
 
© Springer Science+Business Media Dordrecht 2014 

 
This version available http://nora.nerc.ac.uk/507986/ 
 

 
NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  

 
 
This document is the author’s final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. Some differences between this and the publisher’s version 
remain. You are advised to consult the publisher’s version if you wish 
to cite from this article. 
 
The final publication is available at Springer via 
http://dx.doi.org/10.1007/s11269-014-0646-7 
 
 
 
 
 

  
 
 
Article (refereed) - postprint 
 

 

 

Tzoraki, O.; Cooper, D.; Dörflinger, G.; Panagos, P. 2014. A new MONERIS 
in-stream retention module to account nutrient budget of a temporary 
river in Cyprus. Water Resources Management, 28 (10). 2917-2935. 
10.1007/s11269-014-0646-7  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contact CEH NORA team at  

noraceh@ceh.ac.uk 

 

 

 
The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

http://nora.nerc.ac.uk/507986/
http://nora.nerc.ac.uk/policies.html#access
http://dx.doi.org/10.1007/s11269-014-0646-7
http://dx.doi.org/10.1007/s11269-014-0646-7
mailto:nora@ceh.ac.uk


1 

Nutrient budget of a temporary river in Cyprus 

Ourania A. Tzoraki, PhD 

David M Cooper, Ph.D. 

Gerald Dörflinger 

Panos Panagos 

University of Aegean 

Lesvos, Greece 

Manuscript

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/warm/download.aspx?id=83295&guid=bde5363a-0df7-443c-bb29-2190329bce96&scheme=1
http://www.editorialmanager.com/warm/viewRCResults.aspx?pdf=1&docID=5356&rev=0&fileID=83295&msid={BFDAEB03-4DC5-4820-B9FA-D2C766285D0E}


2 

1. Introduction

The sustainability of aquatic and terrestrial ecosystems is threatened by pressures due 

to population increase, land use change and the irreversible effects of Climate Change 

(CC). Particularly in semiarid areas where there is heavy and conflicting demand for 

water, water stress is a key issue for sustainable development. Water scarcity is 

addressed through the reservoir construction as a common solution to the pressure 

from river and groundwater abstraction (Mimikou, Baltas et al. 2000; Krol, de Vries 

et al. 2011). Reservoirs provide water for human supply, irrigation, industrial water 

needs, fishing and recreational purposes. Nevertheless they may also generate water 

quality problems. Cyanotoxins released by cyanobacteria (CB) blooms in freshwater 

reservoirs have long been a serious problem, affecting a variety of organisms 

including humans. High nutrient fluxes into freshwater lakes and reservoirs stimulate 

cyanobacteria (CB) in suitable weather conditions. Although nutrient loadings have 

changed in recent decades due to improvements in wastewater treatment and the 

efficiency of fertilizer usage, excessive N and P loads still pose a serious threat to the 

freshwater environment. Nutrient runoff from intensively cultivated areas, forest 

burning, industrial and municipal sewage effluents have been identified in several 

studies as a cause of  deterioration in water quality (Perrin and Tournoud 2009) and 

ecology (Smil 2001; Camargo and Alonso 2006) and increased input loads to lakes 

and reservoirs. Even waters classified as mesotrophic or oligotrophic, with a Redfield 

ratio of 16N:1P, can be considered as eutrophic based on the dominance of CBs 

(Galvão, Reis et al. 2008) and many recent blooms are attributed to increasing 

nutrient concentrations (Winter, Desellas et al. 2011). 

Once a eutrophication risk by anthropogenic nutrient enrichment has been identified, 

management strategies should consider the long-term control of the relationship 
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between nutrient loading and freshwater runoff, which regulates nutrient delivery and 

residence time (Grizzetti, Bouraoui et al. 2008). For reservoirs fed by intermittent 

flow there may be periods when there is a complete absence of freshwater input, but 

the presence of point sources continues to influence water quality. A river is 

characterized as intermittent (or temporary) if it ceases to flow every year or at least 

twice every five years ((Tzoraki and Nikolaidis 2007). Such rivers drain large areas 

not only in the Mediterranean region but also in other arid and semi-arid areas 

covering approximately a third of the world’s surface (Thornes, 1977). The extent of 

temporary rivers is increasing, as many formerly perennial rivers are becoming 

temporary because of increasing water demand, particularly for irrigation (Tzoraki 

and Nikolaidis 2007)(Tzoraki and Nikolaidis, 2007). The nature of the nutrient budget 

for temporary rivers differs from that for permanent rivers because of the restricted 

nature of flow, the lack of adequate dilution, and weather conditions which are 

conducive to the development of algal blooms. We analyse the nutrient budget of 

three tributaries of a temporary river in Cyprus, the Kouris, with the aid of the 

MONERIS model 

The MONERIS model (MOdelling Nutrient Emissions in River Systems; (Venohr, 

Hirt et al. 2011)) has been extensively used to estimate river nutrients losses in many 

parts of the world. The model is relatively simple, while producing acceptable results 

in comparison to other models such as SWAT (Arnold, Srinivasan et al. 1998)(Arnold  

et al., 1998) or HSPF (Bicknell, Imhoff et al. 2001) which require data with high 

spatial resolution and temporal frequency. MONERIS has been applied to numerous 

European rivers including the Weser (Hirt, Venohr et al. 2008; Hirt, Kreins et al. 

2012), Oder and Vistula (Kowalkowski, Pastuszak et al. 2012), Axios in Greece 
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(Nikolaidis, Karageorgis et al. 2009), alpine catchments (Zessner, Kovacs et al. 2011), 

rivers in Portugal (Caille, Riera et al. 2012).  

While MONERIS is widely used in temperate latitudes, applications in intermittent 

flow rural catchments are limited. We modify MONERIS for application in semi-arid 

regions, notably to account for the runoff dynamics of intermittent flow rivers. In-

stream nutrient retention is estimated using a 1-dimensional advection - dispersion 

model rather than the general mass balance equation for mixed reactors. Metrics for 

characterizing the aquatic regime of intermittent rivers were selected to establish the 

limits of MONERIS application in intermittent river environments. 

2. Study area  

The Kouris catchment (360 km
2
) is mountainous with elevation ranging from sea 

level to 2000m. Some 63% is covered by forest and other natural land cover, 1% is 

surface water bodies, 31% is agriculture and 5% is urban and similar developed land 

use. The geology of the catchment consists of an ophiolite complex in the north and 

an overlying sedimentary complex in the south (Boronina, Balderer et al. 2005; Ragab 

and Bromley 2010)(Ragab et al., 2010, Boronina et al., 2005). The main crops are 

deciduous trees (631ha), vines (118ha), citrus (36ha) and olives (49ha), with small 

areas of potatoes (7ha) and vegetables (12ha). The main water-using crop in the 

catchment are deciduous trees (4.34 Mm
3
 per year); the remaining crops use 

comparatively small amounts of water, taking the total water demand to 5.1 Mm
3
 per 

year (Medis 2005). 

There are 11 precipitation stations in the catchment (Fig. 1) with an estimated  mean 

annual precipitation of 650mm (1997-2009). Evapotranspiration accounts for around 

85% of the precipitation (555mm). The surface runoff is around 50mm and infiltration 

to groundwater 50mm (7.5%). The PCM Index, (Predictability(P)-Constancy(C)-
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Contingency(M)) can be used to indicate the ecosystem’s characterization in terms of 

intermittency (Colwell 1974). The analysis of monthly precipitation records of the 

eleven stations revealed that the PCM Index ranges between 0.40-0.63 indicating a 

precipitation pattern with moderate seasonal variability. Monthly precipitation records 

of Kouris station for the period 1997-2009  were used to estimate the Standardised 

Precipitation Index (SPI) (Tsakiris and Vangelis 2004). The states of the 

meteorological drought according to the SPI value range from extremely wet to 

extremely dry, dominated by mild drought (40.1% probability) and mild wet (31.3% 

probability) conditions.  

We analyse data for three main headwaters in the catchment, the Kouris itself 

(100km
2
), and two tributaries, the Kryos (67km

2
) and Limnatis (120km

2
), all flowing 

into the Kouris reservoir (Figure 1). The Kouris delta is located in the Akrotiri 

peninsula, the southernmost part of Cyprus and forms the west boundary of the 

Akrotiri wetland. The construction of the dam has directly altered the flow regime in 

the river and consequently reduced the natural recharge of the delta aquifer and the 

indirect recharge of the Akrotiri wetland.  

2.1 Catchment hydrological status  

The Kouris , Limnatis and Kryos have a total mean outflow of 31.7 Mm
3
yr

-1
 (1966-

2009). The respective contributions are 14.0 Mm
3
yr

-1
  (1966-2009),  12.8 Mm

3
yr

-1
 

(1966-2009) and 4.9 Mm
3
yr

-1
  (1977-1997) with corresponding coefficients of 

variation of annual flows of 0.6, 0.8 and 0.9. indicating the differences in inter-

annual flow variability between the three streams. In post dam period river outflow 

decreased to 3.8 Mm
3
 annually (mean value of 1990-2008 hydrologic years) 

(Nikolaidis 2010).  
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Baseflow has been separated from daily stream flow time-series using the SWAT 

(Soil and Water Assessment Tool) baseflow filter program (Arnold and Allen 1999) 

which uses a modification of the recession curve displacement method. The average 

fraction of “quick flow” contributed by each rainfall event to the reaches estimated to 

be 30% is in agreement with previous hydrological studies in the area that have 

estimated a baseflow ratio about 25-31% (Boronina, Renard et al. 2003; Boronina, 

Balderer et al. 2005). 

An analysis of the streamflow data of the three tributaries using the IHA software, 

which is described in a number of papers by Richter et al. (1998), allows 

differentiation between their respective hydrological regimes. Near their inflow to 

the Kouris Reservoir, the Kouris, Limnatis and Kryos rivers have a median number 

of days with no flow of 29 (1986-2009), 124 (1986-2007) and 159 (1985-1997) 

respectively. This demonstrates that the Kouris river is almost permanent, while the 

Limnatis shows an intermittent flow regime with a dry period of about 3 months and 

the Kryos is also an intermittent stream but with a prolonged dry period of about 5 

months. In addition the Kryos stream hydrograph has higher peak flow values, 

indicating higher flood risk and higher erosion and sediment transport potential. The 

mean annual maximum flow of the Kryos is 4.2 m
3
sec

-1
 with a standard deviation of

3.8 m
3
sec

-1
 (mean value of 1976-1993 hydrologic years maximum instant flow) but

the mean annual flow is only 0.473 m
3
sec

-1
.

2.2 Basin hydrological classification 

Various hydrologic metrics have been reported in order to classify temporary stream 

regimes, based on the distribution of lengths of dry period. The values of the 

Richards–Baker flashiness index (Baker et al., 2004) are estimated as 0.21 (1986-

2009), 0.25 (1986-2007) and 0.34 (1985-1997) for the Kouris, Limnatis and Kryos 
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rivers near their inflow to the Kouris reservoir, indicating that flashiness increases 

with the length of the dry period. A different classification is suggested by Uys and 

O’Keeffe (1997) and Gallart et al. (2012) who define three main conceptual types of 

temporary streams  

(1) P (permanent): perennial streams 

(2) IP (intermittent – pools): in the dry season the flow is discontinuous with 

characteristic formation of pools along the river bed.  

(3) ID (Intermittent): streams usually having a dry river bed in summer; 

(4) E (Ephemeral): streams which flow only during rain events. 

The P the IP stream types are recharged continuously during the whole year by 

baseflow while for ID type rivers the baseflow component ceases during dry months. 

For the E stream type baseflow is almost absent for the whole year. One index for 

characterizing the seasonality of the dry conditions in a stream is the six-month 

seasonal predictability of dry periods (Sd6) defined in Eq. (1). This index has been 

used to establish threshold lines between the various aquatic states. The equation for 

seasonal predictability (Gallart, Prat et al. 2012) is:  

    

6 6

6
1 1

1 i jSd Fd Fd
 

  
 
      (1) 

where: 

Sd6 = seasonal predictability 

Fdi = multi-annual frequencies of 6 contiguous wetter months with zero flow 

Fdj = multi-annual frequencies of the remaining 6 contiguous drier months with 0–

flow. 

The Sd6 index uses the probability that the stream falls dry for each month and divides 

the average of six months by the average of the following six months. This is 
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performed for all sets of consecutive months. The index Sd6 is dimensionless and 

takes the value of 0 when zero flows occur equally throughout the year in the long run 

and 1 when all the zero flows occur in the same 6-month period every year. When the 

regime is fully permanent, this metric cannot be computed, so the value of 1 is set to 

indicate full predictability. The flow occurrence index, Mf, takes values from 0 up to 

1, calculated as the proportion of time the stream is flowing and may be used as an 

indicator describing the extent of complete drying. The seasonality and flow 

occurrence indexes are may be plotted on a single graph, called a Temporal Stream 

Regime Plot (TSR). In the TSR the four river regime types are differentiated as 

described by Gallart et al. (2012). The regime of a stream is determined by searching 

the coordinates of the two metrics in the TSR plot (Plot of Mf and Sd6, as shown in 

Figure 2). 

Flow in the Kouris tributaries was examined for a historic period of 1965-1985 and 

recent years (2006-2012). The historic period hydrologic regime is assumed to be the 

Reference Condition regime (RC). In this period the Limnatis, Kryos and Kouris 

flowed for 9.7, 8.6 and 11.6 months per year respectively. The corresponding values 

for 2008-2012 are 8.5, 5.9 and 9.5 month per year. These values suggest a decrease 

in the Mf index on three tributaries in recent years. The SD6 is estimated 0.96, 0.84 

and 1.0 for the Limnatis, Kryos and Kouris respectively for the historic period and 

1.0, 0.91 and 1.0 for 2008-2012. The difference between Kryos historic and recent 

SD6 values strengthens the hypothesis that the Kryos tributary has experienced the 

greatest regime shift of the three streams. The TSR plot for the Kouris tributaries 

indicates that the Kryos stream is classified as I-D and the Limnatis and Kouris as I-P 

(Fig. 2). It is important to keep in mind that these streamflow characteristics refer to 

the river reaches just upstream of the Kouris Reservoir, while all three rivers have 
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continuous flow in their upper and upper-middle reaches. The boundaries between 

perennial and intermittent reaches move every year depending on rainfall and 

subsequent streamflow (Uys and O'Keeffe 1997). 

2.3 Catchment nutrient budget 

We estimate the nutrient load to the three tributaries, and the subsequent fate of these 

nutrients. We use the MONERIS model as an aid to understanding the budget. 

MONERIS considers nutrient losses through seven different pathways from six 

different sources, and also identifies tsuitable nutrient management options. 

Downstream nutrient loads are computed as the difference between catchment losses 

(ie inputs to the river) and changes due to in-stream retention processes. Nutrient 

retention is modeled as a function of specific runoff (discharge divided by catchment 

area) or hydraulic load (specific runoff divided by water surface area) based on the 

assumption of steady state solution of the general mass balance equation for mixed 

reactors. Nutrient retention, especially in temporary environments is strongly affected 

by in-stream transport phenomena (Von Schiller, Martí et al. 2008). We have 

modified the in-stream retention component of MONERIS to allow for advection and 

dispersion. 

In a one dimensional (1D) river model such as MONERIS, there is assumed to be 

complete mixing in the vertical and lateral (width) directions. Nutrient concentration 

is a function of the rate of input and output of the constituents (sources and sinks), the 

dispersion and advection of the constituents and a range of in-stream physical, 

chemical, biological reaction rates. Change in concentration of any constituent under 

the assumption of 1-dimensional flow is defined by the partial differential equation 
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, ,
,

1x t x t
x t k

k

C C
EA UAC S

t A x x

   
   

   
 (2) 

In equation 2 ,x tC  is the nutrient concentration mg L
-1

, at time t and location x. E is

the dispersion coefficient (m
2
sec

-1
), U is velocity (m sec

-1
), A is the stream cross

sectional area (m
2
) and Sk is a source or sink of the nutrient. Equation 2 states that at

particular site in the river system, the change in concentration with respect to time 

depends on the change in the constituent flux due to advection and dispersion, plus or 

minus any sources. The source/sink term includes the various reactions that increase 

or decrease the concentration of a constituent. The flux due to dispersion is assumed 

to be proportional to the concentration gradient, allowing constituents to be 

transferred from zones of higher concentration to zones of lower. Dispersion is 

assumed to be responsible for any change of concentration that cannot be accounted 

for by advective transport. Many of the reactions affecting decrease or increase of the 

constituent concentrations are often represented by first order kinetics, often 

acceptable in natural aquatic systems. For steady-state conditions in reaches treated as 

one dimensional, assuming constant streamflow, cross sectional area, a constant 

dispersion coefficient and first order kinetics equation 2 becomes 

2
, , ,

,2

x t x t x t
x t

C C C
E U KC

t x x

  
  

  
(3) 

where K is a reaction or decay rate coefficient (day
-1

). For nitrogen decay K is

symbolized as KTN and for phosphorus KTP. This steady-state equation may apply to 

many flow conditions in river systems, including low-flow conditions often found in 

late summer in temperate environments or late spring in semi-arid. Considering long 

sections of the river where K, E, A and U are constant, the pollutant concentration at 
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any point X resulting from a discharge of the constituent at a constant rate 0W  the 

point X=0 is  

  0 exp 1 0
2

x

m

W U
C m x x

Q E

 
   

 
  (4) 

where
2

4
1

KE
m

U
  .    Equation 4 assumes that there are no sources or sinks of the 

constituent, other than the natural decay governed by K and the constant discharge at 

x=0. In freshwater rivers, the dispersion coefficient E is often small and, after taking a 

Taylor series expansion of m, we can approximate as   

 0 expx

W Kx
C

Q U

 
  

 
  (5) 

 

Equations 4 and 5 may be used as the basis for the 1D steady-state nitrogen and 

phosphorus water quality retention model for a river. In the MONERIS model it is 

assumed that W0 is the input load in surface water. The velocity U is estimated based 

on field measurements or using the Manning equation. If flow (Q) measurements are 

available then /U A Q . 

3 MONERIS application with retention component 

In MONERIS, nutrient loads are estimated in each of the three streams entering the 

Kouris reservoir. Water samples have been collected monthly since October 2007 and 

analysed for twelve water quality variables. Three stations (one in each stream) were 

selected for monthly measurement of Total Nitrogen (TN), Dissolved Inorganic 

Nitrogen (DIN), Total Phosphorous (TP) and Dissolved Inorganic Phosphorus (DIP) 

concentrations. Nutrient loads were estimated as the product of mean monthly 

concentration and instantaneous flow. We have calibrated MONERIS for the period 
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2008-2010 and validated the model for 2011-2012. Model performance was evaluated 

by the Nash-Sutcliffe efficiency (NSE)(Nash and Sutcliffe 1970). 

3.1 Spatial data 

A Digital Elevation Model (DEM) (30m spatial resolution) was used to estimate the 

mean sub-basin slope, required for erosion estimation in MONERIS. The land use 

types present in the study area were extracted from the Corine Land Cover map 

(2006). The hydrogeology of the subcatchments is defined within MONERIS as four 

classes according to porosity and depth of groundwater. The hydrogeology of the 

catchment was based on the transmissivity classification of Boronina et al. (2003) 

which distinguishes five zones: Zone 1-mantle rocks Zone 2- plutonic and intrusive 

rocks; Zone 3 – volcanogenic rocks; Zone 4 – sedimentary rocks  The thickness of the 

main aquifers was assessed indirectly from geological observations. For MONERIS, 

zones 1 and 2 were characterized as bedrock, consolidated of high porosity, zones 3 

and 4 as bedrock consolidated impermeable and zone 5 as unconsolidated soil with a 

shallow groundwater. The topsoil classification in the study area was derived from a 

soil survey by the EC Joint Research Centre (JRC) in the Kouris basin. Kryos soils are 

characterized as clay loam soils, Kouris and Limnatis as sandy loam. The nitrogen 

content in topsoils was lower than 10 mg kg
-1

 and the percentage content was

estimated to be 0.12% in Kryos and Kouris soils and 0.08% in Limnatis. 

3.2 Diffuse pollution 

In estimating the diffuse pollution load, the recommended fertilizer application rates 

provided by the Cyprus Ministry of Agriculture were applied for the estimation of 

the nutrient load from agriculture. These rates were estimated as 90 tonne yr
-1

 N and
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20 tonne yr
-1

 P. The annual fertilizer application divided by the agricultural area was

gave N and P application rates of 107 kg ha
-1

 and 22.0 kg ha
-1

 respectively. An

average nitrogen surplus of agricultural soils of 40 kg N ha
-1

yr
-1

 is estimated at

European scale when the nitrogen application rate ranges between 8-179 kg ha
-

1
(Grizzetti, Bouraoui et al. 2008; Bouraoui, Grizzetti et al. 2009). Since the Kouris 

basin application rate falls close to the middle of this range the nitrogen surplus 

value of 40 kg N ha
-1

yr
-1

 was used for MONERIS simulations. With an input rate of

22.0 kg P ha
-1

yr
-1 

and an export coefficient of 4% (Matias and Johnes 2012), then

the P surplus in agricultural soils amounts to 0.88 kg P ha
-1

yr
-1

.

Bouraoui et al.(2009) estimate an atmospheric deposition rate of 3.7 kg N ha
-1

yr
-1

 for

Cyprus. Total phosphorus deposition was set similar to other Mediterranean countries 

equal to 0.99kg P ha
-1

yr
-1

. The summer rainfall amount was estimated to be 19% of

the total by the analysis of the 11 precipitation stations records (1997-2009). 

In addition to fertilizer application, a major source of nutrient pollution is livestock 

farming. There are some 200 pigs, 4,600 sheep and 28,000 goats in the total area of 

the three subcatchments (WDD, 2011). The livestock annual nutrient production rates 

(kg P and N ha
-1

yr
-1

) were estimated with reference to the native livestock breed

characteristics such as animal weight (OECD 2007). Livestock production contributed 

490 tonne N y
-1 

and 147 tonne P y
-1

. Based on local information it was assumed that

goats and sheep are grazed outside all the year on the upland fallow/pasture/rangeland 

areas resulting in N and P input rates of 47.3 and 14.3 kg ha
-1

yr
-1

 respectively. For a

soil pH of 8.1, a median value of denitrification rate can estimated as 5 kg ha
-1 

yr
-1

 for

grassland areas (Hofstra and Bouwman 2005), giving a final N loss rate of 42 kg ha
-

1
yr

-1
. The export coefficient of 0.007% for grasslands soils (Matias and Johnes 2012)

was used for P, giving a final P loss rate of 0.016 kg ha
-1

yr
-1

.
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3.3 Point source pollution  

Point source pollution in the subcatchments is mainly generated by olive oil mills 

and in some cases by malfunctions of domestic wastewater treatment plans. In the 

basin there are 486 acres of olive trees. Assuming semi-intensive agricultural 

practices that corresponds to 12 trees per acre and 375 kg of olive fruits per acre 

(Fleskens and Graaf, 2010), the olive oil mill wastewater volume generated annually 

corresponds to 0.3 tonne N yr
-1

 and 0.2 tonne P yr
-1

  (Nikolaidis, 2011). The olive 

mill waste (OMW) emissions are assumed to be discharged without any pretreatment 

directly to the river.  

The permanent population in the basin is 20,442 people (Statistical Service, 2012) 

and only 8,487 are served by waste water treatment plans (WWP). In the Limnatis 

subcatchment there are waste water treatment plants (WWTPs) at the villages of 

Alassa, Pelentri and Kyperounta (5320 persons). These have discharged secondary 

treated effluent into the river since 2011. The reclaimed wastewater has a mean 

concentration of total nitrogen of 15 mg L
-1

 and phosphorus of 1.37 mg L
-1

 resulting 

in annual total discharges of 6.97 tonne yr
-1 

and 0.64 tonne yr
-1

 of N and P 

respectively. The remainder of the population (11,955) is served by individual septic 

tanks. In order to estimate the nutrients load generated by septic tanks, the human 

production rates of N and P for Cyprus were estimated as 13.7 g N person
-1

day
-1

 and 

2.9 g P person
-1

day
-1

(Bouraoui, Grizzetti et al. 2009). It is assumed that only 5% of P 

and 7% of N reaches the river, thus the diffuse sources exports into the river were 

estimated to be 1.1 tonne P yr
-1

 and 75.3 tonne yr
-1

N.  

The urban runoff generation component of MONERIS model uses an equation that 

relates the monthly precipitation depth to the number of generated rain events. This 

equation was estimated for the Kouris basin for the period 1991-2005, using the 
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number of events exceeding 10mm of rain. The derived equation is 

0.930.039RE jN N (6) 

 where NRE is the number of rain events and Nj is the monthly precipitation record. 

The urban runoff total phosphorus concentration was set to 0.275 mgL
-1 

based on

studies in the Harper basin (Waschbusch;, Selbig; et al. 1999). 

4. Results

4.1 MONERIS calibration and validation 

The MONERIS model was calibrated for the period 2008-10 and verified for 2011- 

2012. Table 1 shows the data used in the model simulation and the estimated nutrients 

loads for goodness of fit analysis. The MONERIS model was calibrated to account for 

in-stream nutrient retention of total N and P (TN and TP). The velocity was derived 

for each stream by the equations that relate mean instantaneous flow to mean velocity. 

The exponent coefficient K of equation 4 was calibrated for TN retention (0.98-2.3 

days
-1

). The NSE value between modelled and simulated loads for the calibration

period was 0.97. In the validation process the NSE value was estimated as 0.53 for 

2011 and 0.4 for 2012. The lower NSE value of the 2012 verification year may be 

explained by the fact that 2012 is an “extreme wet” year and annual TN loads were 

estimated to be 50.15 tonne in the Limnatis in comparison to 5.5 ton of the previous 

year.  Figure 3 shows the observed (black bars) against modelled TN loads (grey bars) 

for the calibration and verification periods on the left figure and TP loads on the right 

figure. For TP retention the coefficient K was calibrated (4.0-9.0 days
-1

) to achieve

NSE value of 0.99. In the validation process the NSE value was estimated as 0.99 for 

2011-2012 period. The model fit to interannual variation in the three subcatchments 

showed good overall agreement between model and observed loads. But interannual 
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catchment hydrology variability in Cyprus and in general in semi-arid climates affects 

MONERIS model efficiency. 

The total annual nutrient losses from the three rivers are 46.5 tonnes of nitrogen, 1.8 

tonnes of phosphorus (Table 2). Pollution generated by WWTP and individuals septic 

tanks generates most nutrient loss (Table 2) (64.7% of total N, 43.9% of total P). 

Erosion processes appear to be a serious environmental threat, since significant 

amounts of nitrogen (15.2%) and phosphorus (0.7%) are subject to detachment and 

transportation. Erosion processes are promoted by steep slopes, scarce vegetation and 

dry mobilisable soils. Groundwater is estimated to contribute 1.8 tonne of N (3.8%) 

and 0.29 tonne of P (8.4%). The Kouris subcatchment has the highest domestic 

wastewater loads, since it does not include a WWP. Grazing is a serious 

environmental pressure (the origin of 11.8% of N and 16.4% of P) especially in the 

Kouris catchment. Losses of P by groundwater and from urban sources are significant 

in the Kouris subcatchment and in the Limnatis atmospheric deposition and urban 

sources generate the highest P loads. 

We estimate that around 40% of N and 85% of P entering streams is retained in the 

stream. Nitrogen retention is similar to the study of Caille et al. (2012) that estimated 

N and P retention of the order of 45-55%. The high P retention of Kouris sediments 

(85%) is explained by their high phosphorus sorption capacity (Tzoraki et al., 2012). 

Although the soil TP content in the Kouris catchment is lower than 10, the TP content 

of the sediment was measured to be 3432 mgkg
-1

 (±169.7 mgkg
-1

) (Tzoraki,

Dörflinger et al. 2012). 

4.2 MONERIS sensitivity analysis 
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Sensitivity analysis provides information on the relative influence of different model 

inputs or parameters on model outputs. Sensitivity is expressed by a dimensionless 

index I, which is calculated as the ratio between the relative change of model output 

and the relative change of a parameter (±10% change). We used sensitivity analysis of 

the MONERIS model parameters to identify the parameters to which the simulation 

results are most sensitive. A detailed description of MONERIS equations can be 

found in Venohr et al. (2011). Concerning nitrogen simulation the most sensitive 

parameter was the coefficient (an) of the erosion equation. A second group of 

parameters with similar significance were coefficients of surface runoff (a and b) and 

k1 and k2 coefficients in groundwater for consolidate bedrock of high porosity and k1 

and k2 coefficients in groundwater for consolidated impermeable bedrock. 

Phosphorus simulation was most sensitive to the coefficient (a) in clay-P model of 

phosphorus surplus and less sensitive the coefficients (aP and b) in the erosion 

equation. Finally the coefficient (a) of surface runoff was identified as of similar 

importance for phosphorus losses.  

The N and P retention equation 5 is strongly dependent on the retention coefficient 

(K) value since the remaining parameters are affected by water velocity and stream 

length. Performing Monte Carlo analysis for this parameter, the in-stream TN and TP 

load were estimated for 1000 K random values. Monte Carlo analysis of KTN value 

(0.98 d
-1

) in Kouris has given a median value of TN in-stream loads 14.40 tonne TN,

ranging between 14.17 and 14.65 and a KTP value (4.0 d
-1

) has given a median value

of TP in-stream loads of 0.135 tonne TP, ranging between 0.133 and 0.137. 

5 Discussion 

The TN and TP in-stream retention module of the MONERIS model using the 

transport mechanism approach of dispersion and advection in one dimension can 
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adequately simulate the field data. It considers the stream velocity and constituents 

transport distance, important variables in intermittent flow rivers. MONERIS gives a 

general quantification the main pressures at basin scale and is an easy tool for use by 

catchment managers. 

TRP plots are a useful tool for visualizing the major changes of flow pattern due to 

human intervention or climate change effect. There is no evidence that the flow status 

of the Limnatis has changed from I-P in recent decades. In contrast, the Kouris has 

changed from P to I-P and both Sd6 and Mf values are now lower than in the historic 

period. The river stops flowing for longer periods than in the past. But the greatest 

change in hydrological pattern has occurred in the Kryos, from I-P type in the past, to 

I-D, with long periods of dessication.  

Because the Limnatis stream shows a permanent hydrologic pattern that has only 

slightly altered recently, MONERIS appears suitable for estimating nutrient losses. 

Essential components of the hydrologic cycle including baseflow and surface runoff 

contribute to flow for most of the year. A weak point in MONERIS efficiency is the 

effect of the interannual hydrological variability and we suggest the use of TRS plots 

to estimate any hydrologic alteration from year to year. Where a stream has changed 

its hydrologic regime and especially if it is moved from P or P-IP to IP-D or E then 

the MONERIS model should be recalibrated for the new regime conditions.  

Since groundwater emissions are very significant we suggest that different calibration 

parameters should be used in MONERIS for ephemeral (E) and intermittent dry (I-D) 

streams rather than Permanent (P) and Intermittent Pools (I-P). For I-P steams there is 

a baseflow component recharging the stream or pools during the summer months. In 

contrast in the ephemeral streams the river bed dries out completely and there is 

neither surface flow nor baseflow. In the latter case the groundwater table is very low, 
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the stream loses water and dries out, only sustaining water during rainfall events. For 

these streams essential components of the MONERIS model such as groundwater, or 

surface runoff should be calibrated very carefully in order not to overestimate the real 

hydrologic mass balance.  We suggest that if the hydrologic status classification of a 

stream (as defined by TRS plot) belongs to P or I-P, its water quality can be 

adequately simulated using MONERIS, since in-stream retention is strongly related to 

stream mean velocity and geomorphology. But if a stream belongs to I-D or E regime 

then a separate calibration procedure should be followed. For those stream regimes 

due to long dry period of zero flows the average flow actually is the average of the 

individuals flood events and is overestimated. The baseflow component is almost zero 

for the majority of the year and the lowering of the river bed enhances the 

transmission losses, a component that is not accounted for by the MONERIS model. 

Stream intermittency results in high uncertainty in the hydrological cycle because  

flow occurs during rainfall events, and the resulting flash floods are characterized by 

high erosion and nutrient transport capacity (Tzoraki, Nikolaidis et al. 2009), while 

during much of the year the only flow is from point discharges, which are often the 

only flow component. 

Measures to reduce nutrient losses need to account for the need to maintain 

agricultural productivity. Unfortunately, the adoption of good agricultural practice is 

becoming increasingly difficult due to the splitting of the land into numerous small 

farms. Sustainability objectives in agriculture have to take the form of restrictive 

management thresholds such as specific fertilization rates, buffer strip establishment, 

crops rotation, irrigation with reclaimed wastewater (Matias and Johnes 2012). 

Livestock generates most of the basin nutrient load (Table 2), and livestock 

production in Kouris upland areas results in land degradation, deforestation and 
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nutrients losses into streams. Even though livestock are extremely important to the 

livelihoods of Kouris smallholder farmers, the adaptation of modern farming practices 

such as enclosures or rotational grazing should help significantly in the direction of 

river sustainability. Also, composting process of animal manure/excreta may produce 

high additive value bio-fertilizer, which instead of reducing the ecological quality of 

the water resources, would cover the N, P, K demands of the agricultural sector. 

Further improvement to water quality is to be expected if villages are connected to the 

central wastewater treatment plant. 

6 CONCLUSION 

 MONERIS is a valuable modeling tool, helping in the monitoring and quantifying 

nutrients mitigation and to the application of suitable remediation technologies, 

whenever it is required. The in-stream phosphorus and nitrogen module using the 

approach of 1-D advection and dispersion transport process can adequately simulate 

the in-stream processes of such intermittent flow streams. The use of TRS plots is a 

useful tool to understand the flow regime alteration not only from the unaltered 

conditions to recent highly changed but also to visualize the stream interannual 

alteration. The position of a stream in the TRS plot is essential for the calibration 

procedure to be followed. The Limnatis and Kouris streams showed limited 

hydrologic alteration the recent years in contrast to the Kryos, where there has been a 

significant regime shift. In the Kouris subcatchment high N and P losses are 

attributable to grazing livestock, erosion processes and the absence of wastewater 

treatment plants. Therefore the in-stream nutrient retention processes are very 

significant and in particular P sorption onto sediments and the loss of N through 

denitrification. Potential measures that are suggested are the adaption of modern 

farming practices and the use of central wastewater treatments plants. Recommended 
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management technologies to reduce both point and non-point source pollution are 

effective only with the prerequisite of continuous public participation, technologies 

awareness of stakeholders and economic efficiency of adapted measures. 

 

Table 1. Calibration and verification period Moneris input data 

Table 2 Total Emissions and proportion of the different pathways in the streams for 

the calibration period 2008-2010 

 

Figure  1. Kouris river basin stream network, rain and flow gauge station and main 

landuses. 

Figure  2. TRP  of Kouris streams 

Figure 3. Modelled (grue bars) versus observed values (black bars) of Total Nitrogen 

(left figure) and Total Phosphorous (right figure) for the calibration and verification 

period. 
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1 

Calibration period  2008-2010 

KRYOS  KOURIS LIMNATIS 

Mean Flow m
3
sec

-1
 0.067 0.271 0.152 

Precipitation, mm 509.2 575.7 528.1 

TN, ton/year 2.538 13.825 9.568 

TP, ton/year 0.016 0.155 0.169 

Verification period 2011 

KRYOS  KOURIS LIMNATIS 

Mean Flow m
3
sec

-1
 0.069 0.414 0.126 

Precipitation, mm 772 838 791 

TN, ton/year 0.478 12.940 5.531 

TP, ton/year 0.006 0.022 0.031 

Verification period 2012 

KRYOS  KOURIS LIMNATIS 

Mean Flow m
3
sec

-1
 0.203 0.783 0.537 

Precipitation, mm 802 868 821 

TN, ton/year 2.152 32.200 50.150 

TP, ton/year 0.036 0.216 1.389 

table 1
 

http://www.editorialmanager.com/warm/download.aspx?id=83268&guid=1460ba6c-0263-4d95-bbb5-6d9233b50e56&scheme=1


1 

 Pathways Nitrogen Emissions  Phosphorus Emissions 

Kryos Kouris Limnatis [t yr-1] [%] Kryos Kouris Limnatis [t yr-1] [%] 

Atmospheric 
Deposition 0.01 0.02 0.06 0.1 0.2 0.03 0.04 0.17 0.24 13.4 

Overland flow-
(impact of free 
grazing) 0.74 3.26 1.51 5.5 11.8 0.02 0.08 0.04 0.29 16.4 

Erosion 2.24 2.67 2.17 7.1 15.2 0.05 0.04 0.06 0.01 0.7 

Groundwater 0.16 1.26 0.33 1.8 3.8 0.04 0.16 0.09 0.15 8.4 

WWTP-SEPTIC TANKS 5.58 12.81 11.71 30.1 64.7 0.12 0.1 0.55 0.77 43.9 

Urban Runoff 0.34 0.53 0.85 1.7 3.7 0.02 0.03 0.06 0.2 11.3 

In-stream Secondary 
Sources 0.1 0.1 0.1 0.3 0.6 0.08 0.06 0.06 0.11 5.9 

Total Emissions  9.2 20.6 16.7 46.5 100 0.35 0.52 1.02 1.8 100 

Retention 6.5 5.9 6.3 18.7 0.33 0.38 0.85 1.56 

Estimated Load 2.7 14.7 10.4 27.8 0.02 0.14 0.17 0.33 

Observed Load 2.6 13.8 9.6 26 0.02 0.15 0.17 0.34 

table 2
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figure 1
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figure 3A
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figure 3B
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