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Abstract 14 

Understanding the spatial distribution of specific environmental variables and the 15 

interdependencies of these variables is crucial for managing the environment in a sustainable 16 

way. Here we discuss two methods of mapping – a Geographical Information System 17 

classification-based approach and a statistical model-based approach. If detailed, spatially 18 

comprehensive covariate datasets exist to complement the ecological-response data, then 19 

using a statistical model-based analysis provides the potential for greater understanding of 20 

underlying relationships, as well as the uncertainty in the spatial predictions. Further, the 21 

model-based approach facilitates scenario testing. Although similar methods are already 22 

adopted in species distribution modeling, the flexibility of the model framework used is 23 

rarely exploited to go beyond modeling occupancy or suitability for a single species, into 24 

modeling complex derived metrics such as community composition and indicators of natural 25 

capital. As an example, we assess the potential benefits of the statistical model-based 26 

approach to mapping natural capital through the use of two national survey datasets; The 27 

Centre for Ecology and Hydrology (CEH) Land Cover Map (LCM) and the British 28 

Geological Survey’s (BGS) Parent Material Model (PMM), to predict national soil microbial 29 

community distributions based on data from a sample of > 1000 soils covering Great Britain. 30 

The results are mapped and compared against a more traditional, land classification-based 31 

approach. The comparison shows that, although the maps look broadly similar, the model-32 

based approach provides better overall spatial prediction, and the contribution of individual 33 

model terms (along with their uncertainty) are far easier to understand and interpret, whilst 34 

also facilitating any scenario testing. We therefore both recommend the use of spatial 35 

statistical modelling techniques to map natural capital and anticipate that they will become 36 

more prominent over the forthcoming years.  37 
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Introduction 38 

The Millennium Ecosystem Assessment (2005) and more recently in the UK, the National 39 

Ecosystem Assessment (2011), stress the importance of ecosystems and understanding the 40 

interdependencies between their underlying drivers of change (Carpenter et al. 2009; Feld et 41 

al. 2009; Norgaard 2009). Ecosystem ‘natural capital’ can be identified, according to 42 

Costanza and Daly (1992), as the “assets” or “stock that yields a flow of valuable goods or 43 

services into the future”. This concept of “natural capital” and “flow of goods” has gained 44 

traction in recent years and has been used as a way of bridging the scientific-economic-45 

policymaking divide, enabling the potential impact of ecosystem modification to be better 46 

evaluated, and more meaningfully incorporated, into decisions affecting society (National 47 

Research Council, 2005; Millennium Ecosystem Assessment, 2005). Knowledge regarding 48 

the spatial distribution of ecological systems and the natural capital stocks that they produce 49 

is of crucial importance for managing the effects of human pressure and environmental 50 

change on natural resources (Swetnam et al. 2011; Naidoo and Ricketts 2006).  51 

In order to investigate spatial distribution and variation in natural capital, it is crucial to make 52 

use of all available data, both on the natural capital indicator itself and on complementary 53 

datasets that are a priori thought to drive changes in this response – it is important from the 54 

outset that ecological understanding of the system and any synthesis of it are clearly thought 55 

about (Austin, 2002). This is to provide unbiased estimates of stocks of natural capital and 56 

related ecosystems, enabling planners and policy makers to identify the most economically or 57 

environmentally desirable trade-offs (Turner et al. 2010; Nengwang et al. 2009). For 58 

example, the availability of suitable habitat for wild pollinator populations may vary 59 

depending on the relative strength of the different abiotic and biotic environmental drivers 60 

present, such as climate, soil, geology or types of habitats. One approach to investigate the 61 

spatial distribution of natural capital may be based on a geographical stratification of the 62 
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region of interest according to environmental conditions. However, a simple environmental 63 

stratification or categorical classification does not provide the flexibility to analyse different 64 

drivers, measure their relative strength in determining how stocks are currently distributed, or 65 

predict how these may change under future management or environmental change scenarios. 66 

All of these require a more flexible approach capable of making best use of a range of source 67 

data. 68 

Two examples of the Geographical Information System (GIS) classification-based approach 69 

illustrate its shortcomings. For example, the US Geological Society (USGS) generated a map 70 

of standardised terrestrial ecosystems across the US that could be useful for studies of the 71 

production and value of ecosystem goods and services and indicators thereof (Sayre et al. 72 

2009). The map is derived by classifying areas according to a set of environmental covariates 73 

that describe features such as climate and geology. The Institute of Terrestrial Ecology’s 74 

(ITE) land classification of Great Britain provides a similar map of environmental classes, 75 

defined according to a clustering technique imposed on a multivariate ordination, and was 76 

based on multiple covariate data sets such as geology, topography and climate (Bunce et al. 77 

1996). The assumption made is that all important covariate effects are accounted for in the 78 

classification. These classification maps of environmental or ecosystem strata can provide a 79 

basis on which one can overlay, and hence map, specific indicators of natural capital based 80 

on the spatial pattern of the strata. However, any further inference, uncertainty analysis, or 81 

testing of assumptions and hypotheses, is not possible as the classes are fixed and we cannot 82 

disaggregate which drivers are most important for understanding the regional variation or 83 

extent of the natural capital indicator in question. Furthermore, one can only make inferences 84 

regarding change and association within the existing classification structure, and they cannot 85 

be used to predict the outcome after environmental changes (such as climate change or 86 

different land use regimens). Such GIS classification-based approaches are commonly used to 87 
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map natural capital and ecosystem service indicators (eg. Norton et al., 2012; Troy and 88 

Wilson, 2006; Raymond et al., 2009; Costanza et al., 2006), but any uncertainty analysis or 89 

understanding of spatial dependence is rarely explored as the classification approach does not 90 

lend itself to this.   91 

In contrast, using spatial statistical models with an ability to compensate for or make use of 92 

spatial autocorrelation, the high quality, geographically widespread spatial data used in the 93 

aforementioned GIS classifications can be further exploited to enable both predictive 94 

geographic infilling across space and estimation of specific covariate effects. Such 95 

approaches, however, rely on good spatial coverage of both the observation data and the 96 

predictor variables used to build the models. As many different forms of spatial 97 

environmental data (such as rasters) are becoming more accessible, and GIS tools become 98 

more ubiquitous, the development of methods which make best use of these data for 99 

environmental research is timely and of increasing importance in dealing with environmental 100 

change scenarios and providing appropriate advice to policy makers and environmental 101 

stakeholders.  102 

The use of similar statistical regression modeling techniques, such as standard GLMs 103 

(McCullagh and Nelder, 1989), GAMs (Hastie and Tibshirani, 1990) and MARS (Friedman, 104 

1991),  has been common in both epidemiology and in species distribution / ecological niche 105 

modeling for some time. In the epidemiology literature such approaches are commonly used 106 

to map disease risk, incidence and spread (Vieira et al., 2005, Nguyen et al., 2012, French 107 

and Wand, 2004). In the ecology literature attention has been more focused on predictive 108 

modeling and understanding environmental effects rather than purely spatial analysis (e.g. 109 

Kriging or GIS classification). The mapping approach presented here demonstrates the use of 110 

a species distribution modeling regression approach with the inclusion of a spatial correlation 111 

structure (as we are ultimately interested in the spatial distribution). Although sometimes 112 
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included when modeling and mapping individual species’ distributions, this approach has 113 

rarely been applied specifically to the concept of mapping natural capital and indicators 114 

thereof.   115 

In this paper, we present the application of a spatial statistical regression model using two 116 

national-scale data sets to explore the benefits of this approach against the use of simple 117 

environmental stratification. We reflect on how such approaches could be used to gain 118 

information on the distribution and extent of natural capital, and multiple environmental 119 

indicators across Great Britain. 120 

Materials and Methods 121 

National scale environmental data 122 

The mapping of environmental indicators, either by GIS classification or statistical 123 

modelling, requires high quality observation data and covariate data with good spatial 124 

coverage (no obviously sparse areas) over the region of interest, preferably at high resolution 125 

with sufficient sample size. The Centre for Ecology and Hydrology (CEH) and the British 126 

Geological Survey (BGS) provide spatial information across Great Britain at 25 m and 50 m 127 

resolution on land-cover and parent material, respectively. Having national coverage of two 128 

key land-surface influences is important in determining the potential location of natural 129 

capital. Hence the two covariates can provide a solid basis for modelling and mapping natural 130 

capital and ecological responses to changes in land cover and parent material at the national 131 

scale. In the future, other covariates could be incorporated into the methodology, but for 132 

simplicity and as an example only two have been used in this paper.  133 

The Land Cover Map 2007 (LCM2007) provides information about physical materials on the 134 

Earth’s surface over the UK (Morton et al. 2011). Such physical materials may be manmade 135 
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urbanised areas consisting of roads or buildings, or natural materials such as vegetation, 136 

exposed rock on inland water. The LCM2007, derived from satellite imagery, was produced 137 

as part of the Countryside Survey of the UK as a snapshot audit (Morton et al. 2011). Ground 138 

truthing and knowledge-based enhancements are also used to derive the physical coverage 139 

from the satellite images that make up the dataset, which is a continuous parcel-based 140 

(polygon) dataset accompanied by a suite of derived raster products with 25 m and 1 km 141 

resolution.  142 

The Parent Material Model (PMM) is a spatial database representing below ground material 143 

from which the topsoil develops (Lawley, 2008). The PMM enables the distribution of 144 

physiochemical properties of the weathered and un-weathered parent materials to be mapped. 145 

It details over 30 rock and sediment characteristics adding simplified classifications of 146 

lithological properties. The attribute content includes a range of texture information, colour, 147 

structure, mineralogy, lithology, carbonate content and information about how the parent rock 148 

was formed (genetic origin) (British Geological Survey, 2013).  149 

Natural Capital Data  150 

As an example assessment of the possible benefit gained by adopting a geostatistical 151 

modelling approach over classification methods, we consider data on soil microbial 152 

community structure obtained from Countryside Survey (CS) 2007 (Norton et al. 2012). This 153 

dataset represents information on bacterial biodiversity at a nationwide extent. Soil bacterial 154 

biodiversity can be considered a good indicator unifying various parameters pertaining to 155 

natural capital, in that it is a biodiversity measure responsive to both natural fixed 156 

environmental factors such as geology and also changes in climate and land use (Griffiths et 157 

al., 2011). In a previous study analyzing these data, Griffiths et al., 2011 used a molecular 158 

approach (Terminal Restriction Fragment Length Polymorphism) to characterise the bacterial 159 
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communities in soils from over 1000 cores sampled across Great Britain within the 160 

Countryside Survey sampling framework, which consisted of up to five randomly sampled 161 

soils taken from over 200 1-km
2
 locations across GB. In their study, non-metric 162 

multidimensional scaling (NMDS) was used on the Bray-Curtis similarities of the community 163 

profiling results to define community composition in two dimensions. The first axis scores 164 

resulting from their ordination form the microbial community data used in the remainder of 165 

the work presented here.   166 

The data were assessed by Griffiths et al., 2011 in relation to other environmental variables 167 

collected as part of the survey, including abiotic aspects of the environment as well as soil 168 

physical and chemical parameters.  Those authors found that bacterial communities at this 169 

landscape scale were structured in similar manner to plants, and were highly correlated with a 170 

general gradient of soil parameters from acidic-organic soils to neutral soils of lower organic 171 

matter. This gradient was apparent in the first axis NMDS site scores, which generally 172 

increased with increased soil pH, and declining organic matter.  These soil features are 173 

generally determined by the underlying geology and climate as well as associated human land 174 

usage. Therefore soil pH and plant biodiversity ordination scores were found to be amongst 175 

the best variables correlating with measures of bacterial biodiversity, but the aggregate 176 

vegetation classification (AVC) was also a strongly predictive factor.  177 

To upscale the data from the discreet sampled locations and produce a GB scale map, 178 

Griffiths et al (2011) used the interpolation technique inverse distance weighting (Figure 1). 179 

Such a map is successful in illustrating the broad differences in communities between, for 180 

example, England and Scotland, but is unlikely to hold predictive power at smaller spatial 181 

scales. Here, we suggest that since vegetation cover and pH are strong predictors, and that the 182 

observed dataset has good spatial coverage due to the stratified sampling design of CS, we 183 

can use a more informative model-based approach to make more predictive spatial 184 
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extrapolations. In particular we seek to test whether a more predictive spatial mapping can be 185 

obtained by using the LCM and PPM national coverage maps, compared to making naive use 186 

of an existing classification.   187 

Statistical analysis 188 

Given data on a numerical indicator of natural capital with suitable spatial coverage over the 189 

region in question, statistical models can be used to model the relationship between the 190 

indicator and other environmental covariate data. The model framework adopted needs to be 191 

flexible enough to cover the potentially complex structure of the observational data, whilst at 192 

the same time taking care to avoid false assumptions of independence, normality and 193 

linearity. An example of such a framework is the Generalised Linear Geostatistical Model 194 

(GLGM) of Diggle et al. (1998). This framework can easily be extended to a more generic 195 

setting where the linearity assumption is relaxed to form a Generalised Additive 196 

Geostatistical Model (GAGM) following on from the Generalised Additive Model framework 197 

(Hastie and Tibshirani 1990), which is already commonly adopted in species distribution 198 

modeling. The underlying model framework of a GAGM consists of three parts: 1) a linear 199 

combination of potentially smoothly varying covariate functions; 2) a spatial random field, 200 

which we will define as a Stationary Gaussian Process (SGP); and 3) random effects 201 

representing underlying, potentially non-spatial, error structure.   202 

Having modelled the relationship between stock estimates of particular indicators reflecting 203 

national capital (such as: soil carbon; water quality; plant species occurrence; and in this 204 

instance soil microbial community structure) and the environmental covariates, one can, 205 

within the bounds of the training data, interpolate across unsampled geographic regions using 206 

information on the covariates available over finer spatial scales. For prediction of this sort it 207 

is essential that the observed data demonstrate both good spatial coverage and good covariate 208 



10 
 

coverage such that predictions are not made beyond the range of this training data set—i.e. all 209 

geographic areas where we wish to make predictions are represented and the full range of 210 

covariate values are represented in the data set that the models were built on. In species 211 

distribution modeling, this is often referred to as the difference between analog and non-212 

analog conditions (see for example Williams and Jackson, 2007; Veloz et al., 2012; Algar et 213 

al., 2009), where non-analog conditions are those unlike any previously observed in the 214 

study. Providing that the geographic and covariate space over which predictions are sought 215 

has a suitable analog in the observed data, substituting the wide coverage covariate data into 216 

the estimated model achieves predictions over the same spatial extent for the same snapshot 217 

in time as the observed response data. The geostatistical model-based approach of Diggle et 218 

al. (1998) has the clear advantage over simple kriging and GIS classification that both spatial 219 

correlation structure and covariate effects are taken into account. Furthermore, the model-220 

based approach allows for simple extraction of the estimated error structure, and hence we 221 

can quantify the uncertainty in the predictions. Further details on the model framework 222 

including mathematical specification are provided in Supplementary Material Appendix 1. 223 

In following this modeling procedure, we first carried out a GIS ‘points in polygon’ 224 

procedure to concatenate the CS data on microbial communities with corresponding data on 225 

land cover and calcium carbonate content. The final dataset consisted of 1010 observations. 226 

The raw data on soil microbial community ordination scores were modeled against broad 227 

habitat and calcium carbonate content using a generalised additive mixed-model (Lin and 228 

Zhang, 1999) approach. This follows the same generic approach as the GAGM without the 229 

inclusion of a spatial random field, which was deemed redundant upon examination of model 230 

residuals using Moran’s I. The random components in the mixed model were needed to 231 

account for the apparent non-independence between any two soil cores taken from the same 232 

1km square. These were more likely to be similar than two cores taken from two different 233 
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squares. Alongside the random effects and fixed effects of habitat and calcium carbonate, an 234 

additional spatial surface was included to account for residual large scale spatial variation. 235 

The model was fitted, including the smoothly varying spatial surface using tensor product 236 

smooth interactions, via the gamm function in the ‘mgcv’ library (Wood, 2011) in the R 237 

statistical environment (R Development Core Team, 2008). Estimates of the model 238 

parameters were obtained using restricted maximum. Full details of model specification and 239 

testing are provided in Supplementary Material Appendix 2, which also provides details on 240 

model fitting when the spatial random field is needed in the model formula.  241 

For purposes of comparison, we then used the ITE land classification (Bunce et al., 1996) to 242 

produce a classification-based assessment. This was obtained by simply taking the mean 243 

microbial ordination axis score per land class. As the same land classification is used to 244 

classify the CS samples, sufficient sample size was guaranteed in each classification segment. 245 

What we are hence comparing is a model-based map versus the naive use of an existing 246 

geographic classification. Existing classification maps are often used in this way as it is not 247 

always feasible to develop a new classification for each purpose. 248 

Examination of the mean square error of the predictions against the observed data provides a 249 

formal comparison of the goodness of fit of the model-based approach versus the 250 

classification-based approach. Mean square errors are obviously produced at an observation 251 

level, but here we wanted to map them to assess any spatial characteristics and areas where 252 

the model was and was not performing well. To do this the average mean square error in each 253 

habitat*calcium carbonate category was calculated (or land class category) and this value 254 

mapped according to where that category is present over GB.  255 

Results 256 



12 
 

In the model-based approach, parameter estimates and associated P values of the fixed effects 257 

show a high degree of dissimilarity amongst the factor levels of each of the category values 258 

(Table 1). High levels of calcium carbonate content are correlated with high values of the 259 

microbial community metric. This is consistent with the findings in Griffiths et al. (2011) 260 

who showed a positive relationship with the community metric and pH. Likewise, the acidic 261 

habitats, such as dwarf shrub heath, coniferous woodland and acid grassland, show low 262 

values for the community score, again consistent with findings of those authors. 263 

After estimating all unknown parameters in the relationship between microbial community 264 

structure on one hand and land cover and calcium carbonate content on the other, and 265 

checking these parameters against expert knowledge gained from previously published 266 

results, predictions were obtained over Great Britain by substituting the full LCM and PMM 267 

data into the equation from the fitted model together with the spatial coordinates (Figure 2C). 268 

Similar models and maps were produced for the two sub-models which contain a single 269 

predictor variable each: land cover OR calcium carbonate content (Figures 2A-B). This 270 

separation enables a visual inspection of effects of each specific covariate and is a clear 271 

advantage over the classification-based approaches where it is fully unknown what is driving 272 

the spatial pattern and how. Although informative with regards to specific covariates, the 273 

model is a correlative assessment and any robust inference on drivers of change is 274 

confounded by the possible correlation between covariates included the model and missing 275 

ones. Care is therefore needed when interpreting the estimated relationships between the 276 

response and individual model terms.  277 

As an interpretation of the maps presented in Figure 2, it appears that the land cover data 278 

enable separation of the response between the upland and lowland dominated habitats (Figure 279 

2A), a feature clearly visible in the Kriging-based map (Figure 1), whereas the calcium 280 

carbonate data allow separation of the lowland habitats into the alkaline and acidic soils 281 
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(Figure 2B). The maps produced also echo the findings in Griffiths et al., 2011 that both 282 

factors are required to adequately describe the spatial variation exhibited in microbial 283 

community structure (Figure 2C).  284 

Comparison with classification-based approach 285 

The classification-based map, derived using the ITE land classification (Bunce et al., 1996), 286 

uses colours on the same gradient scale as the model-based results to indicate the estimated 287 

mean within each class (Figure 2D). Comparing the full model-based map (Figure 2C) to the 288 

map drawn using classification means (Figure 2D), shows that although the two maps look 289 

broadly similar, it is unknown what key components make up the soil microbial community 290 

structure and what drives the spatial segregation in the classification-based map.  291 

The mean square errors from each of the mapping approaches are mapped with the darker 292 

colours representing a lower mean square error and hence better goodness of fit (Figure 3). It 293 

is clear that the modelled approach of using both land cover and parent material provides the 294 

best fit to the data. It also shows how the model-based approach is more informative, by 295 

examining the relative contribution of each variable as layers are included or discounted in 296 

the model. Integrating the mean square error over the whole area provides a simple single 297 

statistic assessment and shows that the model-based map using land cover and geology 298 

provides the best fit (lowest total mean square error of 10482.60 versus 22929.54 for the 299 

classification-based map). The classification-based map, however, still provides some 300 

information, indicating potential areas where it provides a better fit than the model-based 301 

approach. An example here would be around The Fens in East Anglia (highlighted by the red 302 

box). Thus it is clear the model-based approach may be missing an important driving variable 303 

(or any correlate of that missing driver) that represents the differing microbial community 304 

structure found in this area. 305 
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Discussion 306 

Understanding spatial trends in natural capital indicators and their relationships with 307 

environmental conditions is vital in supporting evidence-based policy. The example 308 

presented demonstrated a procedure to facilitate this by modeling and subsequently mapping 309 

one particular indicator of natural capital known to have a significant impact on terrestrial 310 

ecosystem functioning. Though it is tempting to use these types of models to draw inference 311 

on drivers of change and the causal pathway behind the current state of natural capital, they 312 

can only identify potential environmental drivers and the variables that show a clear 313 

relationship to the response. This is because the models themselves represent a correlative 314 

assessment to establish relationships present in the observation data. To understand the role 315 

of mechanistic drivers, an assessment involving experiments and specifically designed long-316 

term studies is necessary (Holland, 1986). However, if the sole purpose of the analysis is 317 

prediction, as spatial mapping is, rather than understanding drivers of change, then any 318 

confounding correlation between included covariates and missing covariates is not critical 319 

(Araújo and Guisan, 2006).The example used only two covariate datasets, however, it would 320 

be trivial to add further environmental variables such as climate or topographical features. 321 

This would increase the flexibility of the model-based approach and is likely to reduce the 322 

mean square error further across the geographic range. 323 

Previous work in this area has often focused on the use of classification-based maps to 324 

provide a framework onto which one can express the value of natural capital. The results 325 

showed that the model-based map outperformed the classification approach. In our particular 326 

example this was perhaps not surprising - Griffiths et. al. 2011 had already demonstrated land 327 

cover was a key factor in microbial community response, and land cover is omitted in the 328 

classification of Bunce et al (1996). Classification maps are often developed without the 329 

inclusion of variables that may be subject to change over time. This is to ensure that the 330 
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geographic classification remains robust. Hence the exclusion of land cover occurs in many 331 

classifications, as it can be highly temporally variable. This example further highlights the 332 

issues surrounding naive use of existing classifications and why, given appropriate data, a 333 

model-based approach ought to be favoured.  334 

The model-based approach to mapping natural capital presented, whilst extremely powerful 335 

and informative, relies heavily upon data with good spatial coverage, both in terms of the 336 

response one wishes to model and the variables with which to make prediction across a wider 337 

range of unsampled locations. It is therefore clear that coordinated, large scale, nationwide 338 

monitoring schemes such as the Countryside Survey (Norton et al., 2013), which play a 339 

pivotal role in providing source data on natural capital assets, should be maintained and 340 

exposed to inform policy decisions.  341 

With increasing pressure on our natural assets from increasing human requirements and 342 

environmental change, there is an urgent need to provide better information for policy 343 

development and decision support. If we are to fully understand and value natural assets and 344 

ensure that they feed into decision-making, then it is important that we understand their 345 

distribution and trends in national extent and condition. Initiatives such as the Valuing Nature 346 

Network (VNN) and Natural Capital Committee (NCC) in the UK are government funded 347 

initiatives with the remit of ensuring that the national contribution of natural assets to a range 348 

of societal and economic benefits is well understood and helpfully informs decision making. 349 

This is done whilst balancing competing pressures and assessing the impact of different 350 

policy scenarios. Natural capital initiatives like the VNN and NCC also often seek to 351 

understand trade-offs and co-benefits across multiple environmental responses to help in 352 

conservation management, planning and resource distribution. We therefore anticipate that 353 

the powerful, information rich, model-based approach to understanding and mapping natural 354 
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capital will increase in use over the coming years as we seek to value our natural assets and 355 

predict landscape scale responses to change in environmental or policy drivers.  356 
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 452 

Figure 1: Map of soil microbial community structure (NMDS first axis scores) based on kriging of data 453 

obtained from the Countryside Survey – a stratified random sample of 591 1km survey squares located across 454 

the whole of Great Britain.  455 
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 456 

Figure 2: Maps of predictions in soil microbial community structure over Great Britain at 1km resolution, 457 

showing comparisons among covariates of the model-based approach, and contrasting results of the 458 

model-based and classification analyses.  A - C using model-based approaches with covariates: A) land 459 

cover only; B) calcium carbonate content only; and C) land cover and calcium carbonate content 460 

combined. D estimating mean levels in each environmental stratum defined by the ITE land classification 461 

of GB, then displaying on map using the spatial outline of each stratum. 462 
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 463 

Figure 3: Goodness of fit of the spatial statistical model used to derive the relationship between soil microbial 464 

community structure and environmental variables (land use and calcium carbonate content of the soil parent 465 

material). Map shows mean square error in each of the land use*calcium carbonate classes. Darker shades 466 

indicate areas with low error.  467 
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Table 1: Estimated parameters and associated standard errors and p values resulting from the spatial statistical 468 

model estimated defining the relationship between soil microbial community scores and environmental variables 469 

(land use type and calcium carbonate class). 470 

Parameter Estimate Standard Error P Value 

Intercept (CACO3 VARIABLE(LOW) * Bog) -0.45 0.04 < 0.001 

CACO3 HIGH 0.16 0.05 < 0.001 

CACO3 LOW -0.11 0.04 0.004 

CACO3 MODERATE 0.04 0.14 0.786 

CACO3 NONE -0.10 0.03 < 0.001 

CACO3 UNKNOWN -0.25 0.14 0.078 

CACO3 VARIABLE -0.01 0.04 0.848 

CACO3 VARIABLE(HIGH) -0.31 0.10 0.002 

Broadleaved, Mixed and Yew Woodland 0.46 0.04 < 0.001 

Coniferous Woodland 0.10 0.04 0.011 

Arable and Horticultural 0.87 0.03 < 0.001 

Improved Grassland 0.77 0.03 < 0.001 

Neutral Grassland 0.68 0.03 < 0.001 

Calcareous Grassland 0.60 0.12 < 0.001 

Acid Grassland 0.12 0.03 < 0.001 

Bracken 0.24 0.07 0.001 

Dwarf Shrub Heath -0.01 0.04 0.818 

Fen, Marsh, Swamp 0.46 0.06 < 0.001 

 471 

  472 
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Supplementary Material  473 

Appendix 1 474 

A model framework suitable for spatial modelling and mapping is the Generalised Linear 475 

Geostatistical Model (GLGM) of Diggle et al. (1998). This framework can easily be extended 476 

to a more generic setting where the linearity assumption is relaxed to form a Generalised 477 

Additive Geostatistical Model (GAGM) following on from the Generalised Additive Model 478 

framework (Hastie and Tibshirani 1990). Both model frameworks allow for the key 479 

relationships to be estimated between the response of interest and the environmental 480 

covariates, whilst at the same time controlling for additional spatial effects. This is because 481 

observations close to one another are more likely to be similar than observations far away, 482 

even after accounting for the environmental covariates in the model.  483 

Spatial autocorrelation can be accounted for by including a purely spatial term in the model, 484 

often a spatial random field, which captures any residual spatial variation in the data. This 485 

ensures that parameter estimates and their associated standard errors are unaffected by any 486 

residual spatial dependence. It also has the advantage that one can use the estimated spatial 487 

correlation structure when making predictions, thus maximising the use of information, in an 488 

approach similar to simple kriging. The underlying model framework of the GAGM 489 

considered is presented below, where the geostatistical model consists of three parts: 1) a 490 

linear combination of potentially smoothly varying covariate functions; 2) a spatial random 491 

field, which we will define as a Stationary Gaussian Process (SGP); and 3) random effects 492 

representing underlying, potentially non-spatial, error structure.  Mathematically the model 493 

framework is represented as 494 

            

(1)         
 
     

 
              495 
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where    is the response variable, fj are smooth functions (generally cubic regression splines) 496 

of environmental covariates   ,    is the link function (as with standard GLMs), α is the 497 

intercept term, Z represents different grouping levels,  b ~ N( 0 , σ ) represents the differing 498 

variation assigned to each of the groups in Z and S is a Stationary Gaussian Process at 499 

location    with zero mean and covariance structure given by                         .   500 

  501 
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Appendix 2 502 

As with all statistical modelling approaches it is more appropriate to start with a model 503 

consisting of a fixed effects formula dictated by scientific understanding and a simple error 504 

structure. Then, upon testing residuals and model assumptions, adapt the error structure as 505 

necessary. In this example we hence started with a simple GAM with land cover and calcium 506 

carbonate data as predictor variables together with a purely spatial interaction term of latitude 507 

and longitude to account for large scale spatial effects.  Fitting a spatial trend surface is 508 

crucial to ensure adequate attribution of the response to the model covariates (Legendre and 509 

Fortin, 1989). 510 

Upon examination of the residuals, it was clear that within square variance was not the same 511 

as the between square variation; hence the assumption of independence in the residuals was 512 

flawed. We therefore re-fitted the model with a random intercept effect to account for which 513 

CS 1km square the soil data were obtained from. This allowed for small scale random 514 

adjustments in the model. The residuals from the re-fitted model did not appear to imply any 515 

heteroscadacity or any obvious key missing hierarchy in the error structure.  516 

The residuals were then analysed for any small scale spatial autocorrelation. This was done 517 

using Moran’s I, which showed no signs of small scale spatial autocorrelation apparent in the 518 

residuals. As this spatial autocorrelation was assessed on the residuals there was no need to 519 

include any disconnection when calculating Moran’s I as any differences should have been 520 

accounted for in the main effects. Previous studies (eg Franklin and Mills, 2003) have shown 521 

spatial autocorrelation of soil microbial community data is evident at distances of up to 7 522 

metres. CS squares are separated by a minimum of 15 km and within square observations are 523 

separated by a minimum of 80 metres with an average separation distance of 558 metres. 524 

Given this, and the results of Franklin and Mills, the redundancy of fine scale spatial 525 

autocorrelation in the model is perhaps not surprising.   526 
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We therefore modelled the raw data on soil microbial communities against broad habitat and 527 

calcium carbonate content using a generalised additive mixed-model based approach. This 528 

follows the same generic approach as the GAGM without the inclusion of a spatial random 529 

field. Generalised additive mixed models (Lin and Zhang, 1999) extend the framework of the 530 

standard GAM by allowing both fixed and random affects to be present in the model. The 531 

random components can account for unobserved affects that could influence the outcome of 532 

the response variable and therefore ensure that estimated standard errors are accurate and any 533 

inference is reliable. Extending the general GAM equation to include random effects gives us 534 

a model of the following form:   535 

                  
 
     

 

   
     

where y is the response variable, fj are smooth functions (generally cubic regression splines), 536 

g is the link function (as with standard GLMs), α is the intercept term, Z represents different 537 

grouping levels and b ~ N( 0 , σ ) represents the differing variation assigned to each of the 538 

groups in Z.   539 

The random components are used here to allow us to account for the fact that any two soil 540 

cores taken from the same 1km square are more likely to be similar than two cores taken 541 

from two different squares. The non-linear smooth form allows fitting of an additional 542 

smoothly varying spatial surface to soak up any residual large scale spatial variation and 543 

hence captures the spatial structure present in the data that our covariates may not adequately 544 

explain. This is akin to including time as a covariate in time series modelling – the user is 545 

effectively de-trending the data. Even in the absence of small scale spatial autocorrelation, 546 

Legendre and Fortin (1989) emphasised the importance of including this term. Including the 547 

random effects, additional spatial surface and the habitat and calcium carbonate covariate 548 

effects, the fitted model is thus represented by 549 
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550 

where for each observation i  in square s,  smc is the soil microbial community score, βh is the 551 

estimated value of habitat h associated with observation i, ηc represents the value for calcium 552 

carbonate category c, ω represents the error (normally distributed) associated specifically 553 

with square s and σ represents the residual model error also assumed to follow a normal 554 

distribution. The model was fitted, including the smoothly varying spatial surface using 555 

tensor product smooth interactions, using the gamm function in the ‘mgcv’ library (Wood, 556 

2011) in the R statistical environment (R Development Core Team, 2008).  557 

Had the re-fitted model failed the independence assumptions and the Moran’s I test showed 558 

evidence for fine scale spatial autocorrelation, then the inclusion of the spatial random field 559 

term in the model would have been necessary. Practically, the Gaussian Random Field (GRF) 560 

is often estimated by making the assumption that it is adequately specified by a Markov 561 

Random Field (MRF) whereby each location only depends on its “neighbours” and is 562 

conditionally independent of all other locations. The neighbourhood structure of the MRF 563 

allows the spatial component of the model to be estimated by methods such as Conditional 564 

Autoregressive Models (CAR) or Simultaneous Autoregressive Models (SAR). Dormann et 565 

al (2007) provide an overview of methods for accounting for spatial autocorrelation including 566 

description of CAR and SAR models and how to fit them in practice with clearly referenced 567 

R packages.   568 

It is worth noting that both CAR and SAR models can also be estimated in a Bayesian 569 

framework, where estimated parameters and standard errors are often more reliable than in 570 

likelihood approximation methods, though with an added computational cost. The advantage 571 

is the added flexibility that moving to the Bayesian paradigm brings. Specifically in this case 572 

the possible inclusion of smoothly varying penalised regression splines following the 573 
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approach taken by Crainiceanu et. al. (2005). This provides the full ability to fit the model 574 

specified in Eqn (A1). This type of model can also be easily fitted using Integrated Nested 575 

Laplace Approximation (Rue et. al., 2009), where robust parameter estimates can be obtained 576 

quickly and efficiently. The R package R-Inla (www.r-inla.org) is a user friendly resource for 577 

fitting the model in Eqn (A1) using this approach.  578 

  579 
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