Tall tower measurements of methane, carbon monoxide and carbon dioxide emissions in London, UK.

<u>Carole Helfter¹</u>, Anja Tremper², Eiko Nemitz¹, Janet F. Barlow³.

¹ Centre for Ecology and Hydrology, Edinburgh, UK.

² Environmental Research Group, King's College London, London, UK.

³ Department of Meteorology, University of Reading, Reading, UK.

BT Tower – site description

BT tower: flux footprint (2007)

Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL

Footprint model: Kormann and Meixner , Bound.-Lay. Meteorol. (2001) BT tower footprint: Helfter et al., Atm. Chem. & Phys. (2011)

BT Tower – data coverage

Data coverage: 15/09/2011 – 30/06/2013

Urban sources (LAEI)

Sources of urban CH₄ (inventory)

Sources of urban CO₂ (inventory)

Concentration distribution

Range: 352 – 518 ppm 1st quartile: 391 ppm 3rd quartile: 404 ppm

Range: 1811 – 2781 ppb 1st quartile: 1890 ppb 3rd quartile: 1958 ppb

Range: 6 – 721 ppb 1st quartile: 140 ppb 3rd quartile: 205 ppb

- Spatially heterogeneous distributions of all 3 pollutants.
- Distribution of central hotspots consistent among the 3 species.

Seasonal distributions

- Concentrations decrease in summer (reduction in traffic, heating, lower background...).
- CO₂ dominated by local sources all year.
- CH₄: possible transport from rural areas in summer.

Flux distributions

- Heterogeneous distributions of all 3 pollutants.
- Comparable range (ratio max/min ~ 6).
- "Excess" CH₄ from S-E (non-traffic source as local minimum for F_{CO} found in S-E).
- N-E: local maximum in FCO₂/FCH₄ due to traffic.

Diurnal trends (weekday & weekend flux)

Decrease in magnitude and later start at weekends

Diurnal & seasonal trends - F

- 30% reduction between winter and summer
- 20% reduction between weekdays and weekends

Diurnal & seasonal trends - I

- 65% reduction between winter and summer
- 25% reduction between weekdays and weekends

Diurnal & seasonal trends - F

- 25% reduction between winter and summer
- 10% reduction between weekdays and weekends

Seasonal trends

Summary: diurnal and seasonal trends

- Fluxes of CO and CO₂ reduced by ca. 20% at weekends, -10% for FCH₄.
 - ➤ Lower traffic volumes at weekends.
 - Reduced commercial natural gas consumption at weekends.
- Winter-to-summer reduction of mean emissions (FCO: 65%; FCO₂: -30%; FCH₄: < -25%).
 - \blacktriangleright Reduction in natural gas consumption (FCO, FCO₂, FCH₄).
 - > Seasonal variations in traffic loads (FCO, FCO₂, FCH₄).
 - > Air temperature: no cold starts in summer (FCO).

Inventories attribute 86% of FCH₄ to fugitive gas (constant leakage rate?), and 9% to gas consumption; 60% increase in FCH₄ measured during the day. Question: Why do we see a diurnal trend in CH₄ emissions despite a constant pressure in the distribution network?

Boundary layer height

Winter 2012

Summer 2012

LIDAR work: Barlow et al. (2014), Environ. Fluid Mech.

Diurnal & seasonal trends – Emission factors

CO_2 , CH_4 and N_2O : winter 2014

CETT Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL FN_2O hotspots more localised but consistent with FCO_2 & FCH_4 .

CO_2 , CH_4 and N_2O : winter 2014

CW-QCL detection limit ~ 10⁻² nmol m⁻² s⁻¹ Rannik et al., Biogeosciences Discussions (2014)

BT tower - annual GHG budgets

		CO ₂ [tons km ⁻²]	CH ₄ [tons km ⁻²]	CO [tons km ⁻²]	N ₂ O [tons km ⁻²]
ſ	Measured at BT tower ¹	41000	75 (CO₂e 1875)	156	0.36 (CO ₂ e 107)
	Westminster (LAEI) ²	46000	34	145	0.42
	London aircraft measurements (July 2012) ³	29000	66	106	
London (Autumn 2007 & 2008) ⁴				150 to 220	
	mol mol ⁻¹	CH ₄ /CO ₂	N ₂ O/CO ₂	N ₂ O/CH ₄	CO/CO ₂
	BT tower measurements	4.5 10 ⁻³	1.1 10 ⁻⁵	3.0 10 ⁻³	2.0 10 ⁻³
	LAEI	2.1 10 ⁻³	9.2 10 ⁻⁶	4.3 10 ⁻³	1.9 10 ⁻³

¹Measured 2012 data (February 2014 for N₂O)

² London Atmospheric Emissions Inventory (LAEI), 2012 data
³O'Shea et al. (2014), Journal of Geophysical Research
⁴Harrison (2012), Atmospheric Chemistry and Physics

Summary

- Dynamic system exhibiting temporal and spatial patterns.
- Annual budgets for the FCO₂, FCO & FN₂O gas in reasonable agreement with atmospheric inventory. Measured FCH₄ is 2x larger than inventory value.
- Atmospheric transport probably contributes to diurnal trends of all gas species. However, agreement between inventory and measured FCO₂, FCO & FN₂O suggests that there is no systematic loss of flux (advection, storage).
- Effects of (potentially spurious) diurnal trends minimised by integration over longer time periods (daily and beyond).
- Is atmospheric inventory underestimating a source of CH₄? Issue with spatial attribution of CH₄ sources?

