 23
2 Well-drained loam, some bare rock 1760 5
3 Reddish fine & coarse loam 20 0
4 Fine loam 5720 16
5 Fine loam with peaty horizon 922 3
6 Stoneless fine silt & clay 658 2
7 Stoneless, clay, fine silt & loam 138 0
8 Thick, very acid peat soils 3763 11
9 Gritty loam, very acid 610 2

10 Well-drained loam with bare rocks, crags & scree 12945 38




36135 100

well-drained loam with bare rocks and scree (38%), shallow, acid upland peat (23%) and fine


loam (16%). The shallow upland peat occurred mostly on the uplands, while well-drained loam


with bare rocks and scree was mostly found on the lower slopes and fine loam tended to cover

15
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the valley bottoms. Small areas of the remaining soil types, each amounting to less than 5% of

the total catchment area, were scattered throughout the catchment.

4.2 Estimating TP losses from each soil type

TP export coefficients were available for some of the soil types found within the catchment

(see Section 2.3). In order to provide a single TP loss coefficient for each soil type, multiple

values for a given soil type were averaged, and missing values were approximated to that of

the nearest equivalent soil type. These values (Table 7) were used to estimate TP losses from

the catchment and subcatchments according to their component soil types .

Table 7. TP export coefficients used to estimate TP losses from the Bassenthwaite
catchment in relation to different soil types; mean values (@) and estimated
values (*) are marked.

Soil type
TP Export coefficient


(kg he y1)

1 0.042




2 0.242




3 0.161 *

4 0.161 @

5 0.218




6 0.33 ©




7 1.412




8 0.135




9 0.218 *

10 0.123 ©

The area of each soil type in each subcatchment was estimated by overlaying the subcatchment

boundaries onto the soils map and producing summary areal statistics (Appendix I). These

values were then used to estimate TP losses from each subcatchment by multiplying the areas

of each soil type by the export coefficients shown in Table 7. The results of these calculations
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are shown in Table 8, together with the TP losses estimated on the basis of land cover and

published export coefficients by May et al. (1995).

TP loads from known sources of sewage effluent within the subcatchments were calculated

from the OP loads for these sources given by May et al. (1995). In outline, each value was

multipled by the mean TP/OP ratio for each STW, as calculated from the effluent chemistry

data supplied by NRA. These TP/OP values were 1.19, 1.28, 1.2, 1.3 and 1.2 for Thornthwaite,

Keswick, Armathwaite, Bassenthwaite and Embleton STWs, respectively. The estimated TP

loads from these point sources were then subtracted from the measured TP load from the

corresponding subcatchments, thus giving an estimate of the 'measured' TP load from diffuse

sources. These values are compared to the TP runoff estimates calculated from the land cover

and soils data in Table 8 and Figure 6.

The results show that, in most cases, estimating TP losses from soil type and associated export

coefficients which had been determined for the Bassenthwaite catchment gave a closer

approximation to the measured values than the alternative method based on land cover and

published export coefficients (determined for other catchments) (Figure 6). The most marked

improvement was seen in subcatchments 4 and 5. Here, May et al. (1995) had already shown

that the published export coefficient used for coniferous forestry was far too high for use in the

Bassenthwaite catchment. Better estimates of TP runoff were also found for subcatchments 10,

11, and 12, but these improvements were relatively small compared to those for subcatchments

4 and 5. In contrast, TP losses from subcatchments 1 & 2, 6, 13, 14 & 15 using the soils data

method fitted the observed data less well than those calculated by May et al. (1995).

It is difficult to do a fair comparison between these methods to determine whether it is better

to use soils data or land cover to estimate TP losses from catchments, because one set of export

coefficients were determined for the Bassenthwaite catchment, itself, while the other was

determined for other catchments. In general, it is probably the use of locally derived export

coefficients, rather than the change from land cover data to soils data, which results in the

overall improvement in the TP runoff estimates.
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4.3 The relationship between soil type and land cover

The main land cover types within the catchment are shown in Figure 5 and summarised in

Table 9. More than half of the catchment (53%) is covered by upland moor which occurs,

primarily, on the higher ground. A further 21% is covered by improved pasture, mostly found

on the lower slopes and in the valley bottoms. Visual comparison of Figures 4 & 5 suggests that

there is a close correlation between soil type and land cover. This was investigated by

combining the soils and land use coverages and summarising (1) the types of land cover found

on each soil type (Figures 7 & 8; Appendix H) and (2) the types of soils associated each land

cover type (Figures 9 & 10; Appendix III).

Table 9. Areal extent of different land cover types within the catchment of
Bassenthwaite Lake.

LAND COVER

AREA


(HA.)

AREA


(%)

Urban/rural settlement 614 2
Upland moor 18560 53
Improved pasture 7233 21
Coniferous forest 1628 5
Cleared/new forest 465 1
Broadleaved forest 923 3
Mixed forest 1189 3
Bogs & peat 398 1
Inland bare rock 1668 5
Rough grazing 1790 5
Arable 74 0
Other 199 1




...34741 100

Figures 7 and 8 show that most soil types are associated with a single dominant land cover type

and a range of minor ones. For example, soil type 1 is dominated by upland moor (84%), while

soil type 2 is usually covered by improved pasture (66%). Most of the other soils show a

similar pattern of land cover. However, there are 2 exceptions to this. Soil types 3 and 9 are

each almost completely covered by a single land cover type. These are improved pasture and

upland moor, respectively.

19
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The pattern of soil types associated with each land cover type is far more complex

(Figures 9 & 10). For example, although soil type 5 is almost always covered by improved

pasture, improved pasture is found on a range of soil types, including soil types 4 (52%),

I0 (24%) and 2 (15%). Forests (coniferous, broadleaved and mixed), in contrast, are usually

associated with soil type 10, although they are also commonly found on soil types 2, 4 and 8.

In general, a close association between soil type and land cover is evident from these data. As

land cover is unlikely to significantly influence soil type, it seems likely that soil type is an

important factor in determining what the land will be used for. However, consideration should

also be given to the fact that land cover may have been taken into account when some of the

sampling sites for the soil surveys were selected (see Section 2.1). If this is the case, then these

2 datasets are not totally independent.

4.4 Comparison of nutrient export coefficients

By selecting subcatchments from the nutrient survey of Lawlor & Tipping (1996) which are

dominated by one particular land cover type, it is possible to estimate TP export coefficients

for some land cover types within the Bassenthwaite catchment. The stream at sampling site 4

(soil type 10a) drains a subcatchment consisting of 78% coniferous forestry. Hence, it can be

inferred that the TP export coefficient for this type of land cover is similar to that for soil type

10b, i.e. 0.04 kg ha' yr". This is only 10% of the export coefficient for coniferous forest used

by May et al. (1995) and probably explains why these authors overestimated TP losses

subcatchments with a high proportion of coniferous forest.

By similar argument for sampling sites 9 and 13, whose subcatchments are dominated by

improved pasture (49%) and upland moor (90%), respectively, it is possible to infer that the

TP export coefficient for improved pasture is approximately 0.24 kg ha' yr' while that of

upland moor is about 0.17 kg ha' yr'. These value compares favourably with those used for

these land cover types by May et al. 1995, i.e. 0.25 kg ha' yr' and 0.1 kg ha' yr',

respectively. .

20
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5. ESTIMATING RUNOFF FROM RAINFALL

5.1 Introduction

The derivation of relationships between rainfall over a catchment, and the resulting stream flow

from a catchment, is fundamental to studies which aim to predict runoff from rainfall data The

reason for attempting such predictions is that stream flow data are often needed for

hydrological and water quality studies, but these are rarely available in the degree of detail

required. So, elaborate, expensive and time consuming field campaigns are often undertaken

to collect the data required. However, extensive rainfall records usually exist for any given

area, so, if it is possible to predict stream discharges on the basis of rainfall data, a costly data

collection phase can be partially or wholly avoided. Ideally, such a model would provide a

reliable method of prediction which depends only on readily available data to characterise a

catchment.

The complexity of determining the discharge, or runoff, from a catchment depends primarily

on the temporal resolution which is required in the study. On an annual basis, simple linear

correlations between rainfall and runoff may be sufficient for determining the water yield of

a catchment. However, if the study is investigating fluctuating features, such as flood peaks,

or nutrient concentrations in the receiving waters ( as in this study ), then higher temporal

resolutions may be required. For the purposes of this study, the temporal resolution attempted

in the prediction of stream flow ( ie. daily ) was determined by two factors.

the requirement by the dynamic lake model ( PROTECH ) for daily input values

the availability of daily rainfall data for the Lake District.

5.2 Water movement within a catchment

When rain falls onto a soil surface, some of that rain will flow over the surface and into the

streams draining the catchment. Much of the remainder will drain through the soil, under the

influence of gravity, until it reaches the water table or an 'impermeable' soil layer (lateral

hydraulic conductivity < 10cm day' (Boorman et al., 1995)). Here, water either accumulates

21



or travels laterally, perhaps emerging as a spring or augmenting stream flow further down the

catchment.

The dominant pathway of water falling onto a catchment depends on the characteristics of the

underlying soils and substrates. If the soils and underlying substrate can drain freely, most of

the rainfall will permeate into the deeper layers, having little immediate influence on stream

flow patterns, but maintaining low flows in the longer term. In contrast, rain falling onto soils

which are totally impermeable, or have an impermeable layer very close to the surface is very

quickly lost as surface or sub-surface runoff. This rapidly affects stream flow and leaves little

water in the catchment to maintain flows between rainfall events. Although these are extreme

situations, they serve to illustrate one of the problems of estimating runoff from rainfall and

show that some characterisation of the underlying soils in a catchment is necessary for such

predictions.

The characterisation of soils for such a purpose should consider the soil properties which most

influence the hydrological response. These are hydraulic conductivity, soil moisture retention

and pathways of water movement (Boorman a al., 1995). However, these properties are

difficult and expensive to measure and only partially available for some soil associations. For

practical and economic reasons, alternative soil properties, for which there are extensive data

collections and associated map data, must be used to characterise the soils. This has been

attempted by a consortium led by the LH,which produced a soil classification for the whole of

the United Kingdom, based on the hydraulic properties of soils. This classification is known

as Hydrology Of Soil Types (HOST) classification (Boorman a al., 1995).

5.3 The Hydrology of Soil Types (HOST) Classification

The HOST classification scheme was developed by The Soil Survey and Land Research

Centre (SSLRC), The Macaulay Land Use Research Centre (MLURI) and the IH. It followed

on from an earlier classification of soil hydrological properties known as the Winter Rainfall

Acceptance Potential (WRAP) carried out by the TH(NERC, 1975). The WRAP classification

was designed to indicate the infiltration potential of a soil and, as such, is the inverse of runoff

potential. This system characterised the soils using four soil and site properties. These were

22
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soil water regime, depth to an impermeable layer, permeability of the soil horizons and slope

of the land. Using these characteristics the soil was classified into one of 5 classes and a soil

index for any catchment could then be calculated on the basis of the proportions of these

different classes within a catchment, as follows:

SOIL = 0.15WRAP1 + 0.30WRAP2 + 0.40WRAP3 + 0.45WRAP4 + 0.50WRAP5

where:

is the soil class number

WRAPn fraction of the total catchment area in WRAP class n

SOIL is the soil index

This soil index (SOIL) was then used to determine the Standard Percentage Runoff (SPR) or

the proportion of the rainfall directly contributing to short term increases in stream flow.

It became apparent that there were limitations in the WRAP approach. These limitations were

related to the small number of WRAP classes and the lack of detail in the soil maps upon

which they were originally based. With the advent of more detailed soil survey data, the HOST

classification was developed to improve on this methodology. This development depended on

a) the distribution of soil types as shown in 1:250000 maps and b) a database of soil properties

derived from the national soils databases held by the collaborating institutions. The soil

characteristics used as a surrogate for direct measurement of the soil hydraulic properties were

the depth to gleying, depth to a slowly permeable layer, integrated air capacity and the presence

of a peaty surface layer. These properties, Which have been used by soil scientists to infer and

classify the hydrology of soil (Bibby et al., 1982, Robson & Thomasson, 1977), can be derived

from soil profile descriptions (Avery, 1980). In addition to these characteristics, a geological

component to describe the soil parent material was also included.

The rules defined by this descriptive approach led to the derivation of a consistent set of

surrogate soil hydrological properties across the UK. These were classified on the basis of

combinations of characteristics into 29 HOST classes. Multiple regression analysis was used

to determine the relationship between these classes and catchment flow parameters. The latter
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was calculated from daily records for over 1000 sites available from the National Water

Archive at the IH.

5.4 Calculating percentage runoff

The original Flood Studies Report (NERC, 1975) identified an empirical method of calculating

runoff from rainfall which required only catchment scale input parameters. This method

determined the total percentage runoff for a rural catchment, as follows:

PRizupAL= SPR + DPRohn + DPRp

where:

PRRURAL is the total percentage runoff in a rural catchment

SPR is the Standard Percentage Runoff

DERcw, is the dynamic percentage runoff term relating to catchment wetness

DPRp is the dynamic percentage runoff term dependent on event rainfall


(precipitation)

The dynamic terms in this equation were rev sed in Flood Studies Supplementary Report No.

16 (IH, 1985) to give the following:

DPRoNT= 0.25 (CWI - 125)

DPRp = 0.45 (P - 40)" for P7 40mm

Otherwise DPRp = 0

where:

CWI is the Catchment Wetness Index

is the rainfall (precipitation) depth (mm)
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5.5 Estimating the Catchment Wetness Index

When estimating runoff from rainfall, soil wetness may change the capacity of the soil to store

water, thus affecting the flow pathways. Very dry soils may have the capacity to store water and

limit the flow response, while wet or waterlogged soils may increase the short term response

of flow to rainfall. A Catchment Wetness Index was developed to reflect the antecedent

moisture conditions of the catchment and allow runoff estimates to be influenced by soil

wetness.

In earlier studies, the Antecedent Precipitation Index (API) was designed as a measure of the


antecedent moisture condition of the catchment (Kohler & Lindsey, 1951). For the UK, this


was originally calculated as an exponentially decaying index which took the following form:

API30d= Pd-1+ k•Pd-2 k2•Pd-3 k3•Pd4 	 k29.13c1-30

where:

is the Precipitation in mm.

is the current day

is the decay factor, usually set at 0.9.

API3Od is the 30-day Antecedent Precipitation Index for the current day

A modification to the API was suggested in The Flood Studies Report (NERC,1975), which

looked at antecedent conditions over a shorter time period (i.e. 5 days) and increased the decay

function when calculating the index, as knows:

API5d = 0.5112( Pd-I (0.5)Pth2+ (0.5)2Fd.3+ (0.5)3Pd4 + (0.5)4Pd.5)

where:

API% is the 5-day Antecedent Precipitation Index for the current day
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It was suggested that this index should be combined with a measure of Soil Moisture Defic't

(SMD) to produce a Catchment Wetness Index (CWI). This took the following form:

CWI = 125 + APIS - SMD

where:

APIS is the short term (5-day) Antecedent Prec pitation Index

SMD is the Soil Moisture Deficit.

This CWI could then be used in the Total Percentage Runoff calculations.

As there were two identifiable methods of calculating API, and of using it to calculate CWI,

this study looked at the effect of these two variations on the resulting runoff predictions, by

comparing them with the measured values. The two variants used for calculating CWI were

as follows:

CWI = 125 + APIS - SMD


and

CWI = 125 + API30

As the present study was attempting to identify a method for estimating runoff from rainfall

using catchment scale parameters, it was important that all parameters in the runoff equations

could be calculated from readily available catchment scale data. This was taken into account

when identifying a suitable a method of calculating soil moisture deficit.

5.6 Estimating Soil Moisture Deficit

When soil is saturated it will hold no more water. Once it has stopped raining, saturated soil

gives up some of its water until it retains a certain amount against the force of gravity. At this

point the soil is regarded as being at 'field capacity'. From this point onwards, any depletion

in the amount of water stored in the soil is regarded as a Soil Mositure Deficit (SMD) and can

be defined as the amount of water necessary to restore the soil to field capacity (Shaw, 1994).
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Continuing depletion of the soil moisture is caused by evaporation from the soil surface and

by the demands of vegetation for water. These demands are encompassed in the term

evapotranspiration. SMD can be calculated by a simple formula:

SMD = E - P

where:

Et is evapotranspiration (mm)

is precipitation (mm)

SMD is Soil Moisture Deficit (mm)

Daily values of SMD would be calculated as follows:

SMDd = SMDd_,+ Et(d) - Pd if SMD < 0 Then SMD = 0

where:

is the current day

However, evapotranspiration is not a readily available parameter, so it was necessary to

develop a way of calculating it, in order to make the method work. Several methods of

calculating Et are available, some based on empirical relationships, others on physical

principles. Although the methods based on the physical principles of evaporation from a

surface are likely to give more accurate results for E, than those based on empirical

relationships, they are dependent on data/hat are not readily available within a catchment

unless field measurements are taken. As this study was trying to avoid using methods which

necessitated labourious field campaigns, the empirical approach was evaluated first. _
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5.7 Estimating Evapotranspiration

Evapotranspiration is a collective term for all processes by which water in the liquid or solid

form, at or near the earth's land surfaces, becomes atmospheric water vapour (Dingman, 1994).

Hamon(1963) estimated daily potential evapotranspiration as follows:

PETH = 0.00138D[PvsaiCr31

where:

PETH is potential evapotranspiration (cm day')

is daylength (hours)

Tk is the air temperature (°K)

Pvsat(TO is the saturation absolute humidity (g m'') at T°K

Daylength is readily available from published tables (MAFF, 1967). However, some method

of calculating ovsat3( k,) was necessary. Dingman (1994) detailed the method for such a

calculation as follows:

esat= (Pysat(Tk)* Tk) / 217

this can be expressed as:

pyskr(Tk)= (esa,* 217) / Tk

where:

esatis the saturation vapour pressure (mb)
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Digman (1994) also gave an expression for the calculation of esa,as a function of temperature.

e„, = 6.11 expu73* Tc)/ (Tc+2373)

where:

esa, is the saturation vapour pressure (mb)

T, is air temperature (°C)

From this it can be seen that evapotranspiration can be calculated as a function of air

temperature and daylength. It follows that Soil Moisture Deficit can be calculated from

temperature, rainfall and daylength, all of which are readily available for all parts of the country

on a daily basis from the Meteorological Office and other organisations.

5.8 Estimating Standard Percentage Runoff

Standard Percentage Runoff (SPR) has already been defined as the proportion of the rainfall

directly contributing to short term increases in stream flow. In order to calculate SPR for

inclusion in the calculation of PRmra, (see Section 5.4), it was necessary to use the HOST

classification. Boorman et al. (1995) identified an expression similar in form to that of the soil

index used previously in The Hood Studies Report (NERC, 1995). They conducted a multiple

regression analysis between HOST classes and runoff data for over 1000 sites in order that to

develop an expression which could give the SPR of a catchment on the basis of the HOST class

composition of the catchment. This expression was used in the present study and took the

following form:

SPR = aIHOST1 + a2HOST2 + a3HOST3 + +a29HOST,9

where

SPR is the Standard Percentage Runoff term

a„ is the fraction of the total catchment area which has soil of HOST class x

HOSTx is the SPR for HOST class x ( as given by Boorman et al. (1995),

Appendix B)
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A general methodology for estimating stream flow or runoff for the subcatchments of

Bassenthwaite Lake was derived from the above equations.

5.9 Calculating runoff from rainfall for the subcatchments of Bassenthwaite Lake

The equations outlined above were tested and modified using the continuous daily flow records

available for the River Derwent at Portinscale (subcatchment 15) as validation for the model.

The following data provided input to the equations:

daily air temperature

daily rainfall

digital soils data

digitised subcatchment boundary

HOST classes for each soil type

First, GIS was used to overlay the subcatchment boundary onto the soils data and provide

summary statistics relating to the areal coverage of each soil type within the subcatchment

boundary. This information, which could be determined from the Polygon Attribute Table

(PAT), was expressed in Sq. Metres and as a fraction of the total subcatchment area. By

relating this summary table to a look up table of HOST class composition for all soil

assciations within the catchment, it was possible to determine the total area of each HOST class

in the Portinscale subcatchment. This resulted in a table of area fractions for each of the 29

possible HOST classes. This table was then related to another look up table which had SPR

values for each of the 29 HOST classes-. This allowed a composite SPR for the whole

subcatchment to be calculated. This entire procedure, as outlined above, is illustrated for the

Newlands Beck subcatchment in Figure 12. The composite SPR for the subcatchrnent was then

used in conjuction with the dynamic terms (DPRGvi and DPR) to calculate the total percentage

runoff, PRRURAL.

The first attempt at implementation of the methodology (method 1) adopted all the terms as


specified above and resulted in a percentage runoff term being calculated for each day. Each


daily percentage runoff term was then applied to the corresponding rainfall for that day to
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calculate the resultant runoff or stream flow. Thus a time series of predicted flows was

calculated for the period of the validation data, i.e. 1 January 1993 to 31 August 1993

(Hilton et al., I993).

Table 10. Results of regression analyses on measured and predicted flows in the River
Derwent at Portinscale.

Regression statistics
HOST

(1)

HOST + residual

rain


2
()

HOST + residual

rain + 3day

smoothi ng

(3)

HOST + residual

rain + 4day

smoothing


(4)

API30 method





slope 0.62 0.89 0.98 0.94

..
0.30 0.40 0.78 0.82

.

slope 0.79 1.08 0.97 0.92

r20.1) 0.49 0.60 0.77 0.78

slope

ri• (e1-2)

0.68


0.37

0.94


0.45

!0.87

.0.62

0.85


0.66

API5-SMD method





slope. 0.44 0.61 - 0.68 0.66

r2(d) 0.26 0.38. 0.72 0.77,

slope 0.59 0.76 0.68 0.65

r2(6.1) 0.46 0.58 0.73 0.74
_-






, slope 0.51 0.67 0.62 0.60

r2M-21 0.34 0.45 0.60 ,0.63

The procedure outlined above was run twice, first using CWI = 125 - API3O and second using

CWI = 125 - APIS - SMD, to estimate the catchment wetness index. The resultant time series

are compared with the measured flows in Figure 13. It is apparent from these plots that both

methods predict the magnitude and temporal location of flow peaks and troughs with some

degree of accuracy. However, it is also evident that the predicted flows have a much larger

fluctuation than are occurring in the field measurements.
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The linear regression analyses of measured and predicted flows for method (1) (Table10) give

some indication of the goodness of fit but, it should be borne in mind that the model does not

take into account any lag period between rainfall and runoff which may significantly affect the

correlation between measured and predicted data points. The value of r2for the API30 method

is 0.3 with a regression line slope of 0.62 (Table 10), which does not indicate a particulary good

fit between the predicted and measured data. The ideal situation would have been for both

parameters to have values of 1, indicating a perfect fit between the two datasets.

There are two possible reasons for the low correlation between predicted and measured data

using method (1). The first is that that there may be a lag period between rainfall and resulting

stream flow in the real situation which is not reflected in the model, as suggested by the

apparent misalignment of the flow peaks in Figure 12. Introducing a 1-day lag into the

regression analysis for the API30 method increases the value of r2 to 0.49 and the slope of the

regression line to 0.79, which tends to support this theory. The second possible reason for the

poor regression fit is that the troughs in the predicted flow time series have a much steeper

angle than in the measured time series (Figure 12). The shallower slope on the measured data

is, primarily, due to subsurface flow rather than overland, short term, flow which method (1)

is designed to calculate. Subsurface flow is the flow generated by rainfall which has percolated

throught the soil and into the stream system. This type of flow takes a much greater time to

reach the stream system than overland flow. Thus, the actual stream flow is influenced not only

by rainfall that has fallen on the day of measurement, but also by that which fell prior to that

day but did not contribute to overland, short term flow.

With this in mind, method (1) was modifiid to add the percentage of the daily rainfall which

did not contribute to PRRuL (i.e. PRRESIDUAL)to the following day's calculation, as follows:

As

PRRESIDUAL(d)—— 100 - PR RURAL(d)

PRESIDUAL(d) — AVAILABLE(d) PRRESIDUAL(d) / 100

1AVAILABLE(d+1) = P DAILY(d+1)+ k.PRESIDUAL(d)

then

SO
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where:

is the decay factor introduced to account for some of the residual rain

not being available to augment flow; for this study, k was set to 0.9.

The model was run again with this modification and this is subsequently referred to as

method (2). The time series plots for this method can be seen in Figure 14. When compared

with the plots for method(1), the predicted peaks in flow are higher and the predicted flow

troughs are less marked. The decay from peak to trough and the rate of increase from trough

to peak is generally slower than predicted by method (1) and closer to the measured time series.

However, the predicted peaks still occur before the measured peaks, suggesting that the time

lag between rainfall and subsequent stream flow has not been accommodated completely. This

apparent improvement in fit is reflected in the regression analyses (Table 10) which show that

the r2value for the API30 method (r2(d))has increased to 0.40 with a slope of 0.89 and that for

the 1-day lag applied to the API30 method (r2(d_o)is 0.60, with a slope of 1.08. These results

also tend to support the theory that the time lag between rainfall and the corresponding increase

in stream flow is not adequately accounted for by the model.

In order to incorporate a time lag into the model and, at the same time, smooth out the over

sensitive nature of the predictions, antecedent running means were used in methods (3) and (4).

These were calculated over the current days• prediction and its immediate two or three

predecessors, respectively. The 3-day mean had the general effect of moving the predicted

peaks and troughs forward to the following day. The leading and trailing edges of these

predicted peaks were moved forwards by between 0 and 1.5 days, depending on the original

steepness of the rise or fall. The net effect' is to move the whole predicted time series closer

to the measured data. The smoothing effect of the running mean also tends to augment the

delay in stream flow response to the current day's rainfall. This makes the rates of increase_and

decrease in flow follow the measured data more closely ( Figure 15 & 16 ).

The regression analyses (Table 10) show that the value of r2 for the API30 method and the

3-day running mean (r2(d) is 0.78 and the 4-day mean (r2(d))0.82. The slope of the regression

line for methods (3) and (4) are 0.98 and 0.94, respectively. If a 1-day time lag is introduced

into either of these methods, these values of r2 fall, suggesting that the time lag has now been
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adequately accounted for by the running means. As the slopes of the regression lines are now


close to 1, any predicted flow value should be of a similar magnitude to the measured flows.

An identical series of analyses was undertaken for the APIS method of prediction and the

results of these calculations are also shown for the River Derwent at Portinscale in Figures 13

to 16 and Table 10. In general, this method did not appear to give as good results as the API30

method, showing a tendency to underestimate flows. This seemed to be due to the Soil

Moisture Deficit calculation enhancing the rate of decay of flow peaks too much. This may

have been due to the simplistic method of calculating the evapotranspiration component which,

in vegetated areas, is significantly affected by wind velocity. This was not taken into account

in the calculation of Soil Moisture Deficit. Evapotranspiration is also affected by the total daily

sunshine hours which, again, was not taken into account. Any further development of the APIS

method of estimating stream flow from rainfall should investigate a more accurate method of

calculating evapotranspiration.

Initially, it was felt that the APIS method should give a better prediction of stream flow from

rainfall data because it took SMD into account, which is an important factor in soil hydrology

from April to September/October. In contrast, the API30 method was expected to significantly

overestimate rates of flow during the spring and summer months because it did not contain an

explicit SMD component. The time series plots for methods (3) and (4) ( Figure 15 & 16 )

show that this is not the case. The variation of the CWI used in the API30 method, which used

a 30-day API, appeared to characterise the catchment moisture conditions better than the APIS

method, which used a 5-day API. This may have been a true reflection of the situation or may

have been the result of poor estimation of-SMD in the APIS method.

The results of the linear regression analyses ( Table 10 )suggested that method (3) should be

used to predict the stream flows for the other subcatchments of the Bassenthwaite catchment.

Both the API30 and API5 variants were used. An important factor when calculating the runoff

was the choice of rainfall gauges used to obtain the rainfall data, as these affected the final

result for any particular subcatchment. For the puposes of this study, a subjective assessment

of the most suitably located gauges was carried out for each subcatchment and a simple

arithmetic mean of the rainfall for each day was calculated from the gauges chosen. Time
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series plots of the measured and predicted stream flows for subcatchments 1, 2, 3, 4, 5, 6, 9,

10, 11, 12, 13 and 14 are shown in Appendix IV.

The results suggest was that the timing of significant changes in flow was predicted well in

most cases, except in subcatchment 6 (Figure IV(f)). The good alignment between the short

sections of close interval flow measurements for subcatchments 1, 2, 10 and 11 and the

predicted values indicates that the timing and, to some extent, the magnitude of the flows have

been predicted well, apart from one peak in subcatchment 1, at the end of March 1993. The

angle of rise or fall of these sections, coupled with the correspondence in timing between the

measured and predicted flows, suggests that the peaks and troughs would have been predicted

well, if there had been any measured data to compare them with.

In general, it was difficult to assess how well the magnitude of the flow was predicted for each

subcatchment because of the discontinuous nature of the measured data. Linear regression

analyses were attempted for all of the subcatchments studied and the values of 12for these

ranged from 0.18, for subcatchment 9, to 0.68, for subcatchment 5. There are a number of

possible reasons for this. Firstly, the measured flows in 7 out of the 12 subcatchments tested

exceeded the flow gauge limits on occasion which tended to reduce any 'goodness of fit'

measure for the predicted and measured data. Secondly, the measured rainfall varied

considerably among the rain gauges, suggesting variation in rainfall over the subcatchments.

The choice of suitable rain gauges to estimate rainfall for each subcatchmen seemed to be

importantt, especially when there are no rain gauges inside the subcatchment and there was

some uncertainty as to which were the most suitable rainfall data for a number of the

subcatchments. It would be useful, but potentially time consuming, to use the GIS to interpolate

rainfall surfaces across the whole catchment on a daily basis, in order to obtain a better estimate

of rainfall in any one subcatchment. Thirdly, it may be necessary to accommodate some

measure of slope and distance to streams into the model in order to account for topographic and

size differences between subcatchrnents. Small, steep subcatchments would be expected to

respond much more quickly to rainfall events than large, shallow subcatchments. Preliminary

assessment of slope and total area characteristics for the subcatchments with poor correlation

statistics tends to suggest that slope may be an impotant factor to take into consideration.
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Again, the API30 method proved to be the better method for prediction as the APIS method


consistently understimated the magnitude of the few peaks that were available for comparison.
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6. DISCUSSION

The so-called export coefficient approach is widely used to estimate TP runoff from land cover

within a catchment, especially now that geographical information systems (GIS) are widely

available. However, the results of these calculations are rarely validated against data collected

from intensive field surveys, as they are in the present study. May et al. (1995) showed that TP

export from some types of land cover in the catchment of Bassenthwaite Lake was not

adequately predicted using export coefficients from the published literature. This was

especially true for areas of coniferous forest, where TP losses were overestimated by as much

as 400%.

At first sight, these results suggest that the TP export coefficients determined for coniferous

forests in Scotland could not be used on the same type of land cover in the Lake District.

However, it seems more likely that recent changes in forestry practice, aimed at reducing soil

erosion and nutrient runoff, have reduced TP losses from afforested catchments since these

earlier determinations. This study suggests that these changes may have reduced TP losses from

coniferous forests from 0.42 kg ha.-Iyr-I to 0.04 kg ha-I yr'', a reduction of about 90%.

Although, historically, phosphorus export coefficients for different types of land cover have

been developed for TP, it is actually the load of bioavailable phoshorus (OP) which is of most

concern to water managers because it is this soluble fraction which tends to promote algal

growth. Th s report discusses predictions of TP losses from the catchment in order to compare

the results with those of May et al. (1995). However, the field survey work carried out by

Lawlor & Tipping (1996) actually determined export coefficients for soluble reactive

phosphorus (SRP, otherwise known as OP) for areas within the Bassenthwaite catchment. This

provides an opportunity for the GIS model to be re-run at a later date to predict OP loads to the

lake. As Lawlor & Tipping (1996) also calculated export coefficients for the other main algal

nutrients, namely NO3 and Si02, determination of the load of these nutrients to the lake from

diffuse sorces will also be possible.

The export coefficient approach, as it stands, predicts only the annualnutrient load to a lake


from diffuse sources. In order to achieve the long term aim of using the output from the GIS
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as input to the dynamic lake model (Hilton et al., 1993) it is necessary to introduce temporal

variation into the nutrient loss predictions. The simplest way to do this is probably to derive

a relationship between nutrient runoff and rainfall, via the effect of rainfall on stream flow.

This report has gone some way towards achieving this by developing a model for the catchment

which predicts stream flow from rainfall. This model is based on a modification of the HOST

classes rainfall-runoff model (Boorman et al., 1995).

The results suggest that this modified rainfall-runoff model is an effective way of predicting

stream flow from rainfall and catchment scale parameters. It does not require any field data

as input, thus fulfilling one of the the main objectives of this study. Although the results are

encouraging, the method needs to be validated on other types of catchment (with differing land

cover, soil types and topography), and modified where necessary, whilst retaining its generic

nature.

Another potential area for future development is to try to predict the lag between a rainfall

event and the subsequent increase in stream flow, without having to resort to comparisons with

field data. This would probably have to take into account land cover, soil type, slope, stream

length and variations in these characteristics within the subcatchment or catchment. The

proximity of these characteristics to each other may also be an important consideration. As all

of these variables can be derived from the datasets currently within the GIS, it would still be

possible to develop a 'hands off or 'no field measurement' predictive model whilst

incorporating these variables.
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7. CONCLUSIONS

The use of soils data and TP export coefficients determined for the catchment did

not improve on the TP runoff predictions based on land cover and published export

coefficients, except in the case of afforested areas .

2. Land cover tends to reflect the underlying soil type, so either dataset could be used

for calculating TP losses from diffuse sources. However, there are more TP export

coefficients available in the literature for land cover than for soil type.

Although, historically, phosphorus losses from catchments have been measured as

TP, it might be better to develop a series of export coefficients for OP, as this is the

fraction of phosphorus which is bioavailable and tends to promote algal growth in

lakes.

The HOST classes rainfall-runoff model works well for the catchment of

Bassenthwaite Lake, although some minor modifications improved the level of fit.

The ability to predict temporal variation in runoff from daily records of rainfall, in

and around the catchment, provides an opportunity to introduce temporal variation

into the nutrient runoff estimations. This would allow catchment model to be linked

directly to the dynamic lake model.
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8. RECOMMENDATIONS

The prediction of nutrient runoff from diffuse sources within a catchment, using the export

coefficient approach, would benefit from the following:

extending the range of nutrients considered to include OP, NO3, and

SiO2, as these also affect algal growth

introducing temporal variation into the nutrient loss predictions, by

developing a method of estimating levels of nutrient loss from rainfall,

via its effect on runoff

evaluating the use of a range of land cover maps, from different sources,


for predicting nutrient losses from diffuse sources within a catchment

improving estimates of TP losses from STWs and septic tanks,

especially in relation to the effects of tourism on seasonal loads

estimating historical TP levels, determined from sediment analyses and

historical land cover maps, to establish a baseline against which current

TP loads can be assessed and targets for improvement set

It is important, however, that any work carried out on the above contributes towards the

original aim of the project which was t6 develop a generic model for use on any lake

catchment.
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Figure 2. Relative proportions of TP load from STW
effluent, different types of land cover and
other sources.
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Figure 6. Estimates of TP load from diffuse sources
for subcatchments of Bassenthwaite Lake.
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Figure 7. Land cover in relation to soil types 1 to 5 in the
Bassenthwaite catchment.
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Figure 8. Land cover in relation to soil types 6 to 10 in the
Bassenthwaite catchment.
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silt & clay silt & loam•

8. Thick, very acid 9. Gritty loam, very
peat soils acid•

10. Well-drained loam with
bare rocks, crags & scree
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Figure 9. Soil type in relation to land cover in the Bassenthwaite
catchment.

10&plena.' 0006



Urban/rural settlement Upland moor

Improved pasture Coniferous forest

Cleared/new forest Broadleaved forest

Stoneless, fine silt & clay

Stoneless, clay, fine silt & fine loam

Thick, very acid peat soils
Gritty loam, very acid

Well-drained loam with bare
rocks, crags & scree

1 Shallow, acid, upland peat

Well-drained loam, some
bare rock

Reddish fine & coarse loam
Fine loam
Fine loam with peaty horizon



Figure 10. Soil type in relation to land cover in the

Bassenthwaite catchment.
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Figure 13. Flow Time Series for subcatchment 15 ( method [1] )
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Figure 14. Flow Time Series for subcatchment 15 ( method [2] )
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Figure 15. Flow Time Series for subcatchment 15 ( method [3] )
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Appendix I. TP export in relation to soil

type in the Bassenthwaite catchment.

a) Whole catchment

SOIL

TYPE

AREA

(HA.)

AREA


(%)




TP EXPORTED

(KG/Y)

1 8,249




24 346
2 1,760




5 426
3 20




0 3
4 5,720




16 921
5 922




3 201
6 658




2 217
7 138




0 195
5 3,763




11 508
5 610




2 133
10 12,945




37 1,592




34,784




100 4,542

b) Subcatchments 1&2

c) Subcatchment 3

SOIL AREA AREA TP EXPORTED
TYPE (HA.) (KG/Y) 


4 11 29
10 27 71

38 100 5

d) Subcatchment 4

SOIL AREA AREA TP EXPORTED
TYPE (HA.) (%) (KG/Y) 


4 5 4
10 124 96 15

128 100 16

TYPE (HA.)
AREA TP EXPORTED


(KGP?)

1 1,225 27 51
2 180 4 44
4 512 11 82
6 239 5 79
8 95 2 13

10 2,372 51 292




4,624 100 561

SOIL

1
MFIZPROTECI CAUSSENTHIGISV,IEPORTMPENOXtnit,



e) Subcatchment 5

SOIL AREA AREA TP EXPORTED
TYPE (HA.) (% ) (KG/Y)

10 121 100 15
121 100 lb

0 Subcatchment 6

SOIL AREA AREA TP EXPORTED
TYPE (HA.) (%) (KG/Y)

4
5
7

10

190
86

124
765

16
7

11
66

31
19

176
94

1,165 100 319

g) Subcatchment 8

h) Subcatchrnent 9

SOIL AREA AREA TP EXPORTED
TYPE (HA.) (% )

(KG/Y)

4 74 100 12
74 100 12

i) Subcatchrnent 10

SOIL

TYPE

AREA AREA TP EXPORTED
(HA.) (TO (KG/Y)

1
4

10

34
515

48
598

6
86

8
100

1
83

6
90

SOIL AREA AREA TP EXPORTED
TYPE (HA.) (%) (KG/Y)

1 586 27 25
2 88 4 21
4 468 21 75
8 443 20 60

10 602 28 74
2,188 100 2bb

2
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1) Subcatchment 11

k) Subcatchment 12

I) Subcatchrnent 13

m) Subcatchment 14

SOIL AREA AREA TP EXPORTED
TYPE (HA.) (%) (KG/Y)

1 243 19 10
2 21 2 5
4 213 16 34
6 179 14 59




3 0 0
10 638 49 79




1,298 100 Isa

SOIL AREA AREA TP EXPORTED
TYPE (HA.) (%) (KG/Y)

2 70 47 17
4 35 24 6

10 42 29 5




147 100 28

SOIL

TYPE

AREA

(HA.)

AREA

(%)

TP EXPORTED
(KG/Y) 


1
2

10

5
129
150
284

2
46
53

100

0
31
18
50

SOIL

TYPE

AREA

(HA.)

AREA TP EXPORTED
(KG/Y)(%)

1
2

10

8
31

212
252

3
12
84

100

0
8

26
34

3 WaSPROTECI OtEL4SSENTHIOISVIEFCMWPPENDX0CLIV



n) Subcatchment 15

SOIL

TYPE

AREA

(HA.)

AREA

(%)

TP EXPORTED

(KWY)

1 6,146 27 258
2 958 4 232
4 3,563 15 574
5 20 0 4
5 836 4 182
6 195 1 64
8 3,114 14 420
9 610 3 133

10 7,561 33 930




23,003 100 2,798

4
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Appendix II. Land cover in relation to soil type in the

Bassenthwaite catchment.

SOIL TYPE 1

Landuse


code
Area (ha.) Area (%)

Upland moor 200 6940.651 84.27
Improved pasture 300 5.236 0.06
Bogs & peat 800 34.655 0.42
Inland bare rock 900 1109.196 13.47
Other 1200 50.359 0.61
Rough grazing 1000 18.253 0.22
Coniferous forest 400 15.693 0.19
Broadleaved forest 600 37.684 0.46
Mixed forest 700 23.805 0.29
Cleared/new forest 500 0.757 0.01




8236.289 100

SOIL TYPE 2





Improved pasture 300 1103.806 65.58
Urban/rural settlement 100 100.506 5.97
Arable 1100 34.039 2.02
Broadleaved forest 600 105.271 6.25
Mixed forest 700 115.56 6.87
Rough grazing 1000 136.877 8.13
Inland bare rock 900 0.28 0.02
Upland moor 200 50.067 2.97
Cleared/new forest 500 3.91 0.23
Other 1200 4.557 0.27
Coniferous forest 400 28.265 1.68




1683.138 100

SOIL TYPE 3





Improved pasture 300 •19.888 100.00




19.888 100

SOIL TYPE 9





Improved pasture 300 3738.519 65.53
Broadleaved forest 600 .97.821 1.71
Urban/rural settlement 100 312.432 5.48
Upland moor 200 431.48 7.56
Rough grazing 1000 718.892 12.60
Mixed forest 700 157.274 2.76
Amble 1100 13.792 0.24
Cleared/new forest 500 46.15 0.81
Coniferous forest 400
, 169.078 2.96

- Other 1200 18.498 0.32
Inland bare rock 900 0.996 0.02




5704.932 100
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SOIL TYPE 5

Landuse


code
Area (ha.) Area (%)

Improved pasture 300 72.515 7.87
Rough grazing 1000 21.15 2.30
Broadleaved forest 600 3.706 0.40
Coniferous forest 400 41.86 4.54
Urban/rural settlement 100 1.548 0.17
Bogs & peat 800 6.06 0.66

Upland moor 200 767.922 83.33
Cleared/new forest 500 6.711 0.73
Other 1200 0.027 0.00
Mixed forest 700 0.041 0.00




921.54 100

SOIL TYPE 6




Broadleaved forest 600 15.905 2.46
Mixed forest 700 10.313 1.60
Rough grazing 1000 130.212 20.16
Improved pasture 300 425.455 65.86
Cleared/new forest 500 3.977 0.62
Upland moor 200 1.12 0.17
Coniferous forest 400 6.97 1.08
Urban/rural settlement 100 31.802 4.92
Arable 1100 20.28 3.14




646.034 100

SOIL TYPE 7





Improved pasture 300 96.896 70.42
Urban/rural settlement 100 0.632 0.46
Broadleaved forest 600 4.075 2.96
Rough grazing 1000 31.3 22.75
Mixed forest 700 2.616 1.90
Arable 1100 2.079 1.51




137.598 100

SOIL TYPE 8





Urban/rural settlement 100 0 0.00
Upland moor 200 2937 78.41
Improved pasture 300 21 0.57
Coniferous forest. 400 210 5.61
Cleared/new forest 500 18 0.48
Broadleaved forest 600 13 0.35
Mixed forest 700




Bogs & peat 800 308 8.21
Inland bare rock 900 80 2.14
Rough grazing 1000 142 3.79
Arable 1100 0 0.01
Other 1200 16 0.44




3746 100.00

SOIL TYPE 9





Upland moor 200 608.328 99.71
Inland bare rock 900 0.52 0.09
Bogs & peat 800 0.588 0.10
Other 1200 0.68 0.11




610.116 100
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SOIL TYPE 10

Landuse

code

Area (ha.) Area (%)

Upland moor 200 6815.968 52.96
Improved pasture 300 1734.079 13.47
Urban/rural settlement 100 155.309 1.21
Rough grazing 1000 577.132 4.48
Mixed forest 700 820.724 6.38
Coniferous forest 400 1122.821 8.72
Other 1200 108.613 0.84
Cleared/new forest 500 379.29 2.95
Broadleaved forest 600 626.305 4.87
Inland bare rock 900 _476.88 3.71
Bogs & peat 800 49.437 0.38
Arable 1100 3.54 0.03




12870.098 100





Total catchment area
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Appendix Ill. Soil type in relation to land cover type in the Bassenthwaite catchment.

a) Urban/rural settlement e) Cleared/new forest ifInland bare rock

igtiilWeWeiThITFWATI Soil type Area (ha.) Area (%)

4 312 52 10 379




10 155 26 4 46 10
2 101 17 8 18




6 32 5 5 7

81

1
5 2 0 6 4 1
7 1 0 2 4 1
8 0 0 1 1




602 100




459 10

EgailfleT(h7) -Arer(%)-1
11109

10477
880
41
91
20

6

2

1668 100

b) Upland moor f) Broadleaved forest 1) Rough grazing

iSZTtrWe—RireTh7)-7511/371 Soil type Area (ha.) Area (%)
1 6941 37' 10 626 69
10 6816 37 2 105 12
8 2937 16 4 98 11
5 768 4 1 38 4
9 608 3 6 16 2
4 431 2 8 13 1
2 50 0 7 4 0
6 1 0 5 4 0




18553 100




904 100

Area 

4 719 40
10 577 33
8 142 8
2 137 8
6 130 7
7 31 2
5 21 1
1 18 1

17/6 100

c)Improved pasture g) Mixed forest k) Arable

[STiltylMT-7.ea hi:r-Arer(%)-1 [Soil type Area (ha.) Area (%)
4 3739 52 10 821 73
10 1734 24 4 157 14
2 1104 15 2 116 10
6 425 6 1 24 2
7 97 1 6 10 1
5 73 1 7 3 0
8 21 0 5 0 0
3 20 0





1 5 0





7218 100




1130 100

Soli type Area (ha.) Area (%)

2 34 46
6 20 27
4 14 19
10 4 5
7 2 3
8 0 1

74 100

d)Coniferous forest h) Bogs and peat I)Other

is7ritylmci-ormtr—Arevezn




soil type Area (ha.) Area (%)
10 1123 70




8 308 77
8 210 13




10 49 12
4 169 11




1 35 9
5 42 3




5 6 2
2 28 2




9 1 0
1 16 1





6 7 0






1595 100




398 100

Soil type Area (ha.) Area (%)

10 109 55
1 50 25
4 18 -9
8 16 8
2 5 2
9 1 0




199 100

1
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Newlands Beck Flow Time Series

using 30 day antecedent precipitation index

20-

Jun-




93

18-


Jul-




93

15-


Aug-




93

700 —

600 —

500

400 --
3

LT.
300 —

200 (

100 —

0

03-

Jan-

93

31-


Jan-




93

2 -

Mar-




93

28-

Feb-




93

25- 23-

Apr- May-

93 93

Date

800 —

Measured Flow

Predicted Flow

Newlands Beck Flow Time Series

using 5 day antecedent precipitation index
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Figure IV. (a) Flow Time Series for subcatchment 1



Chapel Beck Flow Time Series

using 30 day antecedent precipitation index
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Figure IV. (b) Flow Time Series for subcatchment 2



Thornthwaite Flow Time Series

using 30 day antecedent precipitation index
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Thornthwaite Flow Time Series

using 5 day antecedent precipitation index


coupled with soil moisture deficit
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Figure IV. (c) Flow Time Series for subcatchment 3



Beckstone Gill Flow Time Series

using 30 day antecedent precipitation index
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Figure IV. (d) Flow Time Series for subcatchment 4



Beck Wythop Flow Time Series

using 30 day antecedent precipitation index
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Figure IV. (e) Flow Time Series for subcatchment 5



Dubwath Beck Flow Time Series

using 30 day antecedent precipitation index
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Figure IV. (f) Flow Time Series for subcatchment 6



15 — Unnamed Tributary at Bass Lake Flow Time Series
using 30 day antecedent precipitation index
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Figure IV. (g) Flow Time Series for subcatchment 9



Chapel Halls Dash Beck Flow Time Series

using 30 day antecedent precipitation index
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using 5 day antecedent precipitation index


coupled with soil moisture deficit
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Figure IV. (h) Time series for subcatchment 10
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Pooley Beck Flow Time Series

using 30 day antecedent precipitation index

20 —

\

25-


Apr-




93

Date

v

20- 18- 15-

Jun- Jul- Aug-

93 93 93

03- 31- 28- 28-

Jan- Jan- Feb- Mar-

93 93 93 93

23-


May-




93

Measured Flow

Predicted Flow

Gauge Limit

15 —

2

u- 10 —

20- 18- 15-

Jun- Jul- Aug-

93 93 93

0 	

03- 31- 28- 28- 25- 23-

Jan- Jan- Feb- Mar- Apr- May-

93 93 93 93 93 93

Date

Pooley Beck Flow Time Series

using 5 day antecedent precipitation index
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Figure IV. (i) Flow Time Series for subcatchment 11



Bass Lake Tributary at Bowness Flow Time Series

using 30 day antecedent precipitation index
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Figure IV. (j) Flow Time Series for subcatchment 12



Skill Beck Flow Time Series

using 30 day antecedent precipitation index
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Figure IV. (k) Flow Time Series for subcatchment 13
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