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 Abstract 11 

The global water cycle is a fundamental component of our climate and Earth system.  Many, 12 

if not the majority, of the impacts of climate change are water related.  We have an imperfect 13 

description and understanding of components of the water cycle. This arises from an 14 

incomplete observation of some of the stores and fluxes in the water cycle (in particular: 15 

precipitation, evaporation, soil moisture and groundwater), problems with the simulation of 16 

precipitation by global climate models and the wide diversity of global hydrological models 17 

currently in use.  This paper discusses these sources of errors and, in particular, explores the 18 

errors and advantages of bias correcting climate model outputs for hydrological models using 19 

a single large catchment as an example (the Rhine).   One conclusion from this analysis is 20 

that bias correction is necessary and has an impact on the mean flows and their seasonal 21 

cycle.  However choice of hydrological model has an equal, if not larger effect on the quality 22 

of the simulation. The paper highlights the importance of improving hydrological models, 23 

which run at a continental and global scale, and the importance of quantifying uncertainties in 24 

impact studies.       25 

Key Words 26 

Water cycle, global, evaporation, river discharge, climate change, climate models 27 

 28 

1. Introduction 29 

The terrestrial water budget is at the heart of many environmental issues.  Water is crucial to 30 

agricultural production, carbon budgets (and other biogeochemical cycles), biodiversity, 31 

energy generation, industrial production and human health.  Extremes play an important role 32 

– floods and droughts are pressure points on water scarcity and environmental damage.   33 

There is increasing pressures on available water in many regions of the world due to 34 
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increasing water demand because of a growing population and wealth and this is before the 35 

potential impacts of climate change.  It is clearly important to develop well founded estimates 36 

of future water availability, as well as extremes, to underpin adaptation plans for the future. 37 

Floods, droughts, increased water scarcity, reduced food and energy production – many of the 38 

key impacts of climate change identified by the IPCC are water related (Bates et al., 2008; 39 

IPCC 2007a).   From the thermodynamics of the atmosphere we know increasing greenhouse 40 

gases are likely to lead to an increase in temperature, and this is already observed.  Higher 41 

temperatures will increase evaporation, over the oceans in particular and hence water vapour 42 

in the atmosphere.  This is likely to lead to overall higher rainfall globally and the likelihood 43 

of more intense rainfall regionally.   Increases in rainfall intensities have been observed in 44 

more studies than decreases, although there are wide regional and seasonal variations (Berg et 45 

al., 2009; IPCC, 2012; Donat et al., 2012) and there are large areas of the world where there 46 

are not sufficiently long records of daily rainfall available to analyse.    47 

Climate models continue to suggest increases of rainfall in the northern hemisphere high 48 

latitudes and decreases of rainfall in the sub-tropical (generally semi-arid) regions of the 49 

world, such as the Mediterranean, southern USA and Central America, south Australia and 50 

southern Africa (IPCC, 2007b). In other words wet areas get wetter and dry areas drier.  51 

When translated into river flows and available water, future water scarcity is likely to occur 52 

in these latter regions but is also likely in China, India and the Middle East, where 53 

populations and water consumption are rising fast (e.g. Hagemann et al., 2013; Gerten et al., 54 

2011).  The regional details of these changes are, however, very uncertain.  The future 55 

response of river flows (and hence floods and droughts) at the basin scale will depend not 56 

only on the projected changes in rainfall patterns as determined by atmospheric circulation 57 

patterns, which are not always well represented in the climate models, but also on the  58 

regional-scale basin characteristics (e.g. physiography, land cover, geology, Laize et al., 59 
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2010) and human interventions such as dams and water abstraction and irrigation (e.g. 60 

Haddeland et al., 2006; Adam et al., 2007; López-Moreno et al., 2009; Biemans et al., 2011). 61 

As yet it is difficult to discern an increase in rainfall globally, partly because changes in 62 

precipitation in different regions tend to cancel out. There is evidence of increasing 63 

precipitation at high latitudes, decreasing precipitation in the subtropical regions and possibly 64 

changing distribution of precipitation in the tropics by the shifting position of the 65 

Intertropical Convergence Zone (see e.g. Zhang et al 2007).  But the regional details of these 66 

changes remain very uncertain. There is good evidence that the extremes of rainfall have 67 

increased in Europe and worldwide (e.g. Klein Tank and Können, 2003; Zolina et al., 2010, 68 

Groisman et al., 2005, IPCC, 2012, Donat et al., 2012).   Pal et al., (2011) has been able to 69 

conclude that the intense rainfall and floods in the UK in 2000 were significantly more likely 70 

due to increased greenhouse gases. 71 

Many of the observed trends in the hydrological cycle can be attributed to human activities, 72 

but not necessarily to increases in greenhouse gases alone.  Wu et al. (2013) argued that both 73 

changing greenhouse gases and regionally varying atmospheric aerosol loading has already 74 

affected the hydrological cycle.  A general decrease in groundwater across the sub-tropics 75 

(for example in India, e.g. Rodell et al., 2009; Tiwari et al., 2009 and the mid-west of the 76 

USA Rodell et al., 2006) has been observed directly or inferred from GRACE satellite data 77 

and is almost certainly due to over extraction for irrigation. Analysis with a global 78 

hydrological model shows that in the sub‐humid to arid areas the total global groundwater 79 

depletion has increased from 126 in 1960 to 283 km
3
/yr in 2000 (Wada et al., 2010). The 80 

latter equals 39% of the global yearly groundwater abstraction. Gleeson et al. (2012) 81 

compared the rate of global groundwater depletion against the rate of natural renewal and the 82 

supply needed to support ecosystems. They illustrate that humans are overexploiting 83 
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groundwater in many large aquifers that are critical to agriculture, especially in Asia and 84 

North America.  85 

Terrestrial evaporation has increased through the 1980s and 90s, most probably due to 86 

decreasing aerosols (Jung et al., 2011).  Since 2000 this increase may have levelled off as 87 

evaporation becomes increasingly controlled by soil water limitations rather than the energy 88 

available for evaporation. Increasing runoff and decreasing low summer flows in hundreds of 89 

near-natural catchments have been observed in Europe (Stahl et al., 2010). Flows in the 90 

northern rivers have increased (Peterson et al., 2002), but it is unclear whether this is due to 91 

land-cover change, increasing precipitation or indirect effects on water loss from plant 92 

transpiration linked to increasing CO2 levels (see Gerten et al., 2008, Gedney et al., 2006). 93 

Gedney et al. (submitted) attributed long-term changes in discharge from large European 94 

basins to the combined effects of changing aerosol loading on solar radiation and CO2 levels 95 

on stomatal closure. 96 

It is very likely that global warming has influenced river flows, but often either the long-term 97 

river-flow data are not available or the natural changes are masked by anthropogenically-98 

driven changes in land cover or water extraction.  To reliably assess future water resources 99 

collaboration between climate, hydrological and water resource scientists working across a 100 

wide variety of scales is thus essential.  In recent years considerable advances have been 101 

made with the bringing together of a wide variety of data sets and models (see e.g. Weedon et 102 

al., 2011, Haddeland et al., 2011, Harding et al., 2011). 103 

2. Global Data Availability 104 

There have been a number of initiatives to collate global precipitation data sets into gridded 105 

fields, for example Biemans et al., (2009) identifies seven such datasets.  These vary with 106 

time step (monthly or daily), time period and spatial resolution.  Although some of these 107 
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datasets incorporate satellite data (for example the Global Precipitation Climatology Project, 108 

http://www.gewex.org/gpcp.html) and weather forecast  analyses (CMAP, Xie and Arkin, 109 

1997) all ultimately depend heavily on ground based rain gauge data.  While some regions 110 

have dense rain gauge networks there are many regions, such as north and central Africa and 111 

the high latitudes, where networks are too sparse or the records not sufficiently continuous to 112 

provide a thorough assessment of trends and variability (e.g. Groisman et al., 2005).  113 

Mountainous regions also present considerable challenges; the networks being inevitably 114 

sparse and also biased towards low altitudes.  Corrections have only recently been derived for 115 

precipitation gauges in mountainous areas (Adam et al., 2006) although the density of gauges 116 

and understanding of spatial variations of rainfall in mountainous regions remains inadequate. 117 

River discharge is monitored widely around the world.  The Global Runoff Data Centre 118 

(GRDC, http://www.bafg.de/) archives discharge data for almost 9000 gauging stations 119 

worldwide, two-thirds of which have daily data.  However like the rainfall data the spatial 120 

(and temporal) coverage is patchy with large gaps in Africa (excluding South Africa) and 121 

Southern Asia.  A new dataset of daily streamflow records for 10 countries across Europe, 122 

based on an updated version of the UNESCO FRIEND-Water European Water Archive 123 

(EWA), is useful  for validating model outputs, — (Stahl et al., 2010; 2012, Hannaford et al., 124 

2013). The dataset comprises catchments with minimal anthropogenic disturbances on flow 125 

regimes, monitored by gauging stations regarded to have good hydrometric performance with 126 

records from 1961 to 2005. The total dataset consists of 579 gauging stations. The 127 

distribution of stations over Europe is somewhat uneven with high densities of stations in 128 

some areas (e.g., Germany) and limited data in areas that are heavily affected by 129 

anthropogenic disturbances (e.g., northern France and the Benelux countries).  No data were 130 

available across the majority of southern or eastern European countries.  The availability of 131 

http://www.bafg.de/
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these key river measurements is hampered by the diversity of responsible organisations, a 132 

lack of investment and of the political will to share data.   133 

 134 

Evaporation is a difficult quantity to measure and varies with land cover and soil types as 135 

well as climate so it is difficult to generalise.  There are thus few routine measurements.  The 136 

nearest we have to a global network is the FLUXNET data set (http://fluxnet.ornl.gov/, 137 

Baldocchi, 2008).  This network consists of over 700 stations but not all the data are available 138 

and they cover variable (often short) time periods and are of variable quality.  There have 139 

been a number of attempts to produce a gridded evaporation product – either based on the 140 

FLUXNET data and/or satellite retrievals (e.g. Miralles et al., 2011;  Mueller at al., 2013).   141 

All these estimates depend on a model to derive evaporation from satellite products and/or 142 

meteorology or to extrapolate point measurements spatially and temporally.  The mean of the 143 

global estimates is 1.56 mm d
-1

 (570 mm yr
-1

) with a standard deviation of 0.2 mm d
-1

, or just 144 

over 10 percent, regionally the spread can be much larger, of the order of 50% for large 145 

basins (Mueller et al., 2011).  146 

Similarly there are limited networks of long-term in situ soil moisture measurements, 147 

although there are some notable exceptions, for example in the USA, Russia and China (see 148 

e.g. Entin et al., 2000).  Increasing interest in soil moisture has led to some new 149 

measurements and the establishment of the International Soil Moisture Network 150 

(http://www.ipf.tuwien.ac.at/insitu/, Dorigo et al 2011). An interesting new development is 151 

the Cosmic ray soil moisture observing system (COSMOS, Zreda et al., 2012). COSMOS 152 

sensors, based on passive detection of scattered cosmic ray neutrons, have the advantage that 153 

they average at the field scale, approximately 600m diameter, thus removing much of the 154 

smallest-scale spatial variability.  The measurement is also non-intrusive, automatic and does 155 

not require an internal neutron source for calibration.  Despite this increasing activity there 156 

http://fluxnet.ornl.gov/
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are still many regions of the land surface with no soil moisture measurements and even in 157 

those where there are the current network is often inadequate to provide representative 158 

regional figures. 159 

Increasingly satellite products of soil moisture are available (AMSR-E SSM/i , SMOS etc, 160 

e.g. Loew et al., 2013;)  and more are planned (such as ESA’s Sentinel 1) however they 161 

monitor only the top few centimetres of the soil rather than the entire soil depth and are often 162 

strongly affected  by thick vegetation cover.   The GRACE (Gravity Recovery And Climate 163 

Experiment) satellites provide a unique data set which can retrieve an estimate of the total 164 

water storage (groundwater, soil water, snow cover and ice) though at low spatial resolution 165 

compared to the microwave satellite sensors. Since 2002 GRACE has provided considerable 166 

insights into changing regional ground water levels and seasonal variations of soil water (e.g. 167 

Rodell et al., 2009; Famiglietti  et al., 2011; Houborg et al., 2012).  The solution to these 168 

various incomplete measurement systems is almost certainly a data assimilation system 169 

combining measurements of different scales with one (or possibly an ensemble) of soil 170 

moisture models.        171 

We therefore have incomplete measurements of water (and energy) budgets at country, 172 

continental and global scales. Given this lack of directly measured components of the water 173 

cycle the only way to obtain globally consistent estimates of the stores and fluxes is via 174 

hydrological modelling – informed and validated where possible with observations.   175 

3. Uncertainty in estimates of the global terrestrial water budget. 176 

In the last few years the Global Water System Project (GWSP) and the EU funded WATCH 177 

project (e.g. Harding et al., 2011) have co-ordinated an inter-comparison of hydrological 178 

models globally (WaterMIP, Haddeland et al., 2011).  The inter-comparison has made use of 179 

a new global data set of meteorological data (the WATCH Forcing Data, WFD, Weedon et 180 
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al., 2011).  This is a combination of reanalysis products (ERA40) with observations (CRU 181 

TS2.1 and GPCCv4), thus the models used consistent driving data and a consistent terrestrial 182 

grid including a common river routing network. Eleven models were included in the 183 

intercomparison, including Global Hydrological Models and stand alone versions of the land 184 

surface models commonly used in climate models (Haddeland et al., 2011). The main 185 

distinction between these two classes of models is that Global Hydrological Models solve the 186 

water balance alone whereas the land surface models solve the energy and water balances 187 

(and often have a carbon budget). All but one of the models (WATERGAP) was run without 188 

calibration via observed discharge data. The initial analysis was for “naturalised” conditions 189 

(Haddeland et al., 2011) - i.e. excluding human influences related to land cover changes, 190 

damming, water abstraction and irrigation. Importantly, by concentrating on the late twentieth 191 

century, the performance of the hydrological models could be evaluated against observed 192 

basin discharge records. 193 

The eleven models in WaterMIP showed a significant spread of the partitioning of 194 

precipitation into evapotranspiration and runoff.  Averaged over the terrestrial surface 195 

(excluding Greenland and Antarctica) the average annual global evapotranspiration varied 196 

between models from 415 to 586 mm yr
-1

 and runoff from 290 to 457 mm yr
-1

.  There was no 197 

single cause for the spread in model outputs, although the different model treatment of snow 198 

was a major factor explaining the different shapes of the simulated annual hydrographs.  199 

Most models overestimate total annual runoff in semi arid regions – probably a result of both 200 

water extractions not being included in this phase of WaterMIP, and wetland evaporation, 201 

typically not being included in these models.  Interestingly the runoff for the Brahmaputra 202 

was under-estimated – this is probably a result of the underestimate of precipitation in the 203 

Himalayan region. 204 
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Hannaford et al. (2010); Prudhomme et al. (2011), Gudmundsson et al. (2011; 2012a; 2012b), 205 

Van Loon et al. (2012), Van Huijgevoort et al. (2013) extended the analysis for a subset of 206 

the WaterMIP models to investigate one or both hydrological extremes (floods and droughts). 207 

Models were inter-compared, and compared against a precipitation index and against the 208 

European streamflow dataset of Stahl et al. (2010; 2012).  The analyses concluded that the 209 

models generally identify the most extreme events and broadly show the same spatial-210 

temporal resolution evolution of hydrological extremes, but variations in the representation of 211 

sub-surface flows and storage between models produce large variations in the simulated 212 

dynamics. All models struggle to reproduce the high observed flows –most probably because 213 

of the low spatial resolution of the input data (0.5 x 0.5
o
 or about 50 x 50 km) and have even 214 

more difficulties to simulate low flows. 215 

4. Prediction of future flows 216 

In order for future impacts of climate change to be assessed correctly it is essential that 217 

driving data are as realistic as possible.  Current GCMs have substantial biases in their 218 

rainfall simulations.  Most models overestimate precipitation, particularly over areas of 219 

complex topography and underestimate high intensity precipitation (see e.g. Mehran et al., 220 

2012).  For example for ECHAM6 model overall the precipitation is overestimated by 10%, 221 

with up to 5 mm day
-1

 in the tropics and 2 mm day
-1

 in mid latitudes (Stevens et al., 2012). In 222 

fact the errors in GCM daily precipitation are evident in the entire intensity spectrum, with 223 

too much low intensity drizzle and an underestimate of high precipitation events (see e.g. 224 

Piani et al., 2010b).  Hydrological models involve thresholds and other non-linearities which 225 

result in incorrect trends and incorrect changes in extremes given the wrong input data.  Most 226 

studies, therefore, use off line calculations of runoff flowing some degree of bias correction 227 

of the original GCM output (e.g. Hempel et al., 2013).  This procedure has the added 228 

advantage of allowing the intercomparison of multiple climate and hydrological model 229 
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combinations, thus providing an estimate of uncertainty in the hydrological sub-models.  It 230 

has the disadvantage of neglecting and feedbacks between the land surface and atmosphere 231 

(Dadson et al., 2013) and introduces and inconsistencies between the land surface model of 232 

the GCM and the hydrological model.  Given that it is unlikely that the biases in GCM 233 

outputs will be substantially reduced in the near future some sort of bias correction is 234 

inevitable if realistic driving data are to be provided to the hydrological models (Allen and 235 

Sollen, 2008; Lenderlink and Van Meijgaard, 2008).   236 

The WaterMIP process (Figure 1) was the first stage in a comprehensive multimodel analysis 237 

of the 20
th

 and 21
st
 C terrestrial water cycle.  The initial runs for the 21

st
 C have perforce been 238 

made with the outputs from the AR4 runs (Hagemann et al., 2013) for which only a limited 239 

set of GCMs stored outputs suitable to run the full set of hydrological models.   All climate 240 

models have biases in their precipitation (and other fields) – these biases are in both the mean 241 

and day-to-day variability.  These biases have a substantial impact on runoff, when translated 242 

through the modelling chain (Sharma et al., 2007, Hansen et al., 2006 and Hagemann et al., 243 

2011).  Within the multi-model impacts framework described in Fig. 1, prior to the 244 

hydrological model runs a statistical bias correction of the GCM driving data based on 245 

quantile mapping was used to adjust  both daily precipitation and daily temperature (Piani et 246 

al., 2010a; 2010b).    Recently the WaterMIP study has been extended using the CMIP5 runs 247 

for the twenty first century (Taylor et al., 2012) within the ISI-MIP (Schiermeier, 2012; 248 

Dankers et al., 2014; Prudhomme et al., 2014). 249 

The bias correction methodology mentioned here has many advantages – for example it 250 

corrects both the mean and the variability. However, by breaking the daily correlations 251 

between temperature and rainfall and failing to bias correct other associated hydrological 252 

drivers – such as humidity and radiation (Haddeland et al., 2012) - additional errors can 253 

therefore be introduced during bias correction.  This methodology also fails to correct the 254 
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sequencing of wet and dry days within a month which may be critical in determining the 255 

probability of floods and droughts (Zolina et al., 2010).  Thus the introduction of bias 256 

correction may be necessary, given the current state of climate simulations globally and 257 

regionally, but does introduce additional uncertainties in estimates of future climate impacts 258 

(see e.g. Ehret et al., 2012).    259 

5. Influence of bias correction 260 

A number of studies have described the use of bias corrected GCM output to simulate river 261 

flows (Haerter et al., 2011: Hagemann et al., 2011; Chen et al., 2011). Below we explore the 262 

impact of a bias correction by comparing model outputs based on both bias-corrected and 263 

uncorrected forcing.  We use a single large catchment (the Rhine) using two 264 

hydrological/land surface models and the outputs from a single climate model (IPSL). The 265 

model outputs for 1960-2001 are compared with daily observed naturalised discharge data.  266 

The two land surface/hydrology models are: 267 

a) JULES – the land surface model of the UKMO climate model (Best et al., 2011) simulates 268 

the water and energy budgets of the land surface at a sub-hourly time step. Evaporation is 269 

modelled using a modified Penman/Monteith equation coupled to a photosynthesis/surface 270 

conductance model.  A multi-layer soil model generates surface and sub-surface runoff which 271 

is then routed through the river network using a linear routing model (Oki et al., 1999).  272 

b) The Simple Synthetic Hydrology Model (SSHM) - is a transient soil-water balance model 273 

that is combined with a conceptual groundwater model. It uses daily precipitation, 274 

temperature and reference evaporation as forcing data, and it was applied to simulate time 275 

series of daily snow melt, snow storage, actual evapotranspiration, soil moisture storage, 276 

groundwater recharge and discharge (Van Lanen et al., 1996; 2013). Land use and soil data 277 
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characterise the physical catchment structure. SSHM is based upon the FAO approach to 278 

compute actual evapotranspiration (Allen et al., 1998) and the widely-used HBV model (e.g. 279 

Seibert et al., 2000). 280 

 281 

The models were run for 1960 to 2000 using climate model output (1960 to 2000) that was 282 

bias corrected using a technique which corrects the mean and probability distributions of the 283 

daily average air temperature and precipitation (Piani et al. 2010a; 2010b). The outputs are 284 

compared with daily naturalised discharge data from the GRDC (Figures 2 and 3). 285 

  286 

i) Simulation of Rhine discharge 287 

The MBE (Mean Bias Error as the percentage difference of an average variable, e.g. average 288 

modelled discharge, from the observed average, Weedon et al., 2013) for precipitation shows 289 

that the IPSL-corrected precipitation matches the WATCH Forcing Data precipitation within 290 

the error margins (Fig. 3). Since the bias correction is based on the WFD this small MBE 291 

confirms that the bias correction was correctly applied. On the other hand, the original raw 292 

IPSL precipitation for 1960-2000 is close to double the WFD precipitation (MBE circa 100%, 293 

Fig. 3).  294 

Comparison of the observed- and modelled-daily discharge MBE (Figure 3) provides an 295 

indication of the long-term (multi-year) water balance. The discharge MBE for both JULES-296 

WFD and SSHM-WFD are significantly positive compared to the observed discharge 297 

indicating that both models discharge too much water overall – this is particularly true of 298 

SSHM and is presumably due to inadequacies in the evaporation formulations (too little net 299 

evaporation annually).  Use of the corrected IPSL forcing for both JULES and SSHM 300 

substantially improved discharge MBE compared to using the WFD forcing. The overall 301 
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corrected IPSL precipitation is essentially the same as the WFD precipitation. Thus changes 302 

in discharge MBE relate to differences between other atmospheric forcing variables such as 303 

net radiation, wind speed and humidity that are not affected by the bias correction method of 304 

Piani et al.(2010a and b). 305 

The discharge MBE for JULES forced with the un-corrected IPSL data is larger than for 306 

forcing with either the WFD or the corrected-IPSL data. A component of this over-estimation 307 

must be the excessive un-corrected IPSL precipitation (indicated by the precipitation MBE). 308 

By contrast, SSHM discharge MBE is slightly under-estimated given the uncorrected IPSL 309 

forcing rather than over-estimated for the other forcing. As the uncorrected IPSL 310 

precipitation is about double both the WFD precipitation and corrected IPSL precipitation, 311 

the underestimation of SSHM discharge when forced with uncorrected IPSL data implies too 312 

much modelled evaporation.  313 

 ii) Annual cycles in Rhine discharge. 314 

Spectrally the largest identifiable component of the daily discharge variability is the strong 315 

annual cycle (observed or modelled with any forcing). Focussing discussion on the annual 316 

scale makes it easier to interpret the reasons for differences between model output and 317 

observations and between different forcings. The amplitude-ratio and phase (or timing) of 318 

modelled discharge at the annual scale is used for comparison with the GRDC naturalised 319 

discharge observations (for methodology see Weedon et al., submitted). Note that for the 320 

WFD-forced model output the short-term (sub-annual) variability should ideally match the 321 

GRDC record hence the observed discharge (red) is plotted on top of the JULES-WFD 322 

discharge (black) and SSHM-WFD discharge (black, Fig. 2a). However, for the IPSL data 323 

derived from a GCM run, the specific meteorological evolution is not expected to match the 324 

actual meteorological history of 1960-2000. Thus the comparison is restricted to comparing 325 
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the average characteristics of the annual cycles in modelled discharge with the annual cycles 326 

in the observed discharge (Figs 2b and c and 3 b and c). 327 

Forced with the WFD, JULES has an annual cycle in discharge that is too large (Figs 2a and  328 

3b), but with the correct timing (phase, Fig. 3c). While summer JULES-WFD and GRDC 329 

discharge are similar (Fig 2a) the JULES-WFD baseflow in winter is too large. This is 330 

probably because of the underestimation of overall evaporation (MBE about 331 

+20%).However, SSHM forced with the WFD has an annual cycle with approximately the 332 

correct amplitude and timing (within error) despite an MBE of about +60%.  Thus SSHM-333 

WFD correctly represents the variations (amplitude and phase) of the baseflow, but 334 

underestimates the overall evaporation so the MBE is too high.Visual inspection of Figure 2a 335 

shows that in terms of sub-annual discharge variations linked to precipitation events JULES-336 

WFD reproduces the large sub-annual variability seen in the GRDC data pretty well. 337 

However, SSHM has only muted short-term discharge events compared to observations 338 

perhaps linked to limited surface runoff modelling. 339 

Using the corrected IPSL forcing JULES has an annual cycle in discharge that is too large 340 

compared to observations and slightly larger than under WFD forcing, but still with the right 341 

timing (Fig. 3). Since the overall discharge in JULES-IPSL-corrected is lower than JULES-342 

WFD (MBE about +10%), the larger amplitude annual cycles may reflect more evaporation 343 

in the summer compared to JULES-WFD - as supported by the lower average baseflow in the 344 

summer (Fig. 2b). 345 

The SSHM annual discharge cycle is too large when forced by the IPSL-corrected data - and 346 

is much larger than for SSHM-WFD (Fig. 3b). As the discharge MBE is lower overall (about 347 

+10% versus +60%) the large annual cycles may reflect much larger amounts of evaporation 348 
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in the summer as reflected by the substantially lower baseflow compared to the SSHM-WFD 349 

run. 350 

JULES-not-corrected-IPSL has very large annual cycles in discharge (Figs. 2c and 3). This at 351 

least partly relates to the large uncorrected precipitation input as reflected by the much higher 352 

baseflow in winter than the other JULES runs. However, in addition summer baseflow is 353 

lower than for JULES-WFD and JULES-corrected-IPSL so apparently summer evaporation is 354 

larger than before - adding to the amplitude of the annual cycle. 355 

The SSHM run with the uncorrected IPSL data has an annual cycle that appears to be too 356 

small in amplitude - though it is within error (95% confidence interval) of agreeing with 357 

observations. Since the discharge MBE is lower than expected there may be too much 358 

evaporation overall. However, the summer baseflow is very similar to the winter baseflow on 359 

average so the summer evaporation appears to be far too low. 360 

The message from this analysis of the case study  is that in order to obtain realistic discharge 361 

estimates, as judged against observations, bias correction is necessary and has an impact on 362 

the mean flows and their seasonal cycle.  However choice of hydrological model has an 363 

equal, if not larger effect on the quality of the simulation.  This conclusion supports that of 364 

Hagemann et al. (2013). 365 

6. Conclusions 366 

Water resources are already under considerable pressure in many parts of the world.  These 367 

pressures will increase with global changes – particularly increasing population and affluence 368 

leading to increasing water extraction and land cover change.  Climate change will also add 369 

to these pressures with dry areas getting drier and an increasing proportion of precipitation 370 

falling in extreme events, also leading to longer dry spells.  Any adaptation measures must be 371 
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strongly underpinned by a good knowledge of the current regime and an understanding of 372 

possible future regimes.  This can only be obtained by a combination of models and data.  373 

Considerable progress has been made in recent years in the compilation of global data sets 374 

and in our understanding of model errors. 375 

 The substantial spread found between hydrological models commonly used for impact 376 

analysis suggests a single impact model should be used with great care (Haddeland et al., 377 

2011; Stahl et al., 2012; Van Huijgevoort et al., 2013; Hagemann et al., 2013).  This study 378 

also suggests that improvements to hydrological models used at large scales could and should 379 

be made, in particular in the high and low flow domain.  Obvious examples are the 380 

improvement of evapotranspiration and snowfall components of models, to improve the 381 

overall water balance, and the inclusion of additional hydrological processes, such as ground 382 

water, permafrost and wetlands, to improve the low and high flow representation.   The use of 383 

calibration via spatially-aggregated local observations is an additional aspect which should be 384 

carefully considered.  Calibration can undoubtedly improve radically the simulation within a 385 

single basin; however, it can hide structural weaknesses within a particular model.  It may 386 

also reduce the global applicability of a model – it is clear that the modelling suite used must 387 

be considered carefully against its purpose.  388 

Global climate models still show persistent regional biases in precipitation and a tendency to 389 

produce too much light rain (see e.g. Perkins et al., 2007). Regional climate models fare a 390 

little better but still have considerable biases (e.g. Rawlins et al., 2012). Mean runoff can be 391 

seen as a residual of the precipitation after subtraction of the evaporation so any bias in the 392 

precipitation is likely to be amplified, in percentage terms, in the runoff. In addition many of 393 

the runoff processes are strongly non-linear, thus the variability (in time and space) is 394 

important.  While simulations of precipitation are improving progress is slow and there is 395 

little prospect of dramatic advances in the next few years.  In the meantime society needs 396 
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regional and local assessments of the impact of climate change and this cannot wait for the 397 

advance of climate models.   The need for the correction of biases in the GCM outputs to 398 

provide realistic estimate of runoff (and changes in runoff) is demonstrated in this paper.  It is 399 

also clear that the current state-of-the-art bias-correction methodologies need further 400 

refinements.   Hempel et al. (2013) have developed the bias correction methodology of Piani 401 

et al. (2010a) to include other variables, such as radiation, but problems with cross 402 

correlations still persist. 403 

 Estimations of the water cycle for the future contain many uncertainties – GHG scenarios, 404 

climate model uncertainties, hydrology/climate feedbacks, bias correction, imperfect large-405 

scale hydrological models, water use/exploitation scenarios. We need a new framework for 406 

impact model assessment which should include: common driving data, common (and 407 

explicit) land use and extraction scenarios, ensembles of climate and hydrological models and 408 

uncertainty description. The new ISI-MIP approach is a useful step towards an integrated 409 

inter-sectorial approach in impact assessment (Piontek et al., 2014). 410 
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Figure 1. Analysis scheme of the WaterMIP intercomparison. 695 
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 698 

Figure 2.  Time series of precipitation inputs, discharge and model runs, as described in text. 699 
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Figure 3. Mean Bias Error (MBE), annual amplitude and phase for model runs. Bars indicate the 95% 702 

confidence interval. 703 

 704 

0.1

1

10

  
  
  
  
M

B
E

(%
 d

if
fe

re
n

c
e

)

P
h

a
s
e

 (
d

e
g

re
e

s
)

  
(A

n
n

u
a

l 
s
c
a

le
)

 

A
m

p
lit

u
d

e
 r

a
ti
o

(A
n

n
u

a
l 
s
c
a

le
)

 

 

-180

-90

0

90

180

J
U

L
E

S

J
U

L
E

S

S
S

H
M

IP
S

L
-c

o
rr

e
c
te

d

Model discharge v GRDC

    Observed discharge

S
S

H
M

 

 

-20
0

20
40
60
80

100

WFD    IPSL

corrected
  IPSL

no corr.

S
S

H
M

J
U

L
E

S

IP
S

L
-n

o
-c

o
rr

.

Precipitation

v WFD-precip.

 

 


	N508745FC
	Harding et al The future for Global Water v8-GPW

