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EDITORIAL: Recent developments in surface complexation modeling 1 

This special section on surface complexation modeling contains papers presented during the 2 

special session “Recent developments in surface complexation modelling: Trace element 3 

speciation and reactive transport modelling” at the 12th International Conference on the 4 

Biogeochemistry of Trace Elements (ICOBTE), which took place 16–20 June 2013 in Athens, 5 

Georgia, USA. 6 

Ion-binding and surface complexation models have been developed during the past 2 decades to 7 

describe equilibrium trace element binding to complex reactive components of the surface and 8 

near-surface environments, including natural organic matter, hydrous metal oxides, and clay 9 

minerals. Because of their semi-mechanistic and process-based nature, these models are 10 

applicable over a wide range of conditions and have potentially powerful uses in hazard and risk 11 

assessment of metals and metalloids. 12 

In the past, such models largely have been used to increase understanding of trace element 13 

complexation and adsorption processes, although there also have been important applications in 14 

hazard and risk assessment, particularly the biotic ligand model (BLM), and in multimedia fate and 15 

transport modeling. With this special section, we aimed to stimulate broader application of these 16 

models by establishing the state of the art and highlighting recent developments in the field. 17 

The state of the art is established in two reviews, each of which deals with one of the two main 18 

approaches for applying ion-binding models to natural systems comprising multiple reactive 19 

components [1, 2]. The review by Goldberg [1] describes the generalized composite approach, in 20 

which binding to the reactive components of a natural material such as a soil, sediment, or aquifer 21 

is simulated using a single composite binding phase whose binding sites represent the overall 22 

binding properties of the natural material. This requires separate fitting of conditional model 23 

parameters for each natural material. The approach may be adapted for predictive purposes by 24 

regressing model parameters against natural material properties such as cation exchange 25 

capacity, surface area, organic carbon content, inorganic carbon content, aluminum oxide content, 26 

and iron oxide content. 27 

The review paper by Groenenberg and Lofts [2] describes the component additivity approach, 28 

whereby the total binding of elements to the assemblage of reactive components is computed by 29 

simulating and summing binding to the individual components. Model parameters, including 30 

binding constants and site densities for each component, are determined a priori from binding 31 

experiments with the specific components. The approach has the advantage of wide applicability in 32 

principle, provided that ion binding to the in situ reactive components may be sufficiently well 33 

characterized. Groenenberg and Lofts [2] describe the development of models for specific 34 

components and review the literature on the application of such models to both artificial and natural 35 

composites. “The characterization of natural assemblages in terms of their components (active 36 

organic matter, reactive oxide surface) is key to successful model applications. Improved methods 37 

for characterization of reactive components in situ will enhance the applicability of assemblage 38 



models. Collection of compositional data for soil and water archetypes, or the development of 39 

relationships to estimate compositions from geospatially available data, will further facilitate 40 

assemblage model use for predictive purposes” [2]. 41 

Of the four research studies included in the section, three focus on modeling the adsorption of 42 

oxyanions to soils. The study by Gabos et al. [3] is an example of the application of the generalized 43 

composite approach to a series of tropical soils with a broad range in soil properties. The study 44 

demonstrates how application of the generalized composite approach results in a range of 45 

conditional binding parameters that could be related to soil properties to provide a framework for 46 

predictive modeling of new soils. The two studies by Perez et al. [4, 5] describe oxyanion sorption 47 

to a ferralic soil using the charge distribution surface complexation model with goethite as a proxy 48 

for the reactive surface; thus, the modeling is a limiting case of the component assemblage 49 

approach. Modeling takes into account the competitive adsorption of organic matter onto the soil 50 

and its effect on reducing the available site density for oxyanion sorption. The first 51 

study [4] describes the modeling of phosphate adsorption to soil using standard binding constants 52 

but with optimization of the soil surface characteristics, which yielded fitted values of the amount of 53 

phosphate reversibly bound to the surface, the reactive surface area, and the site density of 54 

adsorbed organic matter on the soil surface. The parameters obtained in the first study were used 55 

to model binding of chromate, selenite, molybdate, and arsenate adsorption to the soil, described 56 

in the second study [5]. 57 

In recent years, ion-binding modeling—specifically, binding to natural organic matter in surface 58 

waters—has found a significant application in improved understanding and prediction of how metal 59 

bioavailability and toxicity vary with exposure medium chemistry. Development and application of 60 

bioavailability models, particularly the BLM, has reached a stage where the knowledge gained is in 61 

the process of being applied to set site-specific environmental quality standards for certain metals 62 

in some legislatures. This represents a significant success for speciation modeling in practical 63 

application to risk assessment and chemical management. Research into the relationships 64 

between speciation, bioavailability, and toxicity continues to develop. The final study in this section, 65 

by Antunes and Kreager [6], shows how chemical speciation modeling can aid the description of 66 

dose-response relations for biota under laboratory conditions. 67 

Overall, advancements in the mechanistic modeling of ion-binding to natural surfaces mean that, in 68 

many cases, models are sufficiently advanced to be “ground–truthed” against real field data, which 69 

is necessary for their robust application in hazard and risk assessment. The next stage is to 70 

establish how well models can perform in application to the field, particularly in relation to data 71 

availability at different scales, and to assess how well current methods for field characterization 72 

provide suitable data for modeling. Depending on the desired timescales of application, the need to 73 

incorporate models into transport frameworks that can consider slower, non-equilibrium processes 74 

alongside ion-binding needs to be considered. 75 
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