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Abstract A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant
coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a
probabilistic solution by solving a set of 1t6 stochastic differential equations that are mathematically
equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D
diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary
condition at equatorial pitch angle a, = 90° is also derived. The model is applied to a simulation of the
October 2002 storm event. At &y near 90°, our results are quantitatively consistent with GPS observations of
phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller «,, the observed
PSD increases are overestimated by the model, possibly due to the ay-independent radial diffusion
coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic
processes provides further insights into the diffusion processes, showing distinctive electron source
distributions with and without local acceleration.

1. Introduction

The Earth's outer radiation belt is a torus-shaped region around the Earth consisting of relativistic electrons
that pose a threat to human space assets [e.g., Baker et al., 1997]. Fluxes of these energetic electrons in the
outer radiation belt respond dynamically to magnetospheric perturbations and can vary by several orders
of magnitude during storm times [e.g., Reeves et al., 2003; Baker and Kanekal, 2008; Tu et al., 2009]. The flux
variations may be caused by two types of physical processes: adiabatic modulations in which the perturba-
tion time scale is much greater than the electron drift period [e.g., Kim and Chan, 1997; Tu and Li, 2011; Su et
al., 2011] and nonadiabatic processes, caused by electron resonance with waves near the cyclotron and drift
frequencies that violate one or more of the electron’s adiabatic invariants [e.g., Schulz and Lanzerotti, 1974;
Elkington et al., 1999; Thorne, 2010].

Quasi-linear diffusion theory has been formulated to quantify the nonadiabatic changes of energetic elec-
tron fluxes, and diffusion models that are based on solving an electron Fokker-Planck equation have been
developed [e.g., Albert et al., 2009; Subbotin et al., 2010; Subbotin and Shprits, 2012; Fok et al., 2008; Varotsou
et al., 2008; Tao et al., 2008, 2009; Tu et al., 2009, 2013; Camporeale et al., 2013a; Glauert et al., 2014]. Typically,
solving the Fokker-Planck equation involves using a numerical grid and finite-difference methods. How-
ever, unphysical negative solutions occur when off-diagonal diffusion tensor components exist [Albert,
2009, 2013; Camporeale et al., 2013b, 2013c]. To overcome this in two dimensional (2-D) energy and pitch
angle diffusion simulations, Albert and Young [2005] globally diagonalized the diffusion tensor by coordi-
nate transformation and applied a standard finite-difference method thereafter. But in 3-D, where radial
diffusion is included, such matrix diagonalization is not easily achieved. Instead, an operator-splitting tech-
nique is widely adopted, which uses two sets of grids, one for the radial diffusion and the other for the
energy and pitch angle diffusion. To communicate between grids, frequent high-accuracy interpolations are
required. As a result, a high grid resolution is required in these methods [Subbotin et al., 2010]. Moreover,
the two sets of grids imply exclusion of possible radial-local cross diffusion; in other words, the diffusion
tensor is at most a 2-D energy and pitch angle block plus a 1-D radial diffusion coefficient, which is not
fully 3-D.
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Alternatively, it is useful to model radiation belt diffusion in the space of the adiabatic invariants. In adi-
abatic invariant coordinates, phase space density (PSD) is conserved under adiabatic processes, and the
model results can be mapped to particle fluxes for a variety of magnetic field models. Beutier and Boscher
[1995] wrote the Salammbé model using one 3-D grid in the three action integrals J;, J,, and J;. However,
a box computational domain in the action integral space transforms to a highly extended region of com-
plicated shape in the L shell energy and pitch angle (hereafter denoted {L, E, a, }) coordinates, and vice
versa. This can make setting boundary conditions difficult. Later, the Salammbé model was converted to
the operator-splitting technique in the {L, E, a,} coordinates [Varotsou et al., 2008]. Subbotin and Shprits
[2012] designed a new set of adiabatic invariant variables from mixtures of the action integrals, whose coor-
dinate lines, by clever choice of a constant related to magnetic field, roughly follow those of the {L, E, a}
coordinates. Currently, their model is also not fully 3-D.

From an entirely different approach, Tao et al. [2008] demonstrated successful application of the stochas-
tic differential equation (SDE) method in solving the 2-D energy and pitch angle Fokker-Planck equation.
Selesnick [2012] used this method in an investigation of electron decay rates in the inner radiation belt,
where nondiffusive scattering becomes significant. The SDE method avoids global matrix diagonalization or
reliance on a grid; this is advantageous compared to finite-difference methods in dealing with off-diagonal
diffusion components and complex domain geometries. In the current study, we present the application

of the SDE method to modeling the outer radiation belt in a fully 3-D adiabatic invariant coordinate sys-
tem. Section 2 contains a brief introduction to SDE theory, derivations of the specific SDEs and boundary
conditions of the radiation belt Fokker-Planck equation in adiabatic invariant variables, and a description
of the numerical schemes to solve the system. In section 3, our SDE model, named REM (for Radbelt Elec-
tron Model), is applied to simulation of a storm event of October 2002. Insights into the diffusion process
are provided via statistical analysis of the stochastic processes. Section 4 gives a summary and discussion of
this work.

2. Solving the Radiation Belt Electron Diffusion Equation in Adiabatic
Invariant Coordinates

From the perspective of SDEs, a diffusion process can be viewed as an ensemble of stochastic processes
and the solution of the diffusion equation can be calculated from the expectation of path integrals of these
stochastic processes. See Appendix A and the references therein for a formulation of the SDE theory and a
derivation of the Feynman-Kac formula, which gives a solution to an initial value diffusion problem. In this
section, we generalize the Feynman-Kac formula to diffusion problems with boundary conditions of the first
kind (Dirichlet) and the second kind (Neumann) (section 2.1) and then apply it to the radiation belt electron
diffusion equation. For this purpose, section 2.2 discusses the transformation of the Fokker-Planck equation
into adiabatic invariant variables and then derives the corresponding SDEs, including a description of the
diffusion coefficients in the new variables. Section 2.3 discusses the complex computational domain in the
new coordinates, and the particular Neumann boundary condition that arises there. In section 2.4, we give a
brief description of numerical implementation and validation of this method.

2.1. SDE Method for Solving Diffusion Problems With Boundary Conditions
As in Appendix A equation (A38), consider an n-D diffusion equation written in the Kolmogorov backward
equation form (assuming summation convention)

a o
Eu(t, é) = £U(t, g)
%u

aﬁ,afj + bi(ta g)a_u + C(t! é)u5 (1)

1

where a; are components of diffusion tensor a, b, relate to agasin (A24) (in Cartesian coordinates), and c is a
term characterizing source and loss. The diffusion process described by equation (1) is related to an n-D It
stochastic process X; whose equation of motion is given by the following SDE

dX! = b(t — 5, X!)ds + 6(t — 5, X))dW,, 0 <s<t, ()
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with initial position Xg = &.In equation (2) s is the running time, increasing from 0 to t, W, is an n-D Wiener
process, b is an n vector with components b;, and ¢ is an n X n matrix obtained from the relation

o6’ = a. (3)

Note that since the time argument of the coefficients in the SDE is t — s, the It6 process travels backward in
time from t to 0.

The matrix ¢ is not uniquely determined by equation (3). However, according to Levi's theorem [Freidlin,
1985], different ¢ matrices satisfying (3) generate equivalent stochastic processes and hence yield the same
solution of the diffusion equation. To see this, we observe that for any orthogonal matrix U, the new ¢
obtained from 6 = oU still satisfies equation (3), and, when inserted into the SDE (2), 6dW; is equivalent
to o-dVNVS, where \TVS is merely the Wiener process W, after a rotation and perhaps a reflection of coordinate
axes, which is still a Wiener process [Zhang, 1999].

Given an initial condition

u(0,8) = (8, (4)

the diffusion equation (1) can be solved by defining the functional of the stochastic paths

t
Fté — f(X:) exp (/ c(t—s, X;)d5> s (5)
0

where the superscripts in F*¢ indicate the starting time and position of X, and X{ is a shorthand for X _ .
The Feynman-Kac formula (A41) asserts that equation (1), with initial condition (4) and boundaries at infinity,
has the solution

u(t, & = E[F*¢], 6)

where the symbol E denotes expectation over an ensemble of stochastic processes. Observing that the 1t
processes travel backward in time, the meaning of the Feynman-Kac formula is apparent: the solution at
position € and time t is obtained by averaging the initial condition and the propagation information carried
by the It6 processes along their paths.

To implement a Dirichlet boundary condition in a diffusion problem, we introduce the “stopping time,’
which is denoted by 7 henceforth. Given a domain D, the stopping time is the time s until the It6 process first
reaches the boundary and after which it remains at the same place. Such boundaries are denoted as d,D,
where the subscript 1 stands for a boundary condition of “the first kind,” also known as a Dirichlet boundary
condition [Pksendal, 1998; Freidlin, 1985]. If 3,D can never be reached, 7 is +c0.

Let us consider the initial value and Dirichlet boundary value problem:

0 =
&U(t, é) - [:U(t, é)v (7)
u(0,8) = f(%)? geD, (8)
U(t, ‘:) = g(t’ g)’ g € 61 D’ (9)

in which g(t, &) is the Dirichlet boundary condition and where g(0,&) = f(€) for& € 9,D. To solve this
problem, we generalize the functional F'% as

t
F'& =1, f(X!) exp < / c(t—s, xg)ds)
0

+ Lg(t—7,X!) exp (/ ot - s,XE)ds) , (10
0

where the indicator I- has value T when condition C is true, and 0 otherwise [Freidlin, 1985]. The meaning of
(10) is simple: if the 1t6 process remains in D when time s runs out, apply the initial condition; if it stops on
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0,D before that, apply the Dirichlet
boundary condition. The solution
of this problem is then given by the
expectation of the new functional
(10) as in equation (6).

X coordinate line

y coordinate line

A Neumann-type boundary d,D is
different from a Dirichlet-type bound-
ary 0, D. Instead of stopping on the
boundary, the It6 process is reflected
on 0,D [Freidlin, 1985; @ksendal, 1998;
Costantini et al., 1998]. For a homoge-
neous Neumann boundary condition

exterior of D of the form

Figure 1. A schematic illustration of a 2-D domain D with a Neumann-type Y- Vu(t,& =0, &€a,D, (11)
boundary 0,D and a local curvilinear coordinate system {X, 7} constructed
near the boundary. The X coordinate lines are tangent to the y vectors on
0,D, and the § = 0 coordinate line coincides with the boundary. The global
coordinate is labeled &.

where y(&) is a continuous unit vector
field pointing toward the interior of D,
the Ité process undergoes a reflection
about the direction of y at the place
where it reaches d,D. In the SDE, this reflection is implemented by introducing an additional term involving
v such that

dX! = b(t — 5, X{)ds + o(t — 5, X))dW, + y(X})dk,,
0<s<t,

(12)

where k; is a nondecreasing 1-D stochastic variable, called local time, with initial value k, = 0. The increment
dk, is nonzero only when X! reflects from 0,D, and at other times it remains zero. In this sense, the vector y
can be looked upon as a “local velocity” of the stochastic motion on d,D. Consider a 2-D domain as sketched
in Figure 1, for example. Because 7 is not tangent to 0,D, in the vicinity of a segment of the boundary we are
able to construct a local curvilinear coordinate system, such that the X coordinate lines are tangent to y on
0,D, the boundary coincides with the § = 0 coordinate line, and the interior of the domain has § > 0. When
X; reaches d,D, we can decompose it into the {&, ¥} coordinates, and the local time k, increases to ensure that
the ¥ component of Xi is always greater than 0, while its X component is left unaffected. When X; is away
from 0,D, k, then remains unchanged.

Finally, we consider the initial value and mixed boundary condition problem, which is the type of problem
we must solve to solve the radiation belt diffusion equation in this paper:

2 ue.&) = Eu(t. ) (13)
u(©0.8) = f®), EeD, (14)
u(t,&) = g(t.8), &€ a,D, (15)
Y& - Vu(t, & =0, &eo,D. (16)

The functional F%¢ for this problem has the same form as (10), and the solution of the problem is still given
by (6), except now X; must be expressed by (12).

2.2. Transformation of the Fokker-Planck Equation and Connection to SDEs
Diffusive evolution of the radiation belt electrons is described by a Fokker-Planck equation. In a general set
of phase space coordinates {Q;}, the Fokker-Planck equation assumes the form

of 10 of
=2 (G6Dhyp— ), 17
ot GdO,»< Qfofaoj> an
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where f(t, Q)) is the phase-averaged PSD of the electrons, G = det(aJ,-/an) is the Jacobian for the transfor-
mation from the three adiabatic invariant action integrals {J;} to the new variables {Q;}, and DO,-O,- denotes
components of the diffusion tensor in the {Q;} coordinates [e.g., Haerendel, 1968; Schulz, 1991]. Dq,q, are
related to the diffusion coefficients DJ’_JJ in the {J;} coordinates by the transformation

0Q, 0Q;

a0, = 57 P gy (18)

In the Fokker-Planck equation (17), we have neglected any source or loss term, as well as the frictional term
caused by interparticle interactions, because these terms are relatively unimportant in the evolution of the
outer electron radiation belt compared to the wave-particle interactions [Schulz and Lanzerotti, 1974]. How-
ever, from the formulation in the previous subsection, we note that the Fokker-Planck equation with these
terms present is still solvable by the SDE method.

Instead of the action integrals, it is customary to regard f as a function of the more convenient adiabatic
invariants M, K, and L (Roederer’s L [Roederer, 1970]), which are related to J; by physical constants, and whose
expressions can be found in, e.g., Schulz [1991]. For computational purposes, u = In(M) is a better variable
than M, for the following three reasons. First, in the typical energy range of electrons in the outer radiation
belt, the value of M spans 4 orders of magnitude, from a few to over 10,000 MeV/G. Second, changing to
In(M) sends the lower bound of the variable from 0 to —oco, which prevents unphysical scenarios of stochas-
tic processes traveling into “negative M” regions during numerical implementation. Third, in the phase space
with the In(M) coordinate, the family of constant momentum surfaces have the same shape in a dipole
magnetic field, which is not true using M; this feature makes the computational domain less irregular.

Following equation (17), we write the Fokker-Planck equation in the coordinates {u, K, L}. The Jacobian
determinant for dipole magnetic field is

8v/2m2 uym?/? exp(3u)
G= , (19)
Re B

where y, is the Earth’s magnetic moment, my is electron mass, and R; is Earth radius. The Fokker-Planck
equation, transformed to the Kolmogorov backward equation form (1), becomes

9
’OQ,-

Jdz 1 0?

9f_2g-2 f, 20
ot~ 2%3Q0q, 20

f+b
and from now on Q; represents u, K, and L fori = 1, 2, 3, respectively. This can be accomplished by directly
expanding the partial derivatives in (17) and collecting terms, due to the fact that f is the PSD with respect
to canonical variables, though expressed in the {Q;} coordinates (see Appendix A2). The coefficients a; and
b; are given by

Duu DuK DuL
a=2|D, Dy Dy |. 21
DuL DKL DLL
and
b. = 3 0 3 0 5 0 D,
1 =exp(=3u) o |exp (Su D,, +ﬁDuK+L w\7z ) (22)
7} d o0 (D
b, = exp (—%u) o [exp (%u) DuK] + 0_KDKK +L2a (L—';L> , (23)
b = 3\ 0 3.) D 0 D. +[2 0 (Du 2
s=exp(—3u) - |exp (5U) Dy | + oD + L5 | o5 - (24)

Following the results of Appendix A, the 3-D SDE associated with the Fokker-Planck equation (20), in the
form shown by (12), has coefficients b given by expressions (22)-(24), and the matrix ¢ calculated from the
decomposition of a in (21) according to (3). The reflection vector y will be addressed in section 2.3, together
with the boundary conditions.
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Figure 2. (top) An example computational domain in the

The 3-D diffusion tensor DQin in the {u, K, L} coor-
dinates needs additional specification. Among

its six independent components, the radial diffu-
sion coefficient D;; may be provided by empirical
models [e.g., Brautigam and Albert, 2000; Ozeke

et al., 2012] or calculated using global MHD sim-
ulations [e.g., Fei et al., 2006; Tu et al., 2012]. The
off-diagonal terms D, and Dy, are related to
drift-shell splitting and Shabansky-type orbits [e.g.,
Shabansky, 1971; Ukhorskiy et al., 2011; O'Brien,
2014]; and since they are largely unavailable to
date, we use zero value for them in this paper.
The remaining components D, D, and Dy are
related to energy and pitch angle scattering of the
electrons, and they can be transformed from the
more commonly computed diffusion coefficients
in the equatorial pitch angle (a,) and momen-
tum (p) coordinates, by a transformation like (18).
Written explicitly, they are

u o oK

Duu DuK dag dp Daoao Daop dag  dag

oK oK du oK

Dy D — — D,, D = =

uK ~KK dag dp agp pp op op
(25)

The partial derivatives on the right-hand side of
equation (25) should be regarded as functions of
u, K, and L and are field geometry dependent. For
a dipole magnetic field, these derivatives can be
evaluated using published formulae [e.g., Schulz,

u-K-L space in a dipole magnetic field, defined by E from 1991]. We note that 9K/dp is always zero, even

0.2 to 5.0 MeV, «; from bouvce.loss cone to 90°, and L from in general magnetic fields, as long as the field is

2.0 to 6.6. (bottom) The projections in the u-K plane of the lowl . d b iod d

colored contours in Figure 2 (top), labeled by their L values. slowly varying (compared to a bounce period) an
the particles experience no external force other

than the magnetic force [Roederer, 1970].

2.3. Computational Domain and Boundary Conditions

The ability to deal with complicated boundary geometries gives the SDE method advantages in solving the
electron Fokker-Planck equation in adiabatic invariant coordinates. In this paper, we demonstrate the SDE
method by solving the Fokker-Planck equation (20) in a dipole magnetic field. The computational domain
is determined by selecting a range of electron kinetic energy E, usually from a few hundred keV to several
MeV, a, from 90° to the local bounce loss cone angle, and a range of L. Using dipole field geometry, these
boundaries are transformed into the u-K-L space and are illustrated in Figure 2. Figure 2 (top) shows a 3-D
view of the computational domain, a skewed hexahedron, with colored contours at four fixed L values. Vis-
ible on the left- and right-hand side of the hexahedron are the curved surfaces of constant minimum and
maximum energies, which have the same shape due to the dipole field geometry. The front surface is the
plane of the K = 0 boundary corresponding to a, = 90°. The top surface is the upper L plane. The maximum
K surface (corresponding to dipole bounce loss cone angles) and the lower L plane are not visible from this
point of view. Figure 2 (bottom) shows the projection of the colored constant L contours in the u-K plane. As
L increases, the maximum K value increases as a result of the diminishing loss cone, and the contour moves
as a whole toward the larger u region.

Boundary conditions are assigned as follows. Dirichlet boundary conditions are specified on the surfaces
of constant maximum energy (E.,), constant minimum energy (E,;,), maximum L (L,....), minimum L (L ;).
and loss cone K (K., ). In particular, we assume negligible electron flux at the maximum energy and the
loss cone; therefore, the E ., and K., boundary values are zero. In other words, It6 processes are lost upon
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reaching the E_, or K., boundaries. These boundary conditions are apparent from the nature of the

diffusion problem, though the loss cone could be nonempty in the strong diffusion limit.

It is, however, not so apparent what form the boundary condition takes for the K = 0 boundary. To answer
this question, we examine the Fokker-Planck equation in light of the variational theory of partial differential
equations (PDEs). Starting from equation (17) and assuming that the spatial and temporal variables are sep-
arable, i.e,, f(t, Q) = ¥,(0®,(Q)) with n indexing the nth eigenmode, equation (17) can be separated into
(with no summation over repeated n in (26), (27), and (29))

dv,
o =-1,9,, (26)
and
9_(ep il + 4,G®, =0 (27)
aQi QiQ; aoj n n—

where 4, is the eigenvalue (physically, the temporal decay rate of the nth eigenmode). For each n,
equation (27) is the Euler-Lagrange equation of the functional

I[P,] = /F(‘Dn,;, D,,Q)dQ,dQ,dQ;, (28)
D
in which @, ; = 0®,,/0Q;, and the integrand function F is
1 2
F(@®,,®,,Q)=G (DQinCI)n’,tbn = Eancbn) . (29)

Whereas , and hence ®@,,, are often held fixed on the domain boundaries, they are free to change on the
Q, = 0 boundary. As a result, to make the functional Z[®,] stationary against variations 6®,,, in addition to
the Euler-Lagrange equation, we must also require the condition [e.g., Mathews and Walker, 1970]

oF

=0. 30
0, (30)

Q=0

Applied to (29), equation (30) then gives a Neumann boundary condition, written explicitly in terms of f and
{u,K,L},
of of of
Dy— +Dyy— + Dy — =0. 31

< uk 5, T Preok KLaL)‘K:O €1))
In the SDE language, this boundary condition indicates that, on the K = 0 boundary, the stochastic pro-
cesses are reflected locally about the unit vector y(§) « (D, Dy, Dg,)T. From another point of view, the
left-hand side of (31) is just the negative of the K component of the PSD diffusive flux (in a curvilinear coor-
dinate system). Therefore, the physical meaning of (31) is that the PSD is not allowed to flow across the K = 0
surface, which is natural since the region of “negative K" is physically meaningless. This conclusion confirms
the criteria of adjoint operators discussed in Appendix A2 (equations (A25) and (A26)).

Neumann-type boundaries require that the diffusion tensor must be nondegenerate in the direction of y on
0,D, which means the following quadratic form inequality must always hold [Freidlin, 1985]

7'(©at. o)y >0, &e€d,D. (32)

For the K = 0 boundary with boundary condition (31) to be nondegenerate, Appendix B gives proof that
the sufficient and necessary condition is Dy, > 0 on the boundary. However, by Taylor expanding magnetic
intensity along a field line about its minimum in terms of arc length, it can be proved that dK/da, vanishes
at K = 0 even in realistic magnetic fields. Since 0K /dp is zero too, the transformation matrix in (25) is singular
atK = 0, and the transformed D, and Dy, are both zero there. This is an artifact of calculating the u-K
diffusion coefficients from the a,-p coefficients. To circumvent this artifact, we invoke small but nonzero
bounce-resonance effects in the equatorial plane (as argued physically by Roberts [1969]) to give a nonzero
Dyk- Then, with zero Dy, the boundary condition (31) reduces to

of

L — 33
Kl o (33)
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and the reflection vector y is now simply (0, 1,0)7, i.e., the normal to the K = 0 boundary. The Salammbo
code [Beutier and Boscher, 1995] used (without explanation) the Neumann boundary condition df/dJ, = 0
atJ, = 0, which is equivalent to (33). Lastly, we emphasize that the variational method of determining the
Neumann boundary condition and the discussion of the nondegeneracy condition are general; they apply
to the Fokker-Planck equation in any other coordinate variables.

2.4. Numerical Implementation and Validation

Implementation of the SDE method starts from numerically integrating the SDE (12) in time. In the inte-
rior of the domain, we use the Euler-Maruyama scheme [Kloeden and Platen, 1992] as a time discrete
approximation of the SDE:

X, .1 =X, +b(t—5s,,X)As +o(t—s,,X,)AW,, (34)

where the equidistant time step As = t/N = s, , — s, with N the total number of steps and X, is the
approximation of Xi at time s,,. The matrix ¢ is calculated from (3) by Cholesky decomposition of a, and the
result is a lower triangular matrix. The increment of the Wiener process AW, is generated by

N,
AW, = /s, 1 —s,| N5 |, (35)
N3

where N;, NV,, and W; are three standard Gaussian random numbers each with zero mean and unit vari-
ance, which are transformed from three independent uniform deviations via the Box-Muller algorithm
[Press et al., 1992]. The uniform deviations are generated by the Dynamic Creator of Mersenne Twisters
[Matsumoto and Nishimura, 1998, 2000], a fast multiple-stream pseudorandom number generator based on
Mersenne primes, to ensure their mutual statistical independence. For evaluation of functional expectations
like ours, where only the statistical distribution of random walks matters but not their individual paths, the
convergence of the Euler-Maruyama scheme is of order 1.0, meaning that the mean error of the scheme is
proportional to the first power of As [Kloeden and Platen, 1992].

Stochastic paths are nowhere differentiable. Therefore, integration of (34) only provides an approximation
to the stochastic path at the time discretization steps s,,. An approximation of the entire path over the con-
tinuous time interval 0 < s < tis obtained by linear interpolations between X, and X,, , ;, i.e., connecting
them by straight line segments. On Dirichlet-type boundaries, the stopping position of an 1t6 process is
then determined by the intersection between the boundary and this linear-interpolated path. The accu-
racy of this stopping strategy is of order 0.5 [Gobet, 2001]. Sophisticated order 1.0 schemes are also available
[e.g., Gobet, 2001], but their implementations often require much more complicated computation near the
boundary. On the Neumann-type boundary, we use the Symmetrized Euler Scheme (order 1.0) [Bossy et al.,
2004] to reflect the It6 processes.

The functional expectation E[F'¢] is evaluated by the arithmetic mean of the functional values obtained
from various stochastic paths. In practice, only a finite number of td processes can be simulated, which
introduces statistical fluctuations to the result. Consequently, the error of the SDE method comes from two
parts: one is the systematic error intrinsic to the numerical schemes, which can be directly reduced by using
smaller step size (but above the round-off error limit); the other is the statistical error from the finite number
of simulations, which is proportional to 1/\/1: with sufficiently large total number of simulations I', and has
zero expectation. For the systematic error, schemes of higher order than Euler can be adopted to improve
the convergence, but with a penalty of more intricate computations; and for the statistical error, variance
reduction techniques, which use cleverer but more expensive ways to estimate expectation than the arith-
metic mean, are possible mitigations [Kloeden and Platen, 1992]. Nonetheless, with the current schemes,
our code is still able to give assessment of confidence intervals of the model solutions by statistical analy-
sis of the simulations; or conversely, to make the model adaptive in the number of simulations to meet a
prescribed confidence interval.

The REM has been tested against known solutions for 1-D radial diffusion (by setting u-K diffusion coef-
ficients to zero) and for 2-D chorus wave diffusion (by setting the radial diffusion coefficient to zero). The
number of steps and number of simulations vary in these tests to balance accuracy versus computational
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Figure 3. The SDE solutions (discrete marks) and the analytic
solutions (solid curves) of equation (36) forn = 2,6,10 (see
text). The solid black line coincides with the initial condition.

effort. In general, they are in the order of 10°
and 10%, respectively. In the radial diffusion test,
we solve the steady state diffusion equation

20 Dy, of
0=1 J(L_zi (36)

with D, « L"forn = 2,6, 10, a linear initial
distribution of f fromOatL = 2to1atL = 9,
and fixed-value Dirichlet boundary conditions.
Figure 3 shows the comparison of the SDE
results with analytic solutions of equation (36).
For n = 2, equation (36) is degenerate, and the
solution remains the same as the initial condi-
tion, as shown in Figure 3 by the black straight
line. The SDE results are clearly in agreement
with the analytic solutions.

In the chorus wave diffusion test, we compare the SDE solutions with those from Albert and Young [2005],
using the same initial and boundary conditions and the same diffusion coefficients. Albert and Young [2005]
solved the a,-p electron Fokker-Planck equation at L = 4.5, with off-diagonal diffusion components, by a

Flux (arbitrary unit)
>

10
—4 ) ) ) )
10 0 20 40 60 80
Equatorial pitch angle
107

Flux (arbitrary unit)
>

0 20 40 60 80
Equatorial pitch angle

Figure 4. Comparisons between solutions from the SDE method

(solid lines) and the Albert and Young [2005] method (dashed

lines) for (top) 0.5 MeV and (bottom) 2.0 MeV electron fluxes

after t = 0.1 day (blue) and t = 1.0 day (red) diffusion. Solid

black lines show the initial condition.

finite-difference method with matrix diagonal-
ization. To compare, we reproduce the fluxes
for E = 0.5 MeV and E = 2.0 MeV electrons after
0.1 day and 1.0 day, with «, ranging from 6° to
88° with 2° spacing (see Figure 4). Statistical
variance is clearly observed in the 2.0 MeV and
1.0 day case, making the SDE solution fluctuate
around its mean value. Within numerical errors
associated with each of the methods, they yield
solutions in very good agreement.

3. Model Application to the October
2002 Storm

Motivated by observations of the PSD as a func-
tion of adiabatic invariants made using NASA’s
Polar satellite, the Los Alamos National Labora-
tory geostationary Earth orbit (GEO) satellites
and the Global Positioning System (GPS) con-
stellation [Chen et al., 2007; Koller et al., 2007],
we apply the REM to a simplified simulation of
the PSD increase at GPS orbit during a mod-
erate high-speed stream (HSS) storm with
minimum Dst ~ —70 nT from 15 October (Day
288) to 20 October (Day 293) 2002. Chen et

al. [2007] gave a thorough description of the
observational data during this storm. In that
work, for M = 2083 MeV/G and K = 0.03G'/?R,,
they concluded that during the recovery phase
of this storm chorus wave acceleration played
an essential role in replenishing the outer

belt and generating the PSD peak observable
at GEO.
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- T Figure 5 summarizes the initial condition and
g 107° : the outer L boundary condition in our simula-
% ' tion. To set up an initial 3-D PSD distribution,
% ! o © we fit the PSD data at a list of M values (167,
; 107 E 462, 1051, and 2083 MeV/G) and K values
@ ' (0.005,0.01, 0.03, 0.1, and 0.3 G'/2R;) in three
a : L groups, corresponding to GPS, GEO, and
g —M=1051,K =0.005 Polar orbits, respectively. Figure 5 (top) illus-
8107 M = 2083, K =0.005 | | ect .

@ — M=1051,K=03 trates the fitted initial PSD radial profile at the
% — M =2083,K=0.1 four pairs of M and K that we simulate. On the
o . v outer L boundary at geosynchronous distance
105 3 7 5 6 - 8 9 (L = 6), we simplify the observed PSD tempo-
L ral variations as exponential increases from the
- beginning to the end of the storm, as shown

in Figure 5 (bottom). On the inner L boundary
(L = 2), PSD is kept the same as its initial value
over time. To make the boundary conditions
consistent, the exponential increase is also car-
ried onto the E,;;, boundary in such a way that
the increase rate diminishes as L decreases from
6 to 2. Thus, on the E,;, boundary, at L = 6, the
increase is at the full rate; whereas at L = 2, the
PSD is unchanged.

-
o
&

®

-
oI

—M =1051, K=0.005
M = 2083, K = 0.005
—M=1051,K=0.3
—M =2083, K=0.1 1 During the storm, the Kp index varied only a
small amount about an average value of about
3; for simplicity, we fix Kp = 3 in assigning the
diffusion coefficients. D;; uses the Brautigam
Figure 5. (top) Initial condition and (bottom) the outer L bound- and Albert [2000] magnetic radial diffusion

ary condition used in the October 2002 HSS storm simulation. . M
In Figure 5 (top), markers represent satellite data at the begin- coefficient (henceforth denoted DLL[B and AJ),

ning of 15 October (Day 288) from GPS (L ~ 4), GEO (L = 6), and because in the outer belt it dominates over
Polar (L ~ 8). Marker colors identify the corresponding M and the electric field counterpart (Df, [B and A]).
K values to the fitted curves. The dashed line at L = 6 denotes Chorus wave diffusion coefficients in the
the location of the outer L boundary. In Figure 5 (bottom), GEO {u,K, L} coordinates are transformed from
observations are shown in colored dots. Simplified exponential the British Antarctic Survey (BAS) drift- and

increases are drawn as straight lines. . . .
bounce-averaged diffusion matrix, by the
method described in section 2.2 and assuming

dipole field geometry. The BAS diffusion matrix was calculated using the Pitch Angle and Energy Diffusion

of lons and Electrons code [Glauert and Horne, 2005] and plasma wave observations from the CRRES space-
craft [Meredith et al., 2001, 2003] as described in Varotsou et al. [2005]. Varotsou et al. [2005] considered the
effects of equatorial chorus, defined as chorus wave power within +15° of the magnetic equator. In this
paper we have included wave power up to +30° to include the effects of strong midlatitude chorus that is
observed on the dayside [Tsurutani and Smith, 1977; Meredith et al., 2001, 2012]. Further, we have extrap-
olated for energies between 3 and 4 MeV. Plots of the transformed chorus wave diffusion rates are shown
in Figure 6. Inward of geosynchronous orbit, the diffusion rates grow monotonically with L. In contrast to
the {a,, p} coordinates, where the off-diagonal term often changes sign, the transformed D values are all
negative throughout the entire L range of the BAS diffusion matrix for this Kp level.

L
o

—_
o

Phase-Space Density (c/MeV/cm)s

288 289 292 293

290 291
Day of Year 2002

Model simulations are performed to obtain PSD at four phase space positions at L = 4, with (M, K) val-
ues of (1051, 0.005), (2083, 0.005), (1051, 0.3), and (2083, 0.1). In dipole field, these phase space positions
correspond respectively to energies (in MeV) and «, values of (1.85,81.1°), (2.78,81.1°), (3.26, 37.6°), and
(3.47,54.4°). At each position, three independent simulations are carried out: one with radial diffusion only,
one with chorus wave diffusion only, and one with the two mechanisms combined. The results are given

in Figure 7.

In Figures 7a and 7b, where a4 values are near 90°, chorus waves have very little effect on the PSD variation,
as seen from the almost flat “chorus only” curves. This could also be appreciated from the close alignment
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Figure 6. Normalized u-K diffusion rates (day~") transformed from the BAS drift- and bounce-averaged chorus wave diffusion matrix at three L values. D, is
dimensionless since u is dimensionless. D, and Dy are normalized against K = 1 G'/2R,. The uniform blue color in each sign(D ) panel indicates negative
regions of D . Positive regions would have been red.

between the “radial only” and the “combined” curves. As argued in Horne et al. [2005] and Shprits [2009], this
is because energy diffusion by chorus waves is less effective at large pitch angles (i.e., ~80°). In Figures 7a
and 7b radial diffusion curves largely follow the observed data points. Thus, the equatorial PSD increases in
this HSS storm are consistent with mainly radial diffusion acting on the particles.
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Figure 7. Comparison of the simulated PSD temporal changes with GPS observations at L = 4. In each of the panels,
observed data are marked with black crosses. Black straight lines indicate the driving boundary conditions at L = 6 at
each specified M and K. Note that the ordinate scales are different in these panels.
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In Figures 7c and 7d, where a, values are in
the range of peak chorus wave effectiveness
(30°-60°, according to Horne et al. [2005]),
~&-radial only chorus wave effects are more significant.
~©-combined Nevertheless, chorus wave diffusion alone

is insufficient to explain the observed PSD
increases. Radial diffusion alone, which repro-
duces the mild increase of PSD (less than 1
order of magnitude) in the near-equatorial
cases, overestimates the observed increases
here. As a result, the PSD variations of the com-
bined diffusion are even more exaggerated.
Apart from the simplified inputs to this simula-

, M=1051MeV/G, K=0.3G"R
- E
x 10

o«

[e)]
T

PSD Contribution (c/MeV/cm)3
n =

o 2 56— % tion, we suggest two possible reasons for this
overestimation. First, D} [B and A] is derived for
Figure 8. Radial distributions of the PSD contribution for the equatorially bouncing electrons, whereas radial
solution at M = 1051 MeV/G, K = 0.3 G'/?Rg,and L =4att =5 diffusion rates caused by ULF waves are a,
days, from the radial-only (square) and the combined (circle) dependent. From the estimate given in Schulz

simulations. The contri.butions are bin.ned in L with bin size 0.4. and Lanzerotti [1974], it follows that the radial
The first and the last bins are cumulative; thus, the first marker i i X .
diffusion rate in the a, range of 35°-55° is

represents all contributions from L < 2.0, and the last represents .
all contributions from L > 6.0. The interior markers reside at the ~ ©nly about 0.2-0.4 times that at 90°. Therefore,
center of each bin and give the value in that bin. using D’L”L [B and A] will result in exaggerated

radial diffusion at small «, values. Second, L = 4

is likely on the edge of the plasmasphere for
this moderate storm, and electron loss from electromagnetic ion cyclotron (EMIC) waves and plasmaspheric
hiss waves are not included in our simulation. At this L, effects of magnetopause shadowing or drift-shell
splitting are expected to be negligible.

In addition to solving the diffusion equation, the SDE method also provides insight into the diffusion pro-
cess that is not easily obtained in other methods. Take, for example, the solutions at M = 1051 MeV/G,

K = 0.3 G'/2R,, and t = 5 days (Day 293 in Figure 7c), where solutions of radial-only and combined diffusions
are well separated. By recording the diffusion times of the stochastic processes, it suggests that the elec-
trons take about 1.2 days to diffuse from GEO to GPS orbit in our simulation. On the other hand, by binning
the stopping position distribution of the time backward stochastic processes, we are able to determine the
PSD contribution from different phase space regions to the solution; in other words, to determine a phase
space distribution of the energetic electron sources. In Figure 8, we illustrate these “source distributions” by
plotting radial profiles of the source PSD contribution in the radial-only and the combined simulations. The
radial profile in the chorus-only simulation is trivial, since it is simply a spike at L = 4.

As illustrated in the figure, at the end of the storm at GPS orbit, the majority of the PSD comes from the outer
L boundary in both simulations. Radial diffusion thus plays an indispensable role in energizing all these
electrons. However, the outer L boundary contributes about twice the amount of PSD in the combined sim-
ulation as in the radial-only simulation, demonstrating that with local acceleration turned on, the outer L
boundary becomes more efficient in providing source electrons. In a synergistic manner, more low-energy
electrons are accelerated by chorus waves while diffusing inward; these particles could not have been ener-
gized as much with radial diffusion only. A hump is clearly observed in the combined curve between L = 3.8
and 5.4, whereas the radial-only curve remains almost flat in this range. This difference indicates the regions
where chorus wave acceleration is most important for the electron population at L = 4. We note that, from
Figure 6, although chorus wave diffusions are stronger in larger L regions, their effect on the L = 4 solution
is nevertheless radially localized. This is due to both the length of diffusion time and the shape of the initial
PSD distribution.

4. Summary and Discussion

Stochastic differential equation (SDE) theory, which relates a diffusion problem to stochastic processes
and thereby facilitates solutions to the diffusion equation from functional expectations of the stochas-
tic processes, is presented in this work. Compared to finite-difference-based methods of solving diffusion
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equations, the SDE method has several advantages when applied to radiation belt simulations. First and
foremost, the SDE method does not need a numerical grid. This allows the method to deal with bound-

ary geometries with great complexity, which facilitates the use of electron adiabatic invariant coordinates.
Consequently, adiabatic variations are completely separated from nonadiabatic diffusion in the computa-
tions, and yet adiabatic losses due to the change of loss cone can still be easily modeled (as a time-varying
boundary). The absence of a grid also makes the method more efficient for obtaining solutions at a limited
number of phase space positions, which is often the case with spacecraft observations, since the method
only samples the phase space regions that contribute to the solutions. Even in the opposite situation, where
simulations are extended into larger regions, the method can be parallelized very efficiently to achieve the
necessary coverage. Second, the SDE method can solve fully multidimensional diffusion problems. Hence,
it provides a computational tool to assess diffusion effects of the electron Shabansky orbits and drift-shell
splitting, which manifest themselves in the M-L and K-L components of the diffusion tensor. Last but not
least, because solutions in the SDE method are obtained by summing over contributions from stochastic
processes and then taking the average, the method is very robust. In particular, it can tolerate ranges of PSD
of several orders of magnitude, and it never gives a negative PSD.

Based on SDE theory, we have formulated the SDE representation of the electron Fokker-Planck equation

in the adiabatic invariant coordinates {u, K, L}, where u = In(M). We have also mathematically clarified the
form of the Neumann boundary condition at K = 0 (or ¢y = 90°), which has often been simply imple-
mented as 9f /da, = O (this form is only correct when off-diagonal diffusion components are zero on the
boundary). A fully 3-D numerical code in adiabatic invariant coordinates (named REM) has been constructed
and successfully tested against known solutions of 1-D radial diffusion and 2-D chorus wave diffusion with
off-diagonal components.

The REM was then applied to simulating with simplified conditions the PSD increase observed at GPS loca-
tions during the October 2002 high-speed stream storm. It has been argued in Chen et al. [2007] that chorus
wave acceleration was active during this storm and was responsible for the PSD peak observed on geosyn-
chronous orbit. For near-equatorial electrons (Figures 7a and 7b), the model gives reasonably accurate
simulations of the observed GPS increase, consistent with radial diffusion from the outer L boundary and
weak chorus wave diffusion at large equatorial pitch angles. At smaller equatorial pitch angles (Figures 7¢
and 7d) radial diffusion, and consequently the combined diffusion, overestimates the increase of PSD at GPS
locations. Possible explanations could be the neglect of equatorial pitch angle dependence in the radial
diffusion coefficients, or the neglect of electron loss from pitch angle scattering by hiss and EMIC waves in
the model.

The SDE method allows us to extract information such as the electron diffusion time and PSD source dis-
tribution, by analyzing the statistics of the stochastic processes. Our model reveals the intrinsic differences
between radial and combined diffusion from a new point of view, by plotting the radial distribution of the
source PSD. In the case exemplified in this work, although both diffusion scenarios have the majority of the
PSD coming from the outer boundary, with chorus waves present the efficiency of the outer boundary in
providing seed electron populations is increased by a factor of 2. Chorus waves also generate a peak to the
PSD source distribution well within the outer radiation belt, indicating the L ranges in which they are of
particular interest.

In addition to its use as an independent model, the REM in the {u, K} coordinates can also be coupled with
MHD-particle transport simulations [e.g., Elkington et al., 2002, 2004] to construct 4-D models that incor-
porate both diffusive and nondiffusive radiation belt dynamics, including both cyclotron frequency and
drift frequency wave-particle interactions. With the unparalleled coverage and resolution from NASA’s Van
Allen Probes mission, the REM is a powerful and promising tool for investigating and simulating physical
processes in the radiation belts.

Appendix A: Mathematical Formulation of the Stochastic Differential
Equation Method

In this appendix we present enough of the theory of stochastic differential equations (SDEs) to enable us to
apply the SDE method to solution of the radiation belt diffusion equations. For simplicity, these formulations
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are initially developed in Cartesian coordinates, and generalization into curvilinear coordinates is outlined at
the end of section A2.

A1. The Wiener Process and It6 Stochastic Calculus

Just as calculus deals with differentials, integrals, and differential equations, stochastic calculus deals with
these objects, but with stochastic processes included. A stochastic process, X,, is a time sequence that takes
random values {x,, X;,X,, ...} at time instances 0 < t, < t; < t, <, .... Throughout this article, we will assign
capital letters to stochastic processes and use the corresponding lowercase letter to denote their values.

For simplicity, let us start from a 1-D time-homogeneous SDE of the form
dX,(@) = b (X(@)) dt + 6 (X,(®)) dW, (), (A1)

in which X;(®) is the unknown stochastic process and w is one sample in the sample space Q. For exam-
ple, if Q is a set of pollen grains undergoing random motions, @ refers to one grain among them, and

the stochastic process X, (w) is a time sequence of the spatial positions of that grain. The terminology
“time-homogeneous” means the coefficients b(X,) and o(X;) depend only on the value of the stochastic pro-
cess, but not explicitly on t. W (w) is a 1-D stochastic process called the Wiener process of @. The Wiener
process W, is a Gaussian random process with initial value W,, = 0 (with probability 1) and independent
increments dW, = W,_ 4 — W,, such that

EW,]=0,  E[W]=t, (A2)

where the symbol E denotes expectation over Q [Fksendal, 1998; Kloeden and Platen, 1992]. For different »
values, the corresponding Wiener processes W,(w) must be statistically independent.

The stochastic process X;(w) can be regarded as a mapping from the variable set {t, w} to a real number x.
For each fixed t, the mapping from w to X;(w) defines a random variable; on the other hand, fixing w we
can consider X,(w) as a function of t, which is called a path of X,(w). It can be proved that such a function is
continuous in t everywhere with probability 1, but nowhere differentiable [@ksendal, 1998; Gardiner, 2004].
With these concepts in mind, for brevity we will henceforth suppress the variable @ except when that results
in ambiguity.

The solution of the 1-D SDE (A1) is formally represented by

t t
X, =Xy + / b(X,)ds + / o(X,)dW,. (A3)
0 0

On the right-hand side of equation (A3), the first integral is a Riemann integral over time, i.e,, its value
converges as we repeatedly divide the integration interval, no matter where we choose to evaluate the
integrand within each subinterval. The second integral is a stochastic integral. In contrast to Riemann
integral, its value does depend on the choices of s within subintervals because of the nondifferentiablity
of W,; this implies that dW; has (with probability 1) infinite variation on every subinterval [Jksendal, 1998;
Freidlin, 1985]. A widely used and well-studied choice is to evaluate the integrand at the beginning of every
subinterval (so its value does not depend on the future), and this defines the so-called It6 integral

t
X)dW, = X, -
/Oo(s) . Za< w;, .

n=0

max(s, . ; — S,) = O. (A4)

n+1

Other choices of s define different types of stochastic integral [e.g., Kloeden and Platen, 1992]. We use the It6
integral because of its close relation to diffusion processes [Freidlin, 1985].

Aside from linearity, the It integral has the particular properties that [Jksendal, 1998; Kloeden and Platen,
1992], for 0 < S < T and arbitrary (measurable) functions of time and stochastic processes g(t, w) and h(t, w),

[/ gdW]—O (AS5)
T T T
E[/ gth/ der] =/ E[gh]dt. (A6)
S S S
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Property (A6) reveals that the differential (dW,)? is of the same infinitesimal order as dt in the mean square
sense. Combining (A5) and (A6), we may also write

T T T
]E[/ gdW,,»/ de,j] =5ij/ E[gh]dt, (A7)
S S S

in which §; is the Kronecker delta. When i # j, W,; and W,; are independent Wiener processes so that the
left-hand side of (A7) splits to the product of two expectations of each individual 1t6 integral, both equal to
zero following (A5). In the mean square sense, we symbolically denote this dW,dW,; = §;dt.

In multiple dimensions, the SDE (A1) becomes a vector equation
dX, = b(X,)dt + 6(X,)dW,, (A8)

where X, is an n-D stochastic process, b is an n-D vector, 6 is an nxm matrix, and W, is an m-D Wiener process
with each of its components an independent 1-D Wiener process.

Now let us consider a function f(x), with continuous second-order partial derivatives, acting on X,. Property
(A7) allows differentiation of f(X,) in the mean square sense, with the aid of the SDE (A8), which yields

of 1 0%
i i

of 1 0°f
= —(bdt+o;dW,) + - ——
axi( jdt+oydWy) + 3 0X,0X;

afkcrjkdt, (A9)

where we have employed the summation convention. Collecting infinitesimals of the same order and
defining the differential operator

1 02 0
) = +a, f 02t Al
L1(x) ZGU(X) oxx, (X) + b;(%) ox, (%), (A10)
with
a; = oyoy = (66");, (A11)

equation (A9) gives rise to the following It6 formula [e.g., @ksendal, 1998], which describes the SDE of the
new stochastic process f(X,):

df(X,) = LF(X,)dt + aij(xr)%f(xr)dw,j. (A12)

Note that a matrix a given by (A11) must be symmetric and semipositive definite (meaning all its eigenval-

ues are nonnegative and so is its determinant).

A2. Relation Between the Stochastic Differential Equation and the Fokker-Planck Equation
Having introduced stochastic calculus, we establish in this subsection the relation between the SDE
(A8) and the corresponding Fokker-Planck equation through manipulations of the 1t6 formula (A12)
and the differential operator L. Subsequently, this relation gives a way to obtain solutions of the
Fokker-Planck equation.

Integration of the It6 formula (A12) over time yields
t t 6f
f(X,) = (&) + / LF(X,)ds + / oy (X)—dW,, (A13)
0 0 0x;

in which &€ = x, marks the initial position of the 1to process. Taking expectation values of both sides of (A13)
and using property (A5) of the It6 integral gives

t
ES[F(Xp)] = f(&) + / ES[LF(X,)]ds, (A14)
0

where the superscript of E denotes the common initial position of the stochastic processes. If we let t
approach 0 (from above), the integrand in equation (A14) can be approximated by its value at s = 0 and X;

ZHENG ET AL.

©2014. American Geophysical Union. All Rights Reserved. 7629



@AG U Journal of Geophysical Research: Space Physics 10.1002/2014JA020127

takes the nonrandom initial value &. In this situation, E can be removed from the integrand, and (A14) then
gives another expression of L in terms of the limit

B~ 1® 19
=10,

LfE) = lim

With this interpretation of £ and regarding IES[f(X;)] as a function of &, the integrand in equation (A14) can
be transformed as follows:
ES [EXs[F(X)]] — E4[f(X,)]
r
- EE [EX [f(X,)]] — ES[f(X,)]
rl0 r
= LEE[F(X,)], (A16)

g —
Ec[Lf(X,)] = |’II'I(’)1

where the interchange of “X,” and “X,” is permissible due to the history-independent (Markovian) property
of the stochastic process described by our SDE [Jksendal, 1998]. Inserting (A16) into (A14) and taking a time
derivative, we have

%]Eé"[f(x,)] = LES[f(X,)]. (A17)

Denoting E5[f(X,)] as u(t, €), we have thus derived the PDE that the functional expectation of the stochastic
processes satisfies. Together with the initial condition, they form an initial value problem:

9 —
Eu(t é) - £U(t, g)’ (A1 8)

u(0, &) = E5[f(&)] = f(&). (A19)
Equation (A18) is the so-called Kolmogorov backward equation associated with the Itd process (A8).

From another point of view, consider the transition probability density p,(x, y) of the It6 process X,, i.e., the
probability density of a stochastic process traveling from x to y in time period t [Jksendal, 1998]. By the
definition of p,, the expectation E*[f(X,)] can be calculated from

ES[F(X)] = / f)p,(&, n)dn, (A20)
D

where the integration is over the domain D in which f is defined. In light of this, the transition probability
representation of relation (A16) reveals the useful property of £

/D p(& ML, fm)ydn = L, /D p(& mf(m)dn, (A21)

where the different subscripts of £ indicate the different variables it is operating on.

Applying (A20) and (A21) to the Kolmogorov backward equation (A17) gives the integral equation

[ Sp@mdn= [ e e, fovan (n22)
D D

To further transform, it is desirable to introduce the adjoint operator L* of L [Jksendal, 1998; Arfken and
Weber, 1995], defined as

£900= 2 [0,00000] - = 5,009 (A23)
2 ox;ox; H Y ox; '

For diffusion processes, a; and b; are not independent but are related by b = %V - a as components of the

rank two and one tensors, respectively [e.g., Haerendel, 1968]. Even in more general cases, we can always
split b; into a diffusive part and an advective part, such that

100,7
b= -— +h,
" 20 *

1

(A24)
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Using this relation, we have, for arbitrary functions u and v with continuous second-order partial derivatives,
the Green’s identity for these operators

veu—ucty =2 <1va du %Uayﬂ +uvhi)

ox; \ 2 Yox x;
= i(uF!’ — VF! + uvh)), (A25)
0X,- 1 1
in which F/' = —%a,-jau/axj and FY = —%a,-jav/axj are the i components of the diffusive fluxes of uand v,
respectively. Then it follows that under natural boundary conditions, the condition of adjoint operators
/ vLudx = / uL*vdx (A26)
D D

is satisfied because either the functions u and v, or their crossing-boundary fluxes, vanish on the boundary
oD. The latter is indeed the case in the radiation belt diffusion equation in adiabatic invariant coordinates.

Under the assumption that f satisfies the aforementioned conditions of u and v, applying (A26) to the
right-hand side of (A22) immediately gives

/ f(n)gtpr(é,n)dn= / f)L, p (€, m)dn. (A27)
D D

Since f is arbitrary, we conclude that the transition probability density p,(€, 1), as a function of t and n, is a
solution of the PDE

9 R
P& W = Lip &) (A28)

This equation is called the Kolmogorov forward equation, or Fokker-Planck equation. Given knowledge of
the initial distribution function ¢(0, &) of some diffusion process, the distribution function at a later time t is
calculated from

i) = /D $(0. (& e, (A29)

Applying this integration to both sides of (A28) then yields the Fokker-Planck equation in a more
familiar form

9
S P = Lo m). (A30)

Next, we show that ¢(t, n) also satisfies the Kolmogorov backward equation. Looking again at the
integral equation (A27), taking a particular f() = ¢(0,n), and reversing the derivations from (A27)
back to (A17) gives

LES9(0X)] = LG, X)) (A31)

To see the meaning of E4[¢(0, X,)], comparison between equations (A20) and (A29) suggests that we con-
struct a time backward stochastic process Z, (r decreasing from t to 0) with transition probability density
(M, &) = p,(& n). Then, following (A29), ¢(t, n) is represented by

i) = / (0, E)my(n. EUE = E[$(0,Zo)]. (A32)
D

in which the time interval t is indicated in the superscript of E. However, since t only appears as a time inter-
val, it actually does not matter whether time is increasing or decreasing in the stochastic process. Therefore,
going from 1 to & while time is decreasing is identical to going from 1 to & while time is increasing. This
amounts to saying that n,(n, §) = p;(n, &), and Z, = X,. As a result,

E[(0, X,)1 = E*¥[¢(0, Zo)] = (1, &). (A33)

Therefore, the distribution function ¢(t, ) is also a solution of the Kolmogorov backward equation

2 bl = Lyt (A34)

ZHENG ET AL.

©2014. American Geophysical Union. All Rights Reserved. 7631



@AG U Journal of Geophysical Research: Space Physics 10.1002/2014JA020127

as claimed. This ensures that given a Fokker-Planck equation of form (A30), we can always write it in the
Kolmogorov backward equation form (A34), and from the latter, we can determine the corresponding SDE
of the time backward stochastic process of form (A8) and solve for ¢(t, 1) with the expectation in (A33).

We now outline the results (without derivations) that allow generalization of this conclusion to curvilinear
coordinates. Transforming from Cartesian coordinates 1 to curvilinear coordinates ¢, the distribution func-
tion transforms to y (t,8) = ¢(t, n(&))G(n; §), where G is the transformation Jacobian. Equations (A30) and
(A34) transform to

0 " ’

20,0 = L9(0.0), (A34)

with the coefficients in EZ and L, changed accordingly, and the corresponding expectation
representation is

E4[¢p(0, X,)] = (t, ©), (A33)

where it is the stochastic process in £ coordinates. Note that although the function in the Fokker-Planck
equation (A30’) becomes the new distribution function y, the function in the Kolmogorov backward
equation (A34’) and the expectation representation (A33’) remains ¢, the distribution function with respect
to Cartesian coordinates, except for a change of variables. In mechanics, the role of Cartesian coordinates
in phase space is played by canonical variables, and transformations between canonical variables have
unit Jacobian determinant [e.g., Landau and Lifshitz, 1976]. Hence, there is but one distribution function
for all sets of canonical variables. Consequently, regardless of what distribution function we start with in
(A30’), we always end up with the distribution function with respect to canonical variables when writing
(A34’) and (A33'). Given that (A34) and (A33) have the same form as (A34’) and (A33’), we thus no longer
distinguish between Cartesian and curvilinear coordinates in applying the SDE method.

A3. Solution of General Diffusion Equations: The Feynman-Kac Formula

In this subsection we consider two generalizations of the conclusions in the previous subsection. First, in
time-inhomogeneous diffusion processes, the coefficients a;(t, x), and b;(t, x) depend on both spatial coor-
dinates and time t. To construct the operator £ with explicit time dependence from the It6 formula, the
strategy is to treat time as one extra “stochastic” variable and construct a new It6 process in the extended
space t ® R" as [Freidlin, 1985]

Ss<t_s>, 0<s<t, (A35)

and the corresponding SDE is

-1 Q-vv-- 0
dv, = <b(r—s,xs)>ds+ <6(t—S,XS) > daw;

= b(Y,)ds + &(Y,)dW,. (A36)

Equation (A36) shows that Y is a time-homogeneous [t6 process, and thus, all our previous conclusions
apply. Repeating those procedures, it is straightforward to verify that the operators £ and £* associated with
Y, are indeed the time-dependent operators we wanted to construct. On the other hand, the projection of
Y, onto the R” space is a time-inhomogeneous 1td process

dX!=b(t-sX)ds+o(t—sX)dW,, 0<s<t (A37)

Consequently, we can say that the time-dependent operators £ and L* are associated with this
time-inhomogeneous It6 process, and the expectation representation from the previous subsection should
have the SDE (A8) replaced by (A37).

Second, a general diffusion equation (in Kolmogorov backward equation form) might contain a source (loss)
term characterized by c(t, ), such as

L u(t,8) = Lu(t,§) + (6, Hu(t. ) (A38)
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Defining the operator
L=L+ctx), (A39)

it can be verified that, to generate £ instead of £ in the Ito formula (A12), we only need to replace the func-
tion f therein with a functional F[c], regarded as a function of t and x for given ¢, such that [Freidlin, 1985;
@ksendal, 1998]

t
F(t,x) = f(x) exp (/ c(t—s, x)ds) . (A40)
0

Then, by the same derivations as for the Kolmogorov backward equation (A18), the solution of the general
diffusion equation (A38) with initial condition (A19) is

t
u@@:Eﬂﬁﬁmm</}a—g&w0], (A41)
0

in which the symbol X{ is a shorthand of X _ ,. This formula, known as the Feynman-Kac formula, forms the
starting point for our SDE formulation of radiation belt diffusion in section 2.

Appendix B: Nondegeneracy Condition for Neumann Boundary Condition (31)

For convenience of discussion, we will use numeric indices {1, 2, 3}, instead of {u, K, L}, as the subscripts of
components in this appendix. The unnormalized reflection vector

¥ = (Dy3,D5,,D3))" (B1)

coincides with the second column of the diffusion tensor D. Because D is symmetric, the quadratic form of
D with its own column vector is equal to a diagonal component of the matrix product D*. In this case, it is

7T D? = (D3)22- (B2)

A real symmetric matrix can be diagonalized via orthogonal transformations, i.e, D = PTAP, where A is
a real diagonal matrix of D’s eigenvalues, and P is an orthogonal matrix composed of D's orthogonalized
eigenvectors. Consequently,

D3 = PTA%P. (B3)

Therefore, the diagonal components of D and D? can be expressed respectively by

D; = APy, (B4)
and
(D%, = AJP2, (B5)

where A, is the kth diagonal component of A, i.e., the kth eigenvalue of D. Diffusion processes require that
the diffusion tensor must be at least semipositive definite (this can be seen from equation (A11) and the dis-
cussion thereafter), which implies A, must be nonnegative. Hence, from equations (B4) and (B5), it follows
that there is always (D?), > 0; and the only situation for (D%); = 0 is when at least either P2 or A, is zero for
each k, which is also the situation for D; = 0. In other words, D; > 0 is a sufficient and necessary condition
for (D3),-,- > 0. Relating this conclusion to equation (B2), equation (21), and the nondegeneracy requirement
of Neumann boundary conditions (32), we see that the sufficient and necessary condition for the boundary
condition (31) to be nondegenerate is D,,, or Dy, being greater than zero on the boundary.
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