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Systems and methods are described for monitoring temporal and spatial moisture content changes in
clay embankments using electrical resistivity tomography (ERT) imaging. The methodology is based upon
development of a robust relationship between fill resistivity and moisture content and its use in the
transformation of resistivity image differences in terms of relative moisture content changes. Moisture
level and moisture content movement applications are exemplified using two case histories from the
UK. The first is the BIONICS embankment, near Newcastle (NE England), which was constructed in
2005 using varying degrees of compaction of a medium plasticity sandy, silty clay derived from the
Durham Till. The second is a Victorian embankment south of Nottingham (Central England), constructed
in 1897 using end tipping of Late Triassic siltstone and mudstone taken from local cuttings. Climate
change forecasts for the UK suggest that transportation earthworks will be subjected to more sustained,
higher temperatures and increased intensity of rainfall. Within the context of preventative geotechnical
asset maintenance, ERT imaging can provide a monitoring framework to manage moisture movement
and identify failure trigger conditions within embankments, thus supporting on demand inspection
scheduling and low cost early interventions.
Crown Copyright � 2014 Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).
1. Introduction engineered infrastructure, but while the impact is still largely
Engineered slopes, embankments, canals, earth dams, sea walls
and flood defences are increasingly susceptible to catastrophic fail-
ure due to changes in global climatic conditions and land use. The
4th Assessment Report of the Intergovernmental Panel on Climate
Change [23,24] predicted that mid- to high-latitude regions can
expect more extreme events with up to 20% more precipitation,
more flash floods, and a rise in sea levels up to 59 cm by the end of
the century. The predicted environmental changes will have inevita-
ble consequences for the serviceability and maintenance of our
unknown, we require intelligent platforms and science to monitor
current condition and assess risk over the whole life cycle of UK
assets. Aged assets include: Canal & River Trust/Scottish Canals with
3450 km of aged canal earthworks, Network Rail with over
20,000 km of earthwork embankments and cuttings, and London
Underground with 236 km of embankments and cuttings in
Greater London, all contributing significantly to the UK economy.

A significant number of UK earthworks between 100 and
200 years old were constructed using tipping methods, which was
standard in the 19th century. This has left a legacy of ageing, highly
fissured, weak and heterogeneous earth structures, which are still
intensively used but prone to failure under aggressive climatic stres-
ses [28]. Common problems in certain subgrade soil types include
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shear failure and mud pumping caused by loss of strength and cohe-
sion [33,25], heave, deformation and the formation of ballast pockets
[31,5], which also occur in zones of low density and stiffness. In most
cases, subgrade problems are associated with high moisture levels, a
key factor in reducing consistency and strength, and ultimately lead-
ing to failure [32,18].

Modelling undertaken during the recently completed
FUTURENET project [3,4] showed how climate or weather event
sequences affect the traffic capacity of transportation networks.
Weather events have direct effects on the permanent way such as
increased temperature on risk of track buckling (or pavement rut-
ting) and related effects on potential failure of the subgrade and sur-
rounding ground including landslide, shrink–swell and scour.
Climate resilience planning for transportation networks requires
access to near real-time, volumetric, and hence holistic, assessment
of infrastructure condition, including ground water movement and
the moisture levels within the earthworks asset. Maintenance prac-
tice, based primarily on surface observations, is a barrier to proactive
approaches because these represent the latter stages of failure and
reinforce responsive solutions. Risk-based prevention and early
interventions require identification of the incremental development
of internal conditions that ultimately trigger failure. Key to this pro-
cess will be adaptive technologies delivering real-time images of the
true 3D spatial variation of groundwater and geotechnical properties
affecting stability. While providing useful ground truth, a full under-
standing of vital ground processes with sufficient temporal and spa-
tial resolution is often not possible from invasive investigation alone.
We assert that this role can be filled by non-invasive geophysical
methods that not only provide real-time images of moisture move-
ment but are also calibrated so as to indicate full 3D, quantitative
geotechnical property changes. This can be achieved if the geophys-
ical relationships between electrical resistivity and geotechnical
properties (such as moisture content, pore pressure and strength)
are well understood.

Resistivity imaging, or electrical resistivity tomography (ERT), is
sensitive to lithological and mineralogical heterogeneity [34] and
changes in ground temperature and soil moisture content
[10,11,19,12]. In locations where lithology and mineralogy are
unchanged, provided ground temperature effects can be corrected,
changes in successive ERT surveys over an electrode array of con-
stant geometry and location will be due to ground water movement
and subsequent moisture content variations. Thus, by applying
appropriate temperature correction and petrophysical relationships
linking resistivity and saturation [7,6,12], time-lapse, volumetric
(4D) images of water movement and moisture content changes
can be constructed from repeated ERT surveys. Alongside the
increased use of ERT in site investigation, purpose built ERT monitor-
ing instrumentation has rapidly developed and now incorporates
telemetric control and automatic data transfer, scheduling, and pro-
cessing [30]. This type of instrumentation is now being applied to
monitor of natural slopes [27,37,35] and transportation earthworks
[19,12].

In this study we describe repeat survey-based approaches using
standard field equipment/return visits and fully automated moni-
toring and data capture on permanent field installations to investi-
gate the structure and processes in sections of two embankments.
We provide two case histories: firstly, from the BIONICS research
embankment, Nafferton Farm, Northumberland, UK [14,21] con-
structed using varying amounts of compaction in 2005 from sandy,
silty clay derived from partially sorted Durham Till; which includes
identification of individual lifts from 2D resistivity sections across
the embankment transect; and secondly, from an embankment
along the former Great Central Railway near East Leake,
Nottingham, UK [2,17,19] constructed via end-tipping of materials
derived from the East Leake Tunnel cutting to the south; which
includes identification of fill regime changes in a 2D resistivity
section along the axis of the embankment, dynamic, seasonal wet-
ting and drying fronts moving through a 2D transect of the embank-
ment and a demonstration of the potential application of 3D
volumetric images of moisture movement and geotechnical prop-
erty visualisation for planning maintenance. Finally, these case his-
tories provide the context for a broad discussion relating to the
foundation for new risk-based asset management practices incorpo-
rating automated, electrical imaging technologies into early inter-
vention decision processes, such as proactive drainage planning.
2. Soil and rock resistivity

2.1. Resistivity measurements and field systems

Fig. 1a shows that the resistivity, qs of a unit volume of material
is given as,

qs ¼
V
I
� A

L
ð1Þ

where V
I is the ratio of the difference, V in the electrical potential at

the two opposing faces of a unit cube that are orthogonal to the cur-
rent flow, I and is equivalent to the material resistance, R and A

L is the
Geometric Factor (in Fig. 1a) that accounts for how the current flow
within the material and the measurement are affected by the elec-
trode geometry, and converts resistance R to resistivity, qs.

Resistivity is measured in the field using a four-electrode array
consisting of two current injection electrodes and two potential
measurement electrodes. In general, the depth of investigation
increases with increasing electrode separation, where the different
electrode array configurations determine the specific relationship.
For example, Fig. 1b shows how the depth of investigation for a
dipole–dipole array is related to the common spacing (denoted ‘a’)
between the current and potential electrode pairs. It also shows
how a 2D ‘apparent resistivity’ section along a transect can be con-
structed from a series of resistivity measurements at different
inter-dipole spacings (denoted ‘n’). Further processing can also be
undertaken to refine these images to produce the best estimate of
the true ground resistivity distribution; a process termed ‘inversion’.
The ABEM SAS 1000 is typical of the field equipment used to make
resistivity-depth soundings or 2D cross-sectional surveys. A series
of field measurements are made, usually by varying the electrode
spacing in standard four-electrode array configurations, such as
the dipole–dipole (or Wenner or Schlumberger) arrays, from which
apparent resistivity sections are constructed. The voltage measure-
ment between two potential electrodes can be considered as a single
channel. As surveys require multiple measurements, the duration of
the survey can be reduced by an equivalent factor to the number of
channels used.

Datasets for 3D imaging typically require many thousands of
four-electrode measurements over a range of geometries to be car-
ried out across the area of interest. Thus, equipment with lower
numbers of input channels are disadvantaged by longer survey
times. The AGI SuperSting R8 is typical of field equipment used for
3D surveys, boasting eight channels with the potential to connect
up to 65,000 electrodes, (although most surveys don’t utilise any-
where near this potential but the eight channel system reduces sur-
veying times). 3D apparent resistivity images, or models of the true
resistivity distribution in the subsurface are constructed from the
measured resistivity dataset, in a similar manner to the
multi-point construction in 2D surveys (Fig. 1c). The new generation
of remote monitoring platforms such as the Automated time-Lapse
Electrical Resistivity Tomography (ALERT) and the very recent
Proactive Infrastructure Monitoring and Evaluation (PRIME) sys-
tems combine emerging electrical resistivity imaging technology
with wireless telecommunications, server-based processing, site



Fig. 1. Resistivity, field surveying arrays and constant separation traversing methods.
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databases and web portal access [29,38]. These platforms provide
the basis for ‘‘smart’’ technology capable of monitoring the internal
physical condition of embankments using diagnostic imaging meth-
ods. They operate in the same manner as the field resistivity instru-
ments but are remotely controlled via wireless telecommunications,
such as over the mobile phone network. They provide the potential
for high-resolution images of subsurface structure, and when used
in time-lapse mode, these platforms can monitor groundwater
movement and changes in the moisture content of earthworks and
surface movement in near real time [37,12]. Hence, these platforms
capture information about subsurface processes (groundwater
movement) and the resulting spatial and temporal changes in sub-
surface geotechnical properties, such as moisture content. If we
denote these phenomena as the ‘CAUSE’, we can now access (visu-
alise) information relating to the ‘CAUSE’ in synchronous with
remote, high resolution measurements of surface movement, which
we shall denote the ‘EFFECT’ (or similarly we could apply the term
‘SYMPTOM’). Remote access delivers a ‘virtual earthworks asset’,
where the delivery of this information into maintenance decisions,
and how it is used to support early interventions, will be core to
the development of true preventative maintenance practices (which
we develop further in Section 6).
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2.2. Resistivity–moisture content relationships

General resistivity ranges for commonly occurring rocks and
soils are presented in Fig. 2. While ground resistivity is dependent
on the composite soil or rock, it is also controlled by the amount of
moisture stored within the pore space and the ionic distribution
about grain surfaces (hence the geological materials plotting across
a range of resistivities in Fig. 2).

In sands and gravels, the current flows around non-conducting
grains via ionic migration within the saturating fluid. A clear rela-
tionship has been established between resistivity in sands and
gravels and various other factors (Granular: in Fig. 3a), so an accu-
rate measure of resistivity can lead to the calculation of key soil
parameters, particularly pore water saturation, and therefore
moisture content. This relationship is often termed Archie’s
Equation [1], where the soil resistivity qs is related to the resistiv-
ity of the fluid in the pore space, qw by the degree of saturation, S,
i.e. the proportion of the pore space that is filled by the fluid, where
S = 0 represents completely dry soil (air filled pores) and S = 1 rep-
resents fully saturated soil (fluid filled pores). Archie’s equation
also shows that soil resistivity increases with greater compaction
(via the compaction factor, ‘a’ in Fig. 3a), but decreases with
increased porosity, n, where the value of the exponent m is related
to the grain morphology and how it affects current flow.

Generally, clay resistivity is far lower than granular (e.g. sand
and gravel) soil resistivity due to additional matrix conduction
caused by the movement of ions distributed across the surfaces
of clay particles (clay: in Fig. 3a). Clay resistivity is controlled by
both mineralogy and cationic exchange capacity and can also be
related to moisture content using established relationships (in
Fig. 3a). This relationship was developed by Waxman and Smits
[36], where the numerator relates to the ionic migration in the sat-
urating fluid and has a similar form to Archie’s Equation, but where
the denominator relates to the conduction contribution through
the clay matrix. The B parameter relates to the conductance of
the cations (such as potassium, calcium, sodium or aluminium)
and Q relates to the exchange capacity (CEC) or the capacity for
the clay to hold cations within the diffuse double layer about the
clay surface (Fig. 3b). For example, higher resistivity clays, such
as kaolinite have a low CEC, lower resistivity clays, such as chlorite
and illite have a medium CEC and the lowest resistivity clays like
smectite have a high CEC. As the plasticity index generally
increases with increased CEC, the resistivity ranges for clay
Fig. 2. Resistivity ranges for surf
dominated mudstones provide not only a very useful index for
moisture content but also a very useful proxy for shear strength
and thus, resistivity imaging carries the potential to be used to
monitor ground strength and stability.

Resistivity has become an important engineering property
because it can be used to derive the volumetric moisture content
in the calculation of soil moisture deficit (SMD), a standard index
of groundwater saturation used in the transportation industry.
The railway industry currently uses a simplified calculation of
SMD based on regional rainfall using the Meteorological Office
Rainfall and Evapotranspiration Calculation System (MORECS).
This method provides a broad classification of the network based
on a km grid scale and takes no account of either the proportion
of precipitation entering the groundwater system or its actual sub-
surface movement or distribution. However, new geoelectrical
imaging-based technologies can provide dynamic 3D images of
SMD based on real-time monitoring of the actual moisture move-
ment within infrastructure. Also, resistivity imaging can be used
to map the spatial and temporal changes in moisture content,
enabling real-time assessment of plasticity changes, for example
in response to sustained drought or rainfall.
3. Study sites

Electrical resistivity remote monitoring systems have been
installed at two earthworks embankments. Field resistivity data
were collected at both sites using the dipole–dipole array configu-
ration (Fig. 1), and apparent resistivity images were inverted using
Res2DInv or Res3DInv software [26].
3.1. East Leake site

The East Leake research site comprises a 140 m long section of
the whole embankment on the former Great Central Railway (GCR)
that extends 800 m. The embankment was built up over the
Branscombe Formation of the Mercia Mudstone Group in 1897
using local materials excavated from cuttings to the SW and NE.
The material was tipped and then compacted by subsequent move-
ment of shunting locomotives and tipping wagons across the
tipped material. The tipping method used along this section of
the line was not stated explicitly by Bidder [2], but has been
deduced to have been end tipped (e.g. based on historical
ace waters, rocks and soils.



Fig. 3. Moisture content, its effect upon soil charge distribution and resistivity.
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photographs taken by S.W. Newton of end tipping wagons and
operations in the vicinity of the site at the time of construction).
The embankment has been subject to several phases of site inves-
tigation spanning from September 2005, which has included dril-
ling, collection of core samples, invasive probing and
non-invasive geophysical surveying [16–19,8–11]; borehole loca-
tions and the resistivity lines are shown Fig. 4. These phases of SI
have shown the embankment to be highly heterogeneous and
Gunn et al. [19] provided an interpretation of an along axis section
through the test site based upon an interpretation of pits, borehole
logs and small strain stiffness profiles, derived from surface wave
surveys.

Across the site, soiled modern ballast generally occurs from the
surface to around 0.5 m. Immediately underlying the modern bal-
last in the SE half is the original engineered ballast pavement as
described by Bidder [2] and Fox [13] comprising angular granodi-
orite gravel over granodiorite cobbles. Glaciofluvial sand and
gravel occurs beneath the modern ballast over the NE half. The
sand is generally uncemented but occasionally the sand was bound
within layers around 100 mm thick by fine, white, powdery
non-carbonate cement believed to be gypsum leached from other
fill materials. Siltstone appears to have been used as an original
Fig. 4. East Leake: layout of resistivity surveying and
final dressing to the earthworks fill prior to the laying of the orig-
inal ballast, but has degraded in situ in the embankment. It occurs
across much of the section apart from the furthest 30 m in NE end
where it is believed to pinch out into the glaciofluvial sand and
gravel. All of these materials overlie degraded Late Triassic mud-
stones that make up the bulk of the earthworks fill either compris-
ing dark grey-black Westbury Mudstone and Clay or red-brown
Branscombe Mudstone and Clay.

At East Leake, installations included an array of 64-electrodes
spaced at 1.5 m that ran parallel to the west rail (‘along-axis’ black
dashed line in Fig. 4). The electrodes were inserted into a shallow
trench that ran along the crest, offset from the rail by approxi-
mately 2.5 m, which was excavated with a narrow bucket to
approx. 300 mm deep and covered over with ballast. Also, several
32-electrode line arrays were installed across the embankment,
each spanning from the toe of the west flank to the toe of the east
flank with a 1 m spacing (‘cross-axis’ blue and red dashed lines in
Fig. 4). Along the earthworks flanks, electrodes were installed into
a slit cut with a small spade. The positions of these cross-sectional
transects were chosen to investigate the effect of different fill
materials on the resistivity sections. These lines were installed dur-
ing July 2006, when a series of resistivity measurements were first
monitoring lines on a section of embankment.
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made using an AGI SuperSting R8 system. From that time for a per-
iod extending into early 2008, repeat measurements were made on
the along-axis line and the cross-axis line at the 60 m station at
approximately 6 weekly intervals using the same equipment.
Measurements were made using the dipole–dipole configuration
with current and potential dipole widths (a) of 1–4 times the elec-
trode spacing and unit dipole separations (n) of 1–8.

During September 2010, a permanent resistivity monitoring
array was installed within a 22 m section of the embankment,
comprising twelve cross-axis lines spaced at 2 m intervals. This
3D zone was approximately centred on the existing cross-axis line
at the 60 m station (red dashed line in Fig. 4). The additional lines
also comprised 32 electrodes spaced at 1 m intervals, running from
the toe of the eastern flank to the toe of the western flank. An
ALERT system was also installed at the site at this time, with which
measurement schedules were variably programmed to capture
(with high temporal resolution) weather event triggered water
movement within the embankment. In this way, response to heavy
rainfall events could be studied. The system was powered by a
combination of solar panel and a methanol fuel cell charging banks
of 12 V batteries. Remote monitoring over this 3D array was under-
taken over the period from September 2010 to February 2012. A
network of proprietary temperature sensors was also distributed
in the embankment to depths of 3.7 m, which are used to study
the seasonal temperature change patterns throughout the
embankment.
4. BIONICS site

The embankment axis is orientated in an east–west direction. It
is 90 m long, 6 m high, has a 29 m base width and a 5 m wide crest
with 1 in 2 slopes on the flanks. The embankment was constructed
in 2005 in four main 18 m-long sections, with the two inner-most
sections constructed according to Highways Agency specifications
using 0.3 m lifts and 18 passes of a 7.3 tonne self-propelled smooth
drum vibrating roller [14,15,20–22]. These have been termed the
‘well compacted panels’ and simulate new-build highway embank-
ments (Panels B and C in Fig. 5a). The two outer-most sections
were built to represent poorly constructed/heterogeneous rail
embankments, using four lifts, each nominally of 1.3 m height with
minimum tracking by site plant; termed ‘poorly compacted’
(Panels A and D in Fig. 5a).

To prevent any hydraulic connectivity between each section
vertical impermeable membranes were installed during con-
struction between the panels. Immediately after construction
the embankment slopes were seeded with grassland seeds typi-
cal of the North East of England and other plant species allowed
to colonise the embankment naturally. The earthworks fill com-
prise a sandy, silty clay, which was a locally sourced glacial till
(Durham Till) with matrix supported clasts (of greater than
coarse gravel size) removed. Atterberg limit tests indicated mois-
ture contents at the Plastic Limit (PL) of 24% w/w (approx. 38%
v/v) and Liquid Limit (LL) of 45% w/w (approx. 72% v/v), which
classifies the fill material as intermediate plasticity. The dry den-
sity of material dried from around the PL is approximately
1.6 Mg/m3. The crest was capped with a 0.5 m thick layer of
basalt ballast.

64 electrodes, spaced at 0.5 m were installed across a 32 m
transect from the toe of the north flank to the toe of the south flank
(Fig. 5b). In the silty clay earthworks, electrodes were installed into
a slit cut with a small spade, while across the crest, electrodes were
bedded into bentonite clay that filled 0.3 m deep, fist-sized pits,
which were then re-covered with ballast. Proprietary geotechnical
sensors including the Decagon 5-TM temperature and moisture
content and the MPS-1 water potential (suction) were installed
just off-line at depths of 0.5 m and 1 m (below the surface) at three
locations on the south and north flanks as shown in Fig. 5b.
Installation phases occurred during November 2008 and October
2009 and the period of resistivity measurements on this array
extended up to mid-2011. Within this monitoring period, a perma-
nently installed ALERT system was used to make resistivity mea-
surements over this line on a weekly interval. Measurements
were made using the dipole–dipole configuration with current
and potential dipole widths (a in Fig. 1b) of 1–4 times the electrode
spacing (0.5, 1, 1.5 and 2 m) and unit dipole separations (n in
Fig. 1b) of 1–8 times the electrode spacing.
5. Surveying and monitoring images

Using the aged, end-tipped embankment and the modern com-
pacted embankment as case histories, this section presents exam-
ples of how 2D, 3D and time-lapse resistivity difference images can
be used to aid interpretation of embankment structure and condi-
tion, and monitor ground water movement processes through the
earthworks. Most importantly, these case histories demonstrate
the potential for using resistivity as a proxy for the long-term mon-
itoring of geotechnical properties, offering insight into future tech-
nology that can provide timely information to support
preventative asset maintenance practices.
5.1. 2D static images – material mapping application: East Leake site

The 2D along-axis section provides infill information between
boreholes on the subsurface structure to aid interpretation relating
to the construction of the embankment (Fig. 6). In Fig. 6a, from the
0 m to the 40 m stations, the resistivity of the interval from 0.8 m
to 4 m is generally below 20 X m and this is consistent with values
that would be expected for clay and mudstone materials. This zone
of low resistivity coincides with low stiffness, low penetration
resistance zones and relatively high friction ratios, and has been
classed as a zone of high moisture and low strength [16,17,19].
The originally tipped fill would have been a coarse gravel compris-
ing lithoclasts predominantly of locally sourced Westbury
Mudstone (Fig. 6b). Over the lifetime of the embankment
(116 years), the mudstone has weathered to clay and it is believed
that this degraded clay material is a key factor in the moisture
retention in this zone. From the 40 m to about the 60 m station,
the resistivity of the interval from 0.8 m to 4 m is between
20 X m and 50 X m. This has been interpreted as fill predomi-
nantly of gravel comprising Westbury Mudstone, possibly with
occasional siltstone from the Blue Anchor Formation. Lower resis-
tivities within this range are consistent with less weathering and
less degradation of the mudstone clasts resulting in the earthworks
being more freely draining. This zone has been classified as inter-
mediate strength and moisture content, and, represents a buffer
between the low strength, mudstone, clay-dominant fill and the
high strength, sand, gravel and siltstone-dominated fill. This buffer
zone provides the interface between earthworks with very differ-
ent engineering properties and hence very different performances
including response to dynamic loading, drainage, and seasonal
variation. From 60 m a lens of fill comprising sand, gravel and silt-
stone produces a wedge shaped zone with resistivities above
150 X m. The wedge develops from the surface at about the 40 m
station and thickens to about the 70 m station such that it extends
from just beneath the surface to 4 m depth. This high resistivity
wedge persists longitudinally under the embankment crest over
this depth interval towards the 100 m station. The high resistivity
of this zone indicates that the fill has low moisture content and has
been shown to be associated with high penetration resistance val-
ues and high stiffness values [16,17,19].



Fig. 6. Structural interpretation and material characterisation aided by 2D ‘along-axis’ resistivity image.

Fig. 5. BIONICS: general structure of embankment and layout of resistivity line in poorly compacted section.
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Fig. 7. Imaging moisture movement and moisture conditions within embankment.
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5.2. 2D dynamic difference images – groundwater and moisture
content changes: East Leake site

Fig. 7 shows how the record-breaking rainfall during the 2007
winter–summer transition was captured by the 6-weekly sched-
ule of resistivity image monitoring on the ‘cross-axis’ line at the
60 m station. This extreme rainfall event led to the gradual infil-
tration and near full saturation of the east flank of the embank-
ment (left side). In fact, the infiltration zone extends into the
underlying Branscombe Formation, implicating bedrock pro-
cesses as part of the drainage problem. During these flood
events, standing water develops in this area within the cess at
the toe of the east flank. While, the embankment at this location
shows little sign of climate-induced distress, the sequence of
images in Fig. 7a demonstrates how resistivity-differencing
between images can be used to monitor build up of potentially
unstable moisture conditions. Chambers et al. [12] describe
methods of temperature correction and development of moisture
content–resistivity relationship for the Westbury Formation fill
materials at the East Leake site. The relationship is based upon
fitting the Waxman-Smits [36] relationship (Fig. 3a) to a series
of resistivity measurements on dried samples that were reconsti-
tuted to a range of known moisture contents. Based on this
resistivity-moisture content transformation, Fig. 7b provides an
imaged estimate of the saturation distribution throughout the
embankment after a heavy rain event on 30th March, 2010.
The key features of note include: the infiltration into the east
and west flanks (which appears greater on the east flank) and
the highly saturated central core of the embankment, which is
believed to partly associated with perching over an interval of
clay degraded from the Westbury Mudstone. In the context of
early intervention, the high levels of saturation may be sufficient
to classify this location as at risk, requiring monitoring that
could be achieved via remote delivery of saturation images on
a weekly or even daily basis from a temporary retrofitted elec-
trode array. The monitoring period would then be sufficient to
capture the full extremes of weather events affecting the site.
The temporal and spatial characteristics of the groundwater
movement would be investigated using a series of time-lapse
images and used to plan future drainage schemes.
5.3. 2D dynamic difference images – moisture content and pore
suction changes: BIONICS site

Fig. 8 shows a series of six resistivity images across the BIONICS
embankment captured from spring to summer of 2009 when air
temperatures regularly exceeded 20 �C during May and June.
During this time there was little significant rain until a series of
weather events that brought rainfall that occurred in June and
July. The layered structure in the resistivity sections can be attrib-
uted to the sequence of lifts and ballast capping employed during
the construction of this poorly compacted section of embankment,
where Table 1 summaries the broad resistivity and geotechnical
properties of the layers identified.

The ballast cap at the top of the embankment (Layer 1) exhibits
the largest resistivities to 800 X m. The underlying silty clay in
Layer 2 exhibits the lowest resistivities of below 10 X m. Low
resistivity zones occur at the interface between Layer 2 and the
overlying ballast, where infilling of the ballast cap into a depres-
sion is observed beneath the northern half of the embankment
crest. The low resistivities in layer 2 below this structure would
result from perching of rainwater that drains through the ballast.
The clay fill in this zone would be soft, being above its PL (possibly
approaching its LL) and of low strength ffi 10 kPa. Notably, Layer 3
is highly resistive, indicating a high strength clay with moisture
contents well below the PL. The moisture contents in Layer 4 and
the underlying zones appear to close to the expected in situ mois-
ture levels and show little variation during this monitoring period.

This series of images capture the property change domains
within the embankment associated with it drying out in response
to relatively low rainfall and a seasonal increase in temperature
from the spring to summer 2009. The resistivity difference images
(between the baseline image on 14th March and the 1st May, 1st
June) indicate the resistivity change distribution throughout the
embankment, and thus provide insight into the exfiltration pro-
cess. Note that the resistivity of Layer 2 appears to decrease and
Layer 3 increase during this period, which could be related to a
wicking suction due to evaporation from the ballast cap.
However, the most significant increase in resistivity (as high as
10 times) occurred in the upper 0.75 m interval of the south flank.
During this drying event, the ground temperature rises from



Fig. 8. BIONICS: resistivity image differences during drying event of spring–summer 2009.

Table 1
Resistivity and estimated geotechnical property ranges of the BIONICS embankment layers.

Structure Geophys Estimated geotechnical property ranges

Layer no. Depth interval (m) Main fill lithology Resistivity range (X m) Moisture content range (% v/v) Plasticity Shear strength (kPa)

1 0–1 Ballast 800–170
2 1–2 Clay 40–<10 25–80 <PL?LL 100–10
3 2–3 Clay 170–50 5–20 �PL �100
4 3–4 Clay 30–20 30–45 ?PL P100
5 >4 Clay >30a <30 <PL >100

PL – Plastic Limit, LL – Liquid Limit.
a Images have lower sensitivity in centre of embankment at depth.
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around 6 �C (6 �C) in March to above 14 �C (12 �C) in June at 0.5 m
(1 m) depths, (Fig. 9).

During early March, the moisture content sensor recorded
40%v/v (37%) and the pore suction was at its limit of suction of
�10 kPa (�10 kPa) at 0.5 m (1 m) depths. Changes in the moisture
content and pore suction measurements during drying throughout
late March to early June to 26%v/v (34%) and �480 kPa (�270 kPa)
at 0.5 m (1 m) show how the moisture loss and development of
suction pervades from the surface into the embankment. Lowest
moistures and greatest suctions were recorded on 8th June prior
to a series of weather systems that brought steady rainfall, the first
of which occured from 9 to 11 June. Recharge into the embank-
ment reverses results in an increase in the measured moisture con-
tent and a decrease in suctions. There is a more immediate and
greater magnitude of response at 0.5 m than at 1 m, again demon-
strating how infiltration is driven by recharge from the surface.
Note how the later rainfall events during 22–26 June and 29
June–4 July resulted in a loss of suction and higher moisture
contents in July than in March. These events provided sufficient
rain to produce lower resistivities across the whole of the embank-
ment in the upper 0.5–1 m interval (resistivity difference image
between 1st July and 14th March).
5.4. 3D Dynamic images – process and property change visualisation

The comparison of time series data with dynamically changing
2D or 3D images demonstrates the challenge of up-scaling from a
single point sensor to the whole asset. Although it is common prac-
tice to monitor earthworks using point sensors, it is very difficult to
fully quantify the processes driving property changes (i.e. magni-
tude and rate of spatial change) without a dynamic, volumetric visu-
alisation of those properties throughout the whole earthworks asset.
Full volumetric visualisation can be provided by a 3D image, but
while technologies for direct, non-invasive geotechnical property
imaging are scarce (or if they exist at all), resistivity-based proxy
images to moisture content and even pore suction are possible



Fig. 10. 3D resistivity and derived geotechnical ‘proxy’ property distributions in aged Victorian earthworks, (after [12]).

Fig. 9. Temperature, moisture content and pore suction time series at MP-3 0.5 and 1 m depths during spring–summer 2009 drying event.
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provided sufficiently robust relationships exist between these prop-
erties. 3D resistivity images are very easily realised by electrode
arrays over a surface area, such as by using a number of parallel line
arrays as was the case at East Leake. The resistivity-moisture content
relationship used for interpreting the 2D sections can also be applied
to 3D images, such as shown in Fig. 10.



Fig. 11. Resistivity image and movement monitoring on earth flow landslide.
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The central along-axis 2D section (non-transparent) in Fig. 10a
features the proportion of the section shown in Fig. 6 between the
intermediate and higher strength zones. Fig. 10b shows the mois-
ture content distribution after a minor rainfall event in February
2011. While, much of the crest is at high moisture content, very
high moisture zones can be observed, such as centre crest on the
east–west cutaway. Also, shallow zones of very high moisture on
the flanks probably indicate gaps in the vegetation cover. While
SMD indices based on MORECS data can be usefully applied for
regional assessment of risk to rail infrastructure, their application
at site scale is not appropriate if the true variability relating to infil-
tration and recharge of groundwater into geotechnical asset is not
captured. Whereas resistivity or moisture content images can be
readily converted into images of SMD simply via knowledge of
the fill resistivity at saturation. Indeed, the saturation index used
in Fig. 7 provides a proxy to SMD (and it is highly likely that volu-
metric moisture content and saturation are more valuable indices
for characterising the true distribution of internal conditions of
earthworks assets).

6. Discussion

Fundamentally, these case histories demonstrate that the con-
struction method, deterioration history and distribution of com-
posite materials within the embankment control engineering
performance, especially, the spatial and temporal variation of
groundwater and its influence upon key geotechnical properties
controlling strength and stability. They relate to end members of
a spectrum of engineered embankments. BIONICS, a modern clay
embankment that was built up in layers, which are clearly recog-
nised within the resistivity images. East Leake, an aged embank-
ment with a heterogeneity that reflects the transition of a range
of fill materials within an end tipped structure, again, identified
on resistivity images. These case histories also demonstrate the
application of time lapse resistivity images in understanding the
link between weather events and subsurface processes and prop-
erty changes affecting stability, which if applied to a ‘virtual asset’
provide the potential for predictive maintenance, for example
within the context of resilient infrastructure in future climates.

The BIONICS example provides insight into how seasonal, cyclic
wetting and drying in the near surface could drive the development
of fissure networks deeper into the flank. For example, one can envis-
age similar processes driving the progressive moisture-driven cyclic
strains and development of zones of low shear strength that could
comprise long term instability due to shear failure. In addition to this
holistic visualisation of the subsurface driving processes, recent
innovations in time lapse, differential resistivity image processing
now enable automated systems to track the movement of the indi-
vidual sensors within the monitoring network [37,38]. We can
now establish cause and effect between coupled subsurface and sur-
face processes in rapid ground failure events. While we have not yet
applied this technique to our engineered embankment sites, we have
monitored up to 1.6 m of down slope movement on sensor groups at
the top of a natural earth flow lobe with sixteen measurements over
one year (inset in Fig. 11). This example relates to a landslide moni-
toring site near Malton, North Yorkshire where we have imaged the
movement and break up of prograding earth flow lobes transporting
reworked Whitby Mudstone over the underlying Staithes Sandstone
(Fig. 11). The resistivity image clearly maps out the flow of the
Whitby Mudstone (blues–greens) over the underlying Staithes
Sandstone (yellows–reds).

So, how could we apply these technologies to the management
of earthworks assets? We can envisage programmable sequenced
images resulting from remote field monitoring on permanent or
semi-permanent installations telemetered and stored on a central
database that contains multiple sites. These images would be pro-
cessed to provide 2D, 3D and in time-lapse mode 4D images of
resistivity, which are then transformed using robust relationships
into geotechnical property ranges (moisture content, pore pres-
sure, etc.). These property distributions would then be interro-
gated, for example to identify and classify internal infrastructure
regimes. There can be multiple threshold levels set, for example,
moisture content ranges could, for the basis of identifying regimes,
include:

i. Dry: below Shrinkage Limit, [Serviceability Limit State (SLS)
– Monitor Subsidence].

ii. No Warning: between Shrinkage and Plastic Limits.
iii. Inspect: between Plastic and Liquid Limits, [SLS – Monitor

moisture levels; design drainage].
iv. Wet: above Liquid Limit, [Ultimate Limit State – install drai-

nage systems].
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This information could form the basis for new proactive
‘On-Demand’ asset inspection scheduling. Automatic alarms could
be programmed into the system that would issue a series of traffic
light warnings that trigger certain actions. For example, the poten-
tial for shrinkage and crack formation in those zones triggering a
‘Dry’ warning could be monitored, either using independent sys-
tems or the resistivity based electrode movements. The subsurface
image sequences could also map the rate and extent of drying and
subsidence for use in considering the effect of vegetation and plan-
ning remedial actions (pollarding, etc.). As another example, zones
triggering an ‘Inspect’ warning may indicate potential for plastic
deformation (ballast pocket formation, mud pumping or even
shear failure, etc.). Again, resistivity images would assist in moni-
toring moisture levels, movement pathways, sumps, springs, etc.
and the subsequent design and scheduling of drainage measures.
The detailed visualisation of subsurface ground water movement
will enable design of lower cost measures that are better adapted
to the specific causes of the problems – these are the subsurface
processes. A consequence of responsive mode maintenance strate-
gies is the use of surface based observations that currently define
or diagnose the problem via the surface manifestations of the true
cause, which is in fact, driven by the subsurface processes. By
adopting subsurface imaging technology, we not only better define
the cause of the problem (c.f. our use of ‘CAUSE’ in the East Leake
case history hopefully captured the reader’s attention), but more
importantly, we also buy back a significant period of time in which
Fig. 12. Concept for a moisture monitoring system based upon real-time res
to consider our early intervention. This is because the true cause of
the problem begins as a progressive subsurface process, which
could be very manageable if the subsurface symptoms are identi-
fied and enable robust prediction of future consequences, sufficient
for appropriate preventative actions to be taken. All of this time
advantage is lost by waiting for symptomatic surface manifesta-
tions, which are usually observations of direct surface movement,
and hence maintenance is completely responsive, dealing only
with the effect. Currently, the lack of understanding of the infor-
mation potentially available from subsurface monitoring presents
a key barrier inhibiting the development of preventative mainte-
nance. Note also, responsive approaches may not address the true
cause of the problem that if untreated, is left to continue to cause
the problems. In this way we become trapped in a cycle of respon-
sive maintenance, increasing whole life cycle costs, and quite pos-
sibly contributing to a reduction in the total lifespan of the asset.

Finally, by way of conclusion we provide a concept for a possi-
ble future linear route warning system. We envisage simple line
arrays of electrodes, spaced between 2 m and 10 m extending
along a 200 m–1 km long embankment. Two separate sets of mon-
itoring measurements are made along the Up and Down line
arrays. We have the capability to produce sequenced resistivity
sections along these linear arrays that provide moisture content
levels within depth intervals in the lower embankment, embank-
ment core and possibly the upper embankment, again with inde-
pendent sections for either flank of the asset. Under normal
istivity measurements over linear arrays along the Up and Down lines.
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operating conditions, moisture level information is updated on a
routine monitoring schedule, and these data are interrogated
against a series of threshold classes such as the four above. The
same routine monitoring schedule is maintained until certain
weather event sequences trigger an ‘Inspect’ along a specific sec-
tion (see Fig. 12). The warning also indicates the depth interval
over which the high moisture levels occur, hence guiding
impromptu inspection. This alarm also triggers a reconfiguration
of the monitoring schedule, for example reducing the time interval
between measurements for the purposes of studying potential
temporal and spatial evolution of increased moisture levels.
Having established the aerial and depth extent of the affected area,
a scheme for drainage intervention is designed and scheduled for
installation. Months (years?) later, the maintenance crews are
mobilised for installation who don’t observe any major surface
expressions of distress but note seeping from pit walls at the inter-
vals where the drainage measures are to be installed. By this time,
the Inspect warning has been upgraded to ‘Wet’ – at ultimate limit
state condition.
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