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ABSTRACT 
 

Intra-specific structuring of phenotype and genotype provides an insight into the evolutionary processes that have shaped the 

species.  This study revealed between-lake genetic structuring  between Coregonus lavaretus collected from the only 2 native 
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populations of this species in Scotland (Lochs Eck and Lomond) evidenced by the existence of private alleles (12 in Lomond and 4 

in Eck) and significant genetic differentiation (FST=0.056) across 10 microsatellite markers. Juvenile C. lavaretus originating from 

eggs collected from the two lakes and reared in a common garden experiment showed clear phenotypic differences in trophic 

morphology (i.e., head and body shape) between these populations indicating that these characteristics were, at least partly, 

inherited. Microsatellite analysis of adults collected from different geographic regions within Loch Lomond revealed detectable and 

statistically significant but relatively weak genetic structuring (FST = 0.001 - 0.024) and evidence of private alleles related to the  

basin structure of the lake. Within-lake genetic divergence patterns suggest three possibilities for this observed pattern  i)   

differential selection pressures causing divergence into separate gene pools ii) a collapse of two formerly divergent gene-pools iii) a 

stable state maintained by balancing selection forces resulting from spatial variation in selection and lake heterogeneity.  Small 

estimates of effective population sizes for the populations in both lakes suggest that the capacity of both populations to adapt to 

future environmental change may be limited. 

 
 
 
 
 

INTRODUCTION 
 

There is increasing evidence of intraspecific structuring of both phenotype and genotype over multiple spatial scales for species 

from a broad range of taxonomic groups  (as exemplars see (Kang et al., 2013) on crustaceans; (Lozier,  2013) on insects; (Jorde 

et al., 2007; Fevolden et al., 2012) on fish; (Piertney et al., 1998) on birds and (Swislocka et al. 2013) on mammals. 

 

It is generally assumed, but only rarely directly tested, that phenotypic structuring reflects localised evolutionary responses 

resulting from exposure to differing environments across the range of the species. This operating either through differential 

selection pressures shaping local adaptation (Garant et al., 2007) or imposing localised phenotypic change through plasticity 

responses during ontogeny (Adams & Huntingford, 2004). Although intra-specific genetic structuring might be reasonably assumed 
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to be a local adaptive response reflecting differential selection pressures (Hendry & Stearns, 2004), it could also be the result of 

non-directional genome change such as random genetic drift or population bottlenecking (Frazer & Rusello, 2013). 

 

The context within which either, or both, of phenotypic or genetic structuring within a species might occur is significantly 

influenced by the patterns of dispersal and gene flow across the species. For example intraspecific phenotypic or genetic  

structuring resulting from differential selection pressures across the range of the species is likely to be limited in extent by 

unrestricted gene flow. Phenotypic variation resulting purely from plastic responses to the environment may however, endure in 

such panmictic populations. Thus high levels of intra-specific structuring are more likely in species which are disjunct or fragmented 

in distribution across their range. 

 

Freshwater systems comprise a series of geographically disjunct habitats. Moreover some obligate freshwater-living fishes 

have generally limited powers of dispersal (Adams & Maitland 2001) and thus may be reasonably expected to exhibit intraspecific 

structuring across systems. There is strong evidence that this does occur, for example in Arctic charr Salvelinus alpinus (L. 1758) 

(Wilson et al., 2004; Bush & Adams, 2007; Garduño-Paz et al., 2012)), brown trout Salmo trutta L.1758  (Taggart et al., 1981; 

Ferguson, 1989), and even among anadromous populations of Atlantic salmon Salmo salar L.1758 (Jordan et al., 1992; King et al., 

2001; King, 2007; Landry & Bernatchez, 2001). 

 

In addition to between-catchment phenotypic and genetic structuring, there is now a considerable body of evidence of 

structuring in populations within a single catchment. Examples include North American lake whitefish Coregonus clupeaformis 

(Mitchill 1818) (Gagnaire et al., 2013); pygmy whitefish Prosopium coulterii (Eigenmann & Eigenmann, 1892) (Gowell et al., 2012); 

European whitefish Coregonus lavaretus (L.1758)  (Præbel et al. 2013a; Siwertsson et al. 2013; Dierking et al. 2014); three spined 

sticklebacks Gasterosteus aculeatus L. 1758 (Defaveri et al., 2013); nine spined stickleback Pungitius pungitius (L. 1758) (Ishikawa 

et al., 2013) and Arctic charr (Danzmann et al., 1991; Adams et al., 1998; Fraser et al.,1998; Knudsen et al., 2007). At least for 
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some species, the geographic scale of the habitat seems to be an important factor influencing phenotypic and genetic structuring 

(Chavarie et al. 2014). 

 

In many places, particularly in post-glacial freshwater systems, observed structuring within a single system is known to have 

arisen recently within the catchment (Gislason et al., 1999; Garduño-Paz et al., 2012). There is considerable evidence that much of 

the structuring of phenotype is to be found in traits that have functional significance related to the capture and consumption of prey 

(trophic morphology sensu (Skulason & Smith 1995; Schluter 2009). There are several well studied examples where the phenotypic 

structuring of a species in a single catchment takes the form of well-defined, phenotypically discrete, morphological groups, that  

also exhibit clear ecological differences and which comprise separate gene pools with limited, or no, gene flow but living in   

apparent sympatry (exemplars include Arctic charr   (Snorrason et al., 1994; Adams et al., 1998; Klemetsen et al., 2006) three- 

spined stickleback (Olafsdóttir et al., 2006) and European whitefish (Siwertsson et al., 2012). Elsewhere within-species structuring in 

a single ecosystem is apparently more subtle (Svanbäck & Eklöv, 2004; Hendry et al., 2009;(Hirsch et al. 2013) and at least in  

some circumstances, it may be reversible (Taylor et al., 2006; Bittner et al., 2010; Vonlanthen et al., 2012; Bhat et al., 2014). 

 

Where intra-specific, genotype and /or phenotype structuring does occur, the patterns of its organisation can be highly 

informative. Structuring is indicative of the very early stages of the diversifying evolutionary processes that may ultimately lead to 

new species. As a result, structuring patterns can indicate the contemporary diversifying selection pressures to which a species is 

exposed, providing insights into the mechanisms of biodiversity formation (Urban et al., 2008). More practically, such structuring is 

an indicator of the adaptive potential of natural populations to respond to environmental change (Bolnick et al., 2011). For species 

for which biodiversity conservation or fisheries management  is required, the existence of  structuring is likely to have significant 

implications for the identification of  useful management units (Rader et al., 2005). Thus genotypic or phenotypic structuring in 

organisms of high conservation value may be particularly important. 
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Here we examine population structuring in one of the fishes considered above, Coregonus lavaretus (known in Scotland as 

powan), a lacustrine species of high conservation and fisheries value in many parts of Europe. The study was structured over two 

spatial scales; between two lakes in two adjacent but unconnected catchments and between basins within a single lake. The study 

tests the hypothesis that a) structuring will be greater across lakes than within a lake and b) that local evolutionary responses to 

exposure to differential environments should result in significant genetic structure between sites in the larger lake (Loch Lomond). 

METHODS 
 

STUDY SITE 
 

Coregonus lavaretus is found naturally in only two lakes in Scotland and seven in the UK as a whole. The largest of these is 

Loch Lomond, (56° 7' 13.9'' N 004° 37' 45.3'' W) a glacially formed freshwater lake of 71 km2 and 198 m maximum depth, which 

comprises three distinct basins. The species feeds predominantly on zooplankton in the pelagic zone in Lomond (Pomeroy, 1991) 

and are commonly found throughout the lake. Loch Eck (56° 4' 44.2'' N; 004° 59' 45.7'' W) is similarly glacial in origin although 

smaller (4.4 km2; 42 m maximum depth) and, although only 20 km from Loch Lomond, these two lakes are not part of the same 

catchment, having independent drainages to the sea (Fig.1). 

 
 

 
COMMON GARDEN EXPERIMENT 

 
Male and female sexually mature C. lavaretus were collected under licence (Scottish Natural Heritage licence # 9242) from 

both Loch Lomond from sites 6,7 and 8 and Loch Eck (site 1) in January 2010 (Table I). Eggs were stripped from ovulating females, 

split into 2 batches and each fertilised with milt from a single male. 100 families comprising the eggs of around 50 females were 

created from fish collected from Loch Eck and 46 families (23 females) from the mid basin of Loch Lomond. Eggs were incubated in 
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12 vertical incubation bottles (Rottman & Shireman, 1988). On hatching the alevins were transferred to 10, 20L tanks comprising 

mixed families but separate lake of origin and at first feeding were fed a small particle size commercial diet. At 13 days after their 

first feeding, 30 individuals were taken randomly from tanks containing juveniles from Loch Eck and Loch Lomond, anaesthetised 

and photographed in left, lateral view on a scale. 

 

Landmark-based geometric morphometric analysis was used to detect variation in the body shape of individual fish. Eleven 

landmarks (Fig. 2) were located and digitized (using tpsDig2; Rohlf, 2006). Generalized least squares Procrustes superimposition 

was performed using the program “Morpho-J” (Klingenberg, 2011) to rotate, scale and translate landmarks, and produce Procrustes 

coordinates. To compare shape differences between groups “Morpho-J” was also used to conduct a multivariate Discriminant 

Function Analysis of Procrustes coordinates (Zelditch et al., 2004; Klingenberg, 2011; Garduño-Paz et al., 2012). 

 

 
POPULATION GENETIC ANALYSIS 

Coregonus lavaretus were collected for genetic analysis by gill net from across Loch Eck’s single basin and from each of 

Loch Lomond’s three basins around the breeding season from between November and January between 2006 and 2009. Norden 

survey gill nets comprising 12 panels, ranging from 5 to 55 mm, knot-to-knot mesh were set on the lake bottom overnight at 4 sites 

in the north (subsequently “Lomond-N”), 2 site in the south (“Lomond-S”) and 3 in the mid basins (“Lomond-M”) of Loch Lomond 

(Fig. 1; Table I) and at multiple sites in Loch Eck adjacent to sites 1 and 2 (subsequently “Eck”) (Fig 1; Table I). Fish were captured 

in water depths ranging from 2 to 15m. Fish were removed and an adipose fin clip removed and stored in 100% ethanol. As the 

samples collected from fish in the mid and south basin of Loch Lomond could not be genetically discriminated and the pooled 

sample was within Hardy-Weinberg equilibrium (Table II) samples from these sites were pooled to compare between lakes to 

increase statistical power. 
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Genomic DNA was extracted from fin clips using E-Z96 Tissue DNA Kit (OMEGA Bio-tek) following the manufacturer’s 

instructions. A total of 15 microsatellite loci; BFRO-018 (Susnik, Snoj & Dovc 1999) BWF1, BWF2 (Patton et al., 1997), C2-157 

(Turgon et al., 1999)  Cla-Tet01, Cla-Tet03, Cla-Tet10, Cla-Tet13, Cla-Tet15, Cla-Tet18 (Winkler & Weiss, 2008a) Cocl-lav04, 

Cocl-lav06, Cocl-lav10, Cocl-lav18, and Cocl-lav49 (Rogers et al., 2004) (Table S1) were amplified using forward-labelled primers 

in four PCR multiplexes following the protocol by (Præbel et al., 2013b). The PCR products were separated on an ABI 3130 XL 

Automated Genetic Analyser (Applied Biosystems) using GENESCAN LIZ-500 (Applied Biosystems) as a size standard. The 

binning and scoring was performed in GENEMAPPER 3.7 (Applied Biosystems) and manually verified. Replicate (5-9 %) and blind 

(4 %) samples were included in all PCR’s to confirm consistency of scoring and absence of contamination. The repeatability and 

consistency of genotypes were 100 %. The samples were screened for abnormalities in the software MICRO-CHECKER 2.2.3 (Van 

Oosterhout et al. 2004), using 1,000 bootstraps to generate the expected homozygote and heterozygote allele size difference 

frequencies. 

 
 
 

Allelic richness (NAR) and private allelic richness (NPAR) were determined for fish grouped by sampling area (3 sites within 

Loch Lomond and between Loch Lomond (mid and south basins pooled) and Loch Eck). Differences in sample sizes were 

accounted for using the rarefaction procedure for the smallest sample size (80 genes) as implemented in the software HP-RARE 

1.0 (Kalinowski, 2005). In the intralacustrine analysis of Loch Lomond, NAR and NPAR were normalised for differences in sample 

sizes using 36 genes and the pair-wise occurrence of private alleles between the three sampled basins were also estimated. 

Expected heterozygosity (He) and Wrights FIS across loci and departure from the Hardy-Weinberg equilibrium (HWE) were tested 

by exact tests (Guo & Thompson, 1992) as implemented in GENEPOP 4.0 (Rousset, 2007).  A test for the Wallund effect, 

7 



 

 

 

 

 

indicating any structuring within Loch Lomond was conducted on pooled samples which were tested for deviations from Hardy- 

Weinberg expectations. Samples were also tested for significant association with a heterozygote deficit or excess by the exact test 

implemented in GENEPOP 4.0. Pair-wise comparisons were corrected for multiple comparisons using sequential Bonferroni 

corrections following Rice (Rice et al., 2008). Allelic richness and the relative frequency of private alleles were compared using a 

paired-t test under no a priori assumption of the direction of any difference between pairs. Standard genetic diversity measures; 

number of alleles (NA), He, and observed heterozygosity (Ho) for each locus per population were estimated in GenAlEx (Peakall & 

Smouse, 2006). 

 
 

 
Genetic differentiation between lakes and between basins within Loch Lomond were estimated by FST   and tested for 

significance by 10,000 permutations using ARLEQUIN 3.5.1.2 (Excoffier & Lischer, 2010).  Additionally, FST per locus per 

population was estimated using GENEPOP 4.0 (Rousset, 2007) for a post hoc evaluation of the contribution of each locus to the 

observed genetic pattern. 

 
 

 
The effective population size (Ne) was  also estimated for Loch Lomond and Loch Eck populations using OneSamp 1.1 

(Tallmon et al., 2008) which uses a Bayesian computation to estimate Ne from summary statistics that are related to Ne (see 

Tallmon et al., 2008 for details). As recommended in the program manual, a wide range of prior upper and lower bounds for Ne (2- 

1000) was initially tested in several replicas and ranges to identify the prior resulting in the narrowest 95% credible intervals. Prior 

upper and lower bounds for Ne of 20-200 and 10,000 replications were used to generate the 95% credible intervals. The analyses 

were run in triplicate to ensure consistency of the estimate. 
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RESULTS 
 

COMMON GARDEN EXPERIMENT 

 
Discriminant Function Analysis clearly segregated juvenile post-first feeding, C. lavaretus from Loch Lomond from those at 

the same developmental stage from Loch Eck on the basis of shape when reared in the laboratory under identical conditions (Fig. 

3). Both the mean Procrustes coordinate difference and the Mahalanobis distance were significantly different between individuals 

originating from the two lakes (Procrustes distance = 0.010; P<0.001; Mahalanobis distance = 1.81 P<0.002). Discriminant 

Function Analysis correctly assigned, on the basis of shape only, 71.9% of Loch Eck origin juveniles and 81.1% of Loch Lomond 

juveniles, to their lake of origin. Loch Eck juveniles had a rounder, more robust head and deeper body compared with those from 

Loch Lomond. 

 

VALIDATION AND QUALITY CONTROL OF GENOTYPIC DATA 

 
The loci BFRO-018, BWF2, Cocl-lav04, and Cocl-lav10 were monomorphic in all individuals and were therefore omitted from the 

analysed dataset. The locus Cocl-lav49 was monomorphic in Loch Eck and was therefore excluded from the interlacustrine 

comparisons. Heterozygote deficits were indicated by MICRO-CHECKER only at the ClaTet18 locus for individuals from Lomond- 

N, Lomond-S and for Lomond-S+M. The heterozygote deficits were associated with more than 50 % of the alleles being in one  

allele class and were suggestive of the presence of null alleles. None of the samples showed significant departures from HWE after 

sequential Bonferroni corrections (Table S1). Given the relatively few loci used in the study, ClaTet18 was therefore retained in the 

analysis to ensure statistical power. Thus, the following analyses are based on 10 and 11 loci for the inter-lacustrine (Lomond-M+S 

vs. Eck) and intra-lacustrine (Lomond-N, Lomond-S Lomond-M) comparisons, respectively. 
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GENETIC DIVERSITY AND DIVERGENCE BETWEEN LOCH LOMOND AND LOCH ECK 

 
The number of alleles per locus ranged from 2 to 8 across the 10 loci used in this study (Table S1). There was no evidence 

of a global departure from HWE (P = 0.832) for any of the samples (Table II). Loch Lomond displayed slightly higher mean allelic 

richness (Lomond-S+M, NAR = 4.7±0.6; mean±SE) than Loch Eck (vs. Eck NAR = 3.8±0.5) (paired t-test; P<0.01) across all loci. In 

addition, total private allelic richness was higher for Loch Lomond fish (Lomond-S+M, NTPAR = 12) than for Loch Eck (NTPAR = 4,) 

and mean private allelic richness was statistically greater for Lomond (Lomond-S+M NPAR = 1.2±0.3; mean ±SE) than for Loch Eck 

(Eck NPAR = 0.4±0.1)  (P =0.023). The expected heterozygosity was similar between the two populations (Table II) (He = 0.48 for 

Lomond-S+M and 0.42 Eck) (P =0.47). 

 

Between lake genetic structuring was further evidenced by a highly significant (P <0.0001) pair-wise genetic difference 

across all loci (FST = 0.056) between Loch Lomond and Loch Eck. 

 

The effective population size estimates did not differ significantly between Loch Lomond (Ne = 54, Cl 45-72) and Loch Eck 

(Ne = 52, CL= 43-70) (Table II). 

 
 

 
GENETIC DIVERSITY AND DIVERGENCE WITHIN LOCH LOMOND 

 
The number of alleles per locus was generally low, ranging from 2 to 8 across the 11 loci examined in Loch Lomond fish 

(Table S2). An estimate of deviations from HWE of all groups combined (FIS = 0.0109; P  <0.001) showed departure from HWE 
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associated with a heterozygote deficit, indicating a Wahlund effect or the general presence of null alleles. In contrast none of the 

individual sampled groups showed significant departures from the HWE-expectations (Table II). 

 

Mean overall allelic richness when measured across all loci did not differ significantly between sites in Loch Lomond 

(Lomond-N NAR = 4.1; Lomond-M  NAR = 3.6; Lomond-S NAR = 3.9;) (F=0.25; P  =0.776) (Table II). Eight loci showed evidence of 

private alleles (N=20) in fish from at least one sampling site in Loch Lomond (BWF1, ClaTet03, ClaTet13, ClaTet18, ClaTet10, 

ClaTet15, C2-157 and ClaTet01). Mean private allelic richness across these loci (i.e. alleles that are unique to fish from that basin) 

differed significantly between individuals from the north and mid basins (Lomond- N NPAR = 0.42; Lomond-M NPAR = 0.25; P  <0.03), 

between individuals from the north and south basins (Lomond-S NPAR = 0.38; P <0.006) and between mid and south basins (P 

<0.003) (Table II). However, none of the private alleles showed frequencies higher than (5.6 %) when comparing among the three 

samples (Table S1). 

 
 

 
A pairwise comparison of north basin and mid basin samples using all 11 microsatellite loci showed a significant FST value 

(LLN and LLM: FST = 0.020, P =  0.021). In contrast, it was not possible to discriminate between the north and south basin samples 

(LLN & LLS; FST = -0.001, P = 0.511), nor between south and mid basin samples (LLS and LLM; FST = 0.004, P = 0.246). Where 

significant, the pairwise FST values are still below the threshold where an individual based group clustering analysis (such as 

STRUCTURE) is appropriate for allocating indicviduals to specific groupsings (Prichard et al. 2007), indicating significant but very 

weak within-lake structuring. 

 
 
 

DISCUSSION 
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This study demonstrates genetic and phenotypic structuring across native populations of European whitefish from two 

discrete water-courses, separated by ca 20km, as well as within lake differences in the larger Loch Lomond. Between-lake genetic 

structuring is evidenced by the existence of private alleles (12 in Lomond and 4 in Eck) and significant genetic differentiation (FST) 

across the microsatellite loci used here. The magnitude of this genetic differentiation (FST = 0.056) appears intermediate compared 

with that found between populations of this species isolated from each other elsewhere. For example, the genetic differentiation 

between two northern Norwegian lake populations with an FST = 0.16  is three times higher than that found here (Præbel et al. 

2013a).  Whereas comparison with several Finnish and German populations revealed inter-population genetic differentiation in the 

range from FST < 0.01 to 0.21 (Saisa et al., 2008; Dierking et al., 2014). 

 
 

 
There were correspondingly clear phenotypic differences between the F1 progeny of fish from the two lakes in the common 

garden experiment presented here. Etheridge and her co-workers (Etheridge et al. 2012) showed clear and significant differences 

in functional, phenotypic traits (the shape of the head and mouth; foraging morphology sensu Skulason et al., 1999) between adult 

C. lavaretus from Loch Eck  and Loch Lomond.  However it was not possible to determine if these phenotypic differences were 

inherited across generations or were the result of differential expression of plastic traits (Adams & Huntingford, 2002, 2004). The 

common garden experiment reported here shows that at least some of the expressed variation in head- and body morphology is 

inherited. Head-shape variation is commonly strongly related to the different foraging niches in polymorphic populations of 

postglacial freshwater fish (Adams et al. 1998; Fraser et al. 1998; Siwertsson et al. 2013). The variation described here in juveniles 

(a rounder more robust head and deeper body in Loch Eck fish) is similar to the intraspecific morphological differences described 

for plankton and macrobenthos foraging specialists of other species (Skulason et al. 1994; Adams et al. 1998; Adams and 

Huntingford 2002). This is mirrored in differences between populations in foraging ecology, with Loch Lomond fish feeding 
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predominantly on plankton and the Loch Eck fish preying primarily on macrobenthos (Pomeroy, 1991) and  parasitic loading 

(Etheridge et al. 2012) between these two populations. It is most likely that these trophic related traits are inherited genetically, 

although the possibility of a maternally-induced effect (for example through differential egg provisioning) cannot be completely ruled 

out. It is probable that the populations of C. lavaretus in Loch Eck and Loch Lomond were established at about the same time by 

anadromous Coregonus ancestors of the current populations, following the retreat of the glaciers around 12,000 years ago (Clark et 

al., 2012). Given the close geographic proximity of these populations to each other and the common sea route to invasion of the 

emerging fresh waters, a logical and parsimonious assumption is that both locations were invaded by a single common ancestor. 

The relatively modest magnitude of the genetic divergence at variable, but neutral, genetic markers used here lends additional 

support to this interpretation. If that is the case, then the contemporary between-lake, genetic and phenotypic pattern indicates that, 

in the approximately 4000 generations since invasion, these two populations have diverged markedly genetically and  

phenotypically, including in functional traits related to foraging and that they have a genetic basis to their expression (see also 

Etheridge et al., 2012). 

 

This study also shows subtle, but detectable, genetic structuring within the larger of the habitats supporting the species 

examined here. Although analysis of the spatial patterning of this genetic structuring in this current study is relatively crude, it maps 

on to physical structuring of the lake. Detectible and significant population differentiation between fish caught during the breeding 

period in each of the three principal lake basins were identified. Using all 11 microsatellite loci, FST analysis indicates clear genetic 

differences between C. lavaretus from the north and mid basins but not between south and mid basins. This structuring is also 

supported by the occurrence of private alleles where fish from  the geographically most distant sampling locations (north and south 

Lomond basins) display a higher number of private alleles than the intermediate sampling locality (the mid basin of Lomond). Since 

private alleles generally occur in low frequency in recently diverged populations they do not contribute significantly to the estimates 

of genetic differentiation (e.g. FST) and therefore provide an alternative measure of genetic isolation (Szpiech & Rosenberg, 2011). 
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Siwertsson and colleagues (Siwertsson et al., 2013), found genetic differences between Coregonus lavaretus ecomorphs, using the 

same microsatellite loci used in this study, which were also clearly defined by ecological, morphological  and meristic characters in 

lakes, in a similar range (FST 0.014 to 0.024) as those reported here. The subtle nature of the between-basin genetic structuring 

amongst the C. lavaretus from Loch Lomond reported here indicates that the assortative mating that has resulted in this structuring, 

is either a relatively new phenomenon or that there remains some considerable gene flow between fish in different basins or some 

combination of both. 

 

There are at least three possible explanations, none mutually exclusive, for the patterning of within-lake genetic divergence 

reported amongst the Lomond C. lavaretus here. Probably the most parsimonious is that this weak structuring could represent the 

very earliest stages of population fragmentation leading to the within-lake divergence reported elsewhere in this species (Præbel et 

al., 2013a; Siwertsson et al., 2013) and related species (Gislason et al., 1999; Adams et al., 2008; Garduño-Paz et al., 2012). 

There is some additional supporting evidence that the genetic structuring described here is also underpinned by ecological 

differences between fish from different basins. Etheridge and her colleagues (Etheridge et al., 2010) showed structuring in foraging 

ecology in C. lavaretus across basins in Loch Lomond. Stable isotopes ratios of C and N from muscle tissue of C. lavaretus in 

winter, indicative of the foraging  pattern over the previous summer, differed between fish from the north, south and mid basins of 

Lomond. The population fragmentation described for Loch Lomond here appears to be based on broad scale lake characteristics 

(basins), this differs from the intra-lacustrine patterns described for the same species in northern Norway and Finland, where 

although there is some spatial patterning of phenotypically and genetically distinct groups, this is based upon habitat use 

differences with water depth (Siwertsson et al., 2012). 

 

Although emerging population divergence is one (and probably the most likely) explanation for the patterns presented here, 

there are at least two others. There is the possibility that the subtle genetic patterning is the result of previously divergent 
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populations which have subsequently collapsed. Merging of well-defined genetically and phenotypically diverged populations has 

been recorded at least twice previously for this and other freshwater fishes (Taylor et al., 2006; Bittner et al., 2010; Bhat et al., 

2014). However, there is no historical evidence for clearly defined, separate populations of European whitefish defined genetically 

or by phenotype in Loch Lomond, although equally there is also no robust evidence that such populations have not existed 

previously. 

 

A third possibility is that the contemporary patterns amongst Lomond  C. lavaretus are on neither a divergent nor a 

collapsing evolutionary trajectory, rather that the current structure represents some stable state driven by weak balancing selection 

forces resulting from spatial differences in selection caused by significant habitat heterogeneity. One plausible explanation is that 

some structuring that is driven by high levels of fidelity to spawning sites is prevented from becoming more extreme because of 

constant and repeat straying between geographically distinct spawning sites. Future analysis may benefit from including genetic 

tools offering higher resolution to fully understand the mechanisms that lie beneath this structuring. 

 
 

 
The estimates of effective population size for the Loch Lomond and Loch Eck C. lavaretus revealed population sizes around 

the lower limit of the theoretical recommendation (Ne = 50) for a population that might be considered vulnerable to immediate 

effects of inbreeding and an order of magnitude smaller than recommended for maintaining genetic variation indefinitely (Allendorf 

& Ryman, 2002; Van Dyke, 2003). This strongly suggests that the adaptive potential to adjust to significant environmental 

perturbations in these populations may be limited. In conclusion, there is clear genetic and phenotypic structuring across native 

populations of C. lavaretus in Scotland that probably have originated from a common ancestor. Secondly, there was also detectable 

but weak genetic structuring between “sub-populations” within the large Loch Lomond. Thus the hypothesis that between lake 

structuring would be greater than within lake structuring and that the habitat heterogeneity of Loch Lomond would support genetic 
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structuring are both supported. A further test of the nature of the sub-structuring within Loch Lomond might focus on analysing 

larger sample sizes in combination with genetic methods of higher resolution, such as next generation sequencing. This pattern of 

within lake structuring may indicate the beginnings of a sympatric divergence of gene pools or a collapse of previously divergent 

groups. Alternatively weak balancing section with some spatial variation in selection may have resulted in these patterns. 

Whichever of these is in operation, these unique populations are of high conservation importance and their genetic structure 

suggests that they are vulnerable to future environmental perturbations. 
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Tables 
 
 

Table I. Sampling locations for Coregonus lavaretus in this study. 

 
 

Site Latitude (N) Longitude (W) 

1.  Lomond - North 56° 1658.4 04° 4122.2

2.  Lomond - North 56° 1642.7 04° 4147.5

3.  Lomond - North 56° 1637.5 04° 4149.6

4.  Lomond - North 56° 1614.3 04° 4036.6

5.  Lomond - North 56° 1637.5 04° 4149.6

6.  Lomond - Mid 56° 733.3 04° 3648.9

7.  Lomond - Mid 56° 725.9 04° 3746.4

8.  Lomond - Mid 56° 636.2 04° 3623.1

9.  Lomond - South 56° 210.0 04° 3735.6

10. Lomond - South 56° 154.6 04° 3734.3

1.  Eck - North 56° 621.1 04° 5926.6

2.  Eck - South 56° 247.1 04° 5904.8
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Table II. Summary of the genetics samples included in the study. Lakes sampled, Location of basin, sample abbreviations (Code), sample size 

(N), expected heterozygosity (He), the inbreeding coefficient Fis, and the significance from the HWE test (PHWE), mean allelic (NAR) and mean 

private allelic richness (NPAR) determined by the rarefaction procedure as implemented in HP-RARE (Kalinowski 2005), and the effective 

population size (Ne) with the lower and upper credible limits. 
 

Lake Location Code N He Fis PHWE NAR NPAR Ne 

Lomond North LLN 18 0.462 0.059 0.712 4.1±0.7 0.4±0.3 - 

  

Mid 
 

LLM 
 

20 
 

0.450 
 

-0.071 
 

0.911 
 

3.6±0.6 
 

0.3±0.1 
 

- 

  

South 
 

LLS 
 

21 
 

0.491 
 

0.027 
 

0.614 
 

3.9±0.5 
 

0.4±0.2 
 

- 

 

Lomond 
 

Pooled N+M+S 
  

59 
 

0.471 
 

0.011 
 

<0.001 
 

- 
 

- 
 

- 

 

Lomond 
 

Pooled M+S 
 

LLO 
 

41 
 

0.480 
 

-0.028 
 

0.371 
 

4.7±0.6 
 

1.2±0.3 
 

54 (45-72) 

 

Eck 
  

ECK 
 

44 
 

0.422 
 

0.016 
 

0.969 
 

3.8±0.5 
 

0.4±0.1 
 

52 (43-70) 

 

 
 

Legends 
 

Figure 1. Loch Lomond and Loch Eck, Scotland showing the lake basin boundaries and the sampling sites (arrows) for C. lavaretus. 
 

Figure 2 The location of the landmarks used to estimate shape of C. lavaretus. These are: 1  the most anterior point of the snout; 2 & 4 - 

the dorsal and ventral point of the eye socket (left side); 3 & 5  the anterior and posterior points of the eye socket (left side); 6 & 7 the 
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anterior and posterior points of the eye socket (right side); 9 the anus; 10 & 11 the lower and upper part of the caudal peduncle where is 

joins the caudal fin. 

Figure 3. The Discriminant Function Analysis score frequencies and the shape change associated with the DFA score differences for C. 

lavaretus at first feeding from a common-garden experiment originating from fertilised eggs collected from Loch Eck (dark grey) and 

Loch Lomond (light grey). (Between location: Procrustees distance = 0.010; P<0.001; Mahalanobis distance = 1.81 P<0.002). 
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Supporting Information 
 

Table S1. Summary of sample sizes (N), number of alleles (NA), observed (Ho) and expected (He) heterozygosity, and Fis-estimates of the studied 

populations and loci. Table-wide significance levels for H.-W. tests were applied for each locus separately (bold values). None of the p-values 

were significant after sequential Bonferroni correction (at the 5% level or less) following (Rice et al. 2008). BFRO-018 (Susnik et al. 1999), 

BWF1, BWF2 (Patton et al. 1997), C2-157 (Turgeon, Estoup & Bernatchez 1999), Cla-Tet01, Cla-Tet03, Cla-Tet10, Cla-Tet13, Cla-Tet15, Cla- 

Tet18 (Winkler & Weiss 2008b), Cocl-lav04, Cocl-lav06, Cocl-lav10, Cocl-lav18, and Cocl-lav49 (Rogers et al. 2004). 

 

 
 

Pop 

  
BWF1 

Cla- 

Tet03 

Cla- 

Tet13 

Cla- 

Tet18 

Cocl- 

lav06 

Cla- 

Tet10 

Cocl- 

lav18 

Cocl- 

lav49 

Cla- 

Tet15 

C2- 

157 

Cla- 

Tet01 

LLN N 18 18 18 18 18 18 18 18 18 18 18 

 NA 3 7 8 4 2 8 2 2 4 2 3 

 Ho 0.167 0.667 0.833 0.278 0.389 0.778 0.278 0.167 0.556 0.389 0.278 

 He 0.156 0.622 0.772 0.534 0.375 0.793 0.375 0.153 0.477 0.424 0.248 

 Fis -0.069 -0.072 -0.080 0.480 -0.037 0.019 0.259 -0.091 -0.165 0.084 -0.118 

LLM N 20 20 20 20 20 19 20 19 20 20 20 

 NA 2 5 5 3 2 8 2 2 5 3 3 
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 Ho 0.050 0.600 0.700 0.300 0.500 0.947 0.650 0.263 0.700 0.300 0.300 

 He 0.049 0.503 0.721 0.261 0.480 0.788 0.499 0.361 0.590 0.329 0.265 

 Fis -0.026 -0.194 0.029 -0.148 -0.042 -0.202 -0.303 0.272 -0.186 0.087 -0.132 

LLS N 23 22 23 23 23 23 23 22 23 23 23 

 NA 5 7 4 5 2 6 2 2 5 2 5 

 Ho 0.217 0.500 0.739 0.261 0.478 0.739 0.348 0.409 0.696 0.435 0.435 

 He 0.202 0.448 0.680 0.458 0.466 0.752 0.386 0.375 0.652 0.454 0.403 

 Fis -0.075 -0.115 -0.088 0.431 -0.026 0.018 0.098 -0.091 -0.067 0.042 -0.080 

LLO N 40 40 41 41 41 40 41  41 41 41 

 NA 4 7 5 5 2 8 2  6 3 5 

 Ho 0.125 0.550 0.732 0.268 0.463 0.850 0.512  0.707 0.366 0.366 

 He 0.120 0.478 0.705 0.333 0.470 0.783 0.470  0.637 0.410 0.339 

 Fis -0.044 -0.150 -0.038 0.194 0.015 -0.086 -0.089  -0.110 0.108 -0.080 

ECK N 42 44 44 44 44 44 44  44 44 44 

 NA 3 6 5 4 2 7 3  3 2 4 

 Ho 0.286 0.409 0.477 0.364 0.114 0.614 0.523  0.545 0.432 0.386 

 He 0.281 0.403 0.481 0.382 0.107 0.673 0.464  0.551 0.425 0.399 

 Fis -0.015 -0.015 0.007 0.048 -0.060 0.088 -0.126  0.011 -0.015 0.030 
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Table S2. Pairwise FST estimates for C. lavaretus collected from each of the 3 basins in Loch Lomond for each locus individually. * P < 0.1 
 

Locus: BWF1  Locus: ClaTet03  Locus: ClaTet15 

Population Lomond-N Lomond-S  Population Lomond-N Lomond-S  Population Lomond-N Lomond-S 

Lomond-S -0.0192   Lomond-S 0.0141   Lomond-S 0.0240*  
Lomond-M 0.0062 0.0142  Lomond-M -0.0013 -0.0076  Lomond-M -0.0023 -0.0030 

 
 

Locus: Cocl_lav18  Locus: C2-157  Locus: ClaTet10 

Population Lomond-N Lomond-S  Population Lomond-N Lomond-S  Population Lomond-N Lomond-S 

Lomond-S -0.0301   Lomond-S -0.0234   Lomond-S -0.0199  
Lomond-M 0.0801* 0.0751  Lomond-M 0.0080 0.0377  Lomond-M 0.0172 0.0190* 

 
 

Locus: ClaTet18  Locus: Cocl_lav49  Locus: ClaTet01 

Population Lomond-N Lomond-S  Population Lomond-N Lomond-S  Population Lomond-N Lomond-S 

Lomond-S -0.0175   Lomond-S 0.0698   Lomond-S -0.0039  
Lomond-M 0.0654* 0.0049  Lomond-M 0.0525 -0.0272  Lomond-M -0.0180 0.0000 

 
 

Locus: ClaTet13  Locus: Cocl_lav06 

Population Lomond-N Lomond-S  Population Lomond-N Lomond-S 

Lomond-S -0.0108   Lomond-S 0.0081  
Lomond-M -0.0073 -0.0071  Lomond-M 0.0243 -0.0217 
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