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ABSTRACT 

 

The ecosystem services approach endeavours to incorporate the economic value of 

ecosystems into decision making. This is because many natural resources are subject to 

market failure.  As a result many economic decisions omit the impact that natural resource 

use has on the earth’s resources and the life support system it provides. Hence, one of the 

objectives of the ecosystem services approach is to employ economic valuation of natural 

resources in micro- and macro-economic policy design, implementation and evaluation. In 

this article we examine valuation concepts, and ask why we might attempt to economically 

value the contribution of soils to the provision of ecosystem services? We go on to examine 

economic valuation methods, and review economic valuation of soils. By surveying prices of 

soils on the web we are able to make a first, limited, global assessment of direct market value 

of topsoil prices. We then consider other research efforts to value soil. Finally, we consider 

how the valuation of soil can meaningfully be used in the introduction of improved resource 

management mechanisms such as decision support tools on which valuation can be based, 

within the UN’s System of Environmental and Economic Accounts (SEEA), and policy 

mechanisms like Payments for Ecosystem Services (PES).  
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INTRODUCTION 

 

 In recent decades, prominent soil scientists have argued that the soil resource is 

consistently overlooked or undervalued by society (Bridges and Catizzone, 1996, Bouma, 

2005). Yet there appears to be a resurgence of interest in the soil resource, principally in the 

context of food security, climate change and land stewardship (Koch et al., 2012; Mueller et 

al., 2012; Jones et al., 2013); especially as it is recognized that an increasing population is 

stressing our planet’s life support systems (Rockstrom et al., 2009). Along with the 

ecosystem services soils help deliver (Daily et al., 1997; Haygarth and Ritz, 2009; Dominati 

et al., 2011; Robinson et al., 2013a), soils are increasingly recognized as a key component of 

the critical zone (Banwart, 2011), the thin layer of the earth’s surface from tree-top to 

bedrock, the biogeochemical engine at the heart of the earth’s life support systems, with soil 

formation underpinning ecosystem services (MEA, 2005). Yet, soil science appears slow in 

‘refocusing and mobilizing our creative talents’ to tackle these broader societal issues that, by 

its very interdisciplinary nature, is well suited to respond to; why is this?     

Bouma (2005) in an article about soil scientists in a changing world, considers that the 

relationship between soil and society can be considered in the context of, (i) the ‘true’ soil, 

explored through scientific investigation, (ii) the ‘right’ soil, which considers how 

stakeholders deal with soil in a policy making context, and (iii) the ‘real’ soil, how 

individuals and society feel about soils. Bouma makes the point that traditionally soil science 

has been mostly concerned with the ‘true’ soil, and perhaps neglected the other two. 

However, soil science has made some significant contributions to link to policy including the 

application and development of the Driver-Pressure-State-Impact-Response (DPSIR) 

framework (Blum et al., 2004). 

Within ecology, there has been a rapid development of the ecosystem services 

approach (Costanza et al., 1997a; Daily, 1997). Ecosystem services, starting out as a 

metaphor to help us think about nature has now become an integral part of the science-policy 

debate on the environment (Norgaard, 2010). National and international policy making 

agencies, such as the United Nations, have been quick to adopt the ecosystem services 

approach. A growing challenge for soil science is to determine how it fits within this 

approach as relatively little thought has been given to soils
1
 (in relation to science, social 

science and policy making). The ecosystem services concept goes beyond ecosystem 

                                                           
1
 This lack of consideration is highlighted by the fact that within the economic analysis conduct as part of the 

UK NEA there is no consideration of the costs associated with soil erosion; see footnote 92 in Bateman (2012). 
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function, in that it introduces a subjective/anthropocentric value for ecosystem functions that 

provide goods and services. The concept that ecosystems and soils provide services of value 

to society is perhaps a more meaningful way of conveying the importance of soil functions to 

decision makers and the wider public, who are already familiar with manufactured goods and 

services in consumer societies. 

As a result of the pressure on policy makers to consider soil multi-functionality in 

their decision making regarding the use of land, it is vital that soil functions are prominent in 

decision making frameworks. To date, the value of soil has been largely subsumed in the 

value of land and land use activities, and as such is only implicitly valued. This is one reason 

why an ecosystem service approach is attractive from a policy makers viewpoint, as it may 

allow them to see the implications of decisions and trade-offs if soil functions are fully 

incorporated in decision making frameworks. However, to date, soils are poorly addressed in 

ecosystem service approaches. In the MEA (2005) soil formation is identified as a vital 

supporting service. In the follow-up activity to the MEA assessment, suggesting an approach 

used to assess the economic value of ecosystem services, the TEEB approach, doesn’t talk 

about supporting services anymore following de Groot et al (2002), but identifies supporting 

processes and functions which underlie the delivery of all ecosystem services. It is therefore 

incumbent on soil science to contribute to these approaches, by clearly identifying valuable 

soil functions (Daily et al., 1997; Lavelle et al., 2006; Haygarth and Ritz, 2009; Dominati et 

al., 2010; Robinson et al., 2012) and developing appropriate approaches, demonstrating the 

role of soil processes and functions in the maintenance of the final ecosystem service delivery 

supply chain (Dominati et al., 2010; Robinson et al., 2013a).  

 We recognise that ecosystem service concepts are not without criticism, with those 

opposed arguing that ecosystem management cannot, and should not, be reduced to cost-

benefit-analysis. However, this article is not about promoting the economic model, it is a 

critical review of the approach, its drawbacks, and the potential opportunities that such an 

approach may offer. Valuation must not be confused with price. Economic value seeks to 

identify all the final use and non-use, market and non-market values, and will often be 

unrelated to the price that soil commands as a commodity. This is because price only reflects 

purchase for a single or limited number of uses; whereas economic value tries to identify a 

combined value for all uses. Definitions of price, cost and value used in this manuscript are; 

price is the amount of money you pay for something; cost is the price of something that you 

would be expected to pay. Value is more complex as discussed later on but the sense in which 
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it is used here is, ‘that quality of an object that permits measurability and therefore 

comparability’ (Robertson, 2012). 

The contribution of this paper is to consider the contexts within which soils are valued 

and how soils can be valued in the context of the ecosystem services approach. We begin by 

looking at what value is, why valuing ecosystem services can be useful, the work that has 

been done on valuing soil ecosystem services to date and the goals of valuation. We then look 

at valuation in a wider policy context examining developments at the macro-economic 

national accounting level as well as micro policy mechanisms such as Payments for 

Ecosystem Services (PES).    

  

VALUE, CONCEPTS, DEFINITIONS AND OBJECTIVES IN THE CONTEXT OF 

SOIL 

 

 Although the mention of value usually brings to mind dollar signs, value is much 

bigger than simply monetary value. One definition of value is, ‘a framework for identifying 

positive or negative qualities in events, objects or situations’ (Edwards-Jones et al., 2000). 

Within the context of valuing nature’s goods and services a useful technical definition of 

value states that, ‘value is simply that quality of an object that permits measurability and 

therefore comparability’ (Robertson, 2012). Value is generally divided into two categories, 

extrinsic, also called instrumental, as it is when an object or action serves a recognizable 

purpose and is thus valued by virtue of function. Conversely, there is intrinsic value, which 

requires no means to an end, but is an end in itself. Intrinsic value can be divided into, 

aesthetic value, concerned with beauty, and moral value, which are judgements of virtue, 

rightness of action and justice (Zimmerman, 2010).  

The values we hold as humans work within our personal value system, defined by 

Farber et al. (2002) as, ‘the intrapsychic constellations of norms and precepts contained in our 

world view that guides human judgement and action. They refer to the normative and moral 

frameworks people use to assign importance and necessity to their beliefs and actions. Our 

value system determines how we assign rights to things and activities, which implies practical 

objectives and actions.’ Value is therefore strongly coupled to value system, and ‘valuation’ 

is the process of expressing one of the qualities of an action or object on a scale. Moreover, 

valuation is directly linked and inseparable with our decisions about ecosystems and their 

management (Costanza et al. 1997b).  
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The value system we adopt, encompassed in our world view, and shaped by society, 

culture and religion will very much determine our approach to valuing nature and its 

constituents. Holmes et al. (2011) argue that our value system is important because it 

motivates us to act. They emphasize the importance of positive messages and avoiding 

appealing to fear, greed or ego. Turner, (1999) attempts to link our individual value system to 

our attitude to sustainability. By drawing a diagram with value across the horizontal axis, and 

the moral standing of biota on the vertical axis we can begin to map out how our world view 

influences our approach to valuation and sustainability (Fig 1). Anthropocentrism at one end 

of the vertical axis argues that only humans have moral standing, whereas biocentrism and 

ecocentrism contend that individual living things, or ecosystems, have moral standing. These 

dimensions of our world view largely determine the valuation system within which we 

operate. Economic theory is based largely on an anthropocentric extrinsic view, where as a 

more biophysical view of the world would argue for the intrinsic value of nature and that it, 

or parts of it, have moral standing in addition to humans. Hence our societal, cultural and or 

religious world view will very much influence the way we value nature and the acceptability 

of general approaches for valuing nature based on economics.  

 

The Meaning of Economic Value  

 

Economic value (neo-classical) is based on a framework for valuation that people are 

most familiar with as impacting our everyday lives. Total economic value (TEV) is the sum 

of all relevant use- and non-use values generated now and in the future, i.e. the sum of the 

producer and consumer surplus under the demand curve, excluding the cost of production 

(Costanza et al., 1997a). Within this framework TEV is broken down into two categories, i) 

use and ii) non-use values (Fig 2a).  

As shown in Figure 2a use values are typically divided into three categories: direct 

use values, indirect use values and option values. Direct use values include direct marketable, 

and direct non-marketable. These are the consumptive and non-consumptive use values for 

goods and services that are consumed or used locally. Indirect values are associated with the 

services nature provides that are not directly consumed, often being associated with 

regulating services. Option value is the value people place on having the option to enjoy 

something in the future even if they do not currently use it; this can be particularly important 

in the case of land and soil, passed down through the generations.  
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Non-use values, also referred to as “passive use” values, are values that are not 

associated with actual use, or even the option to use a good or a service. For example, 

existence value is the non-use value that people place on simply knowing that something 

exists, even if they will never see or use it. Similarly bequest value is the value that people 

place on knowing that future generations will have the option to enjoy the valued entity in the 

future and is directly related with the concern of access to resources by future generations 

(Beaumont et al. 2007).  

The valuation typology provided in Figure 2a is in keeping with those in Edwards-

Jones et al. (2000) and Bateman et al (2002). Figure 2a neatly illustrates that value is 

composed of several elements not all of which will be exhibited by all goods and services. It 

also highlights the fact that market prices only capture a specific aspect of value (ie, direct 

use) that is frequently too narrow for the effective management and use of soil. For example, 

Table 1 identifies soil goods and services, recognizing that soils contribute to a range of final 

services along with other ecosystem components. Moreover, the table shows how value, use 

and non-use, map onto these goods and services (modified from DEFRA, 2007). The 

contribution of soils to final goods and services over and above food production shows why 

they should not always be simply lumped together with land value, but their distinct 

contribution recognised. For example, soils constitute the largest terrestrial store of carbon 

(Tipping, 2002) helping regulate climate; moisture, texture and soil structure control the 

partitioning of precipitation between infiltration and runoff at the land surface, and hence the 

regulation of surface water flows and flooding. Soil moisture buffers climate extremes such 

as heat waves (Seneviratne et al., 2006) and fulfils a range of other functions that we could 

not survive without including nutrient transformation and waste recycling etc. Those 

regulating services provided by soils have indirect and option use values for society as well 

as non-use values relating to the use future generations will have of the soil resource, and the 

responsibility of the current generation to pass on such resources to ensure future well-being. 

The economic approach to non-market valuation is however, not without its criticisms 

and difficulties. For example, it has been noted by Vatn and Bromley (1994) and Gasparatos 

et al. (2008) that environmental complexity means that when eliciting an individual’s 

willingness to pay (WTP) for non-market goods, preferences are based on imperfect 

knowledge of ecological processes and functions. There are also long standing disagreements 

within economics about the meaning of non-market value estimates generated using some of 

the most popular methods (eg, Contingent Valuation). Vatn (2004) provides a useful 

summary of the issues, plus more recently there has been a very heated exchange between 
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Carson (2012) and Hausman (2012). Carson is a strong advocate of non-market valuation 

whereas Hausman, who is a leading researcher within the wider field of economics, considers 

efforts at non-market valuation dubious if not plain worthless. Finally, there are whole 

swathes, of moral, ethical and philosophical criticisms that have been made against non-

market valuation (e.g., Sagoff, 1988).  

Given the criticisms that exist within the literature, the acceptance of valuation within 

policy circles means that caution should always be exercised when conducting, interpreting 

and employing non-market valuation research, in particular valuation based on contingent 

valuation or choice experiments. Indeed, given the widely discussed limitations, the real 

merit in conducting this type of exercise is less the “number” that emerges but more the 

process that is undertaken. This point is neatly expressed by Carson (2012) as follows:  

Much of the usefulness of doing a contingent valuation study has to do with 

pushing scientists and engineers to summarize what the project would do in terms that 

the public cares about. Further, the process of developing a contingent valuation 

survey often encourages earlier involvement by policymakers in thinking more 

critically about a project’s benefits and costs and in considering options with lower 

costs or greater benefits to the public. (Carson, 2012, page 31). 

 

 

Economic Valuation Methodologies 

 

There exists a wide range of economic valuation methodologies (Bateman et al., 

2002), with the use of specific approaches dependent on the type of value that is being 

sought, as well as the costs and time required to undertake the valuation exercise.  Figure 2b 

shows the link between types of value (use and non-use) and valuation methodologies that are 

currently used in valuation research. The key distinction in the use of economic valuation 

methodologies is the decision to employ revealed or stated preference methods (Fig 2b). This 

choice will be informed by the need to include or exclude non-use values in the associated 

analysis. Revealed preference methods rely on observed behaviour and are commonly used 

when assessing use values. However, if the decision is to consider non-use values, which can 

frequently be very important, then stated preference methods must be adopted. Stated 

preference methods are based on the construction of a hypothetical market which is typically 

implemented by the use of sophisticated survey instruments and as stated before are the 

subject of much academic debate. Figure 2b also highlights an alternative approach to 
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valuation called Benefits Transfer that is popular especially for more applied and policy 

orientated analysis. This is essentially the use of existing valuation estimates in a new but 

related context. Benefits transfer can be conducted either in a very simple manner or with the 

use of advanced econometric methods.  The attraction of benefits transfer is that there are a 

growing number of data bases that allow researchers to undertake this method very rapidly. 

The estimates of economic value of goods or services yielded by the various 

methodologies are usually measured in terms of what resource users or society are willing to 

pay for the commodity or the service, minus what it costs to supply it; this is revealed by 

price in markets, but other techniques are required to assess WTP for services without 

markets.    

 

Alternative Valuation Methodologies 

 

Other approaches to valuation have been proposed but not widely adopted, these 

include for instance EMERGY, an ‘embodied energy theory of value’ (Hannon et al., 1986), 

since energy is the fundamental driver of ecological systems and thereby the economy. 

However, authors like Georgescu-Roegen (1979) rejected a strict energy theory of value, 

arguing that matter is also important, since it is also subject to the entropy laws. Research in 

this area has led to theories of value where prices can be determined for biophysical inputs 

and outputs, leading to a new type of accounting of the economy: a mass/energy accounting 

or ‘ecological pricing’ (Georgescu-Roegen 1971, Daly 1973).  

 

Why value the contribution of soils to the delivery of ecosystem services?  

 

Valuation in an economic context can be particularly helpful for comparing systems 

with a complex set of socio-ecological relationships; often the case with ecosystems. 

Edwards-Jones et al. (2000) argue that documenting ecosystem service values is useful 

because it: 

 Highlights the importance of ecosystem functioning for mankind.  

 Highlights the specific importance of unseen, unattractive or unspectacular 

ecosystems. 

 At a local level it can aid in identifying ecosystem services and acting as a help to 

decision making. 
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 Can aid in understanding the impacts of change and feeding back to models to 

improve our understanding of ecosystem function 

 Is a way of communicating value by translating to a common reference, e.g. dollars
2
. 

 

All of these are important for the sustainable exploitation and management of soils 

and other natural resources; something supported by the European Commission 

Communication COM(2011) 517, “Roadmap to a Resource Efficient Europe”, which 

highlights the need to value human intervention regarding natural capital, in order to promote 

a more sustainable use of resources (EC, 2011). Among others, the document proposes 

actions on the mapping of ecosystem services and assessment of their economic value, 

together with the development and establishment of instruments and/or mechanisms related 

to the payment for ecosystem services. The need to secure soil functionality and limit some 

soil threats are stressed in the document.  

 

The Objectives of Valuation  

Common to all valuation is the initial and fundamental question, what is the valuation 

for? There must be a clearly defined policy objective or management purpose for economic 

valuation. Thus, the objective could be ex-ante or ex-post policy or project evaluation; 

alternatively it could be the construction of alternative indicators of resource use that can 

better help understand the current state of resource quality. Defining the valuation objectives 

is, therefore, an essential first step.  

Different paradigms are used to operationalize environmental policy; a widely used 

one is management by objectives that sets goals to try and achieve targets. For example, the 

European Union environmental policy is partly operationalized through the objectives set out 

in the Sixth Community Environment Action Programme (1600/2002/EC 2002) which 

addresses biodiversity decline (Edvardsson, 2004). A goal can represent a clear end point to 

be achieved and is therefore a useful starting point for valuation. However, it is clear that 

little research has been done on the properties that the management objectives should possess 

in order to be rational, or functional, and on how to resolve conflict between different goals 

(Edvardsson, 2004; Edvardsson and Hannson, 2005; Edvardsson, 2007). 

                                                           
2
 It is worth noting that some ecological economists think that there is too much emphasis on stock and flow 

within the current application of the ecosystem service approach. For example, Norgaard (2010) argues that 
the ecosystem service approach has become too micro-orientated when in fact we need a general equilibrium 
approach.  
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 If we analyze soil science approaches that are used to link to, or inform, policy we can 

identify some of the problems related to practical application. Regulatory systems are often 

used, but regulations tend to emphasize technical means rather than focus on environmental 

processes to define environmental goals for soil, air, and water quality (Bouma, 2005, p75). 

Objective setting for soil management is often done in the context of improving soil quality 

or soil health, which is aligned with sustainable soil management. We know that soil quality 

is important, but in the context of setting policy it is a highly subjective term. Like 

sustainable, it is problematic because it depends on how we define quality, or sustainable, and 

ultimately depends on use and intensity. Goals for improving soil quality and health often fall 

at the first hurdle because they are not specific. Soil science needs to carefully consider better 

ways to set goals and objectives that can be used in policy and management development, 

and for valuation.  

Some may argue that this is not the job of a soil scientist, but as Bouma (2005) 

pointed out this is an important aspect of using information collected on the ‘true’ soil to 

inform those involved in dealing with the ‘real’ soil. It is often easier to articulate and 

describe the things we don’t want to happen, than try and describe what the ideal soil should 

be. The EU soil threats paradigm (Table 2) is a good example in this context. For example, 

carbon decline is not a desirable outcome, since it adds to greenhouse gases and also reduces 

structural integrity and water holding capacity. Other examples are soil compaction, which 

reduces oxygen levels, infiltration and enhances runoff; topsoil erosion from agricultural 

land, leading to loss of organic matter and nutrients; salinization of land, which prevents life 

from establishing and loss of biodiversity.  

Given clearly measurable goals, the change in the measurable property can be 

monitored and valuation used to assess progress. This is perhaps why there is growing 

interest in concepts such as natural capital assessment for which measurable change can be 

determined (Howard et al., 2011). Concepts such as soil health, though laudable, are difficult 

to legislate for because wanting better soil depends on what better is, for what use, and on 

which time scale. The benchmark is often the ‘future or attainable’ state, which is hard to 

determine. Therefore, by identifying threats to soils, and declines in perceived soil value, the 

thematic strategy offers a helpful starting point in terms of setting goals for sustainable soil 

management. We must then identify the origin of the threats and their causes, and then design 

actions targeting the source of the problem in order to achieve our goals. 

 

VALUATION OF SOILS TO DATE 
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The valuation of soils to date has employed the full range of valuation methodologies to 

determine the values identified in Figures 2a and 2b. We briefly review examples of various 

methods to provide the reader with a feel for the magnitude of estimates that have been 

reported in the literature to date. 

 

Direct-use: Market value of soil and soil commodity prices  

The direct use value of soil is what it realises when sold in markets. With regard to 

value it is perhaps a minimum value. The primary soil products include topsoil, subsoil, peat, 

and turf-grass. Of these, the turf grass industry, estimated to generate more than $1 billion 

annually for the US economy (Christians, 2011) is by far the most visibly valuable. Peat by 

comparison is only $13 million in the US (USGS, 2013), with an average price of $23.0 per 

short ton in 2012 (USGS, 2013) and 80% sold for horticultural use. There are no readily 

available figures for topsoil or subsoil commodity prices. In the UK it was recently reported 

that B&Q, the UK’s largest retailer of growth media, sells ~$7.8 million of topsoil each year 

(Forster, 2012). Given this figure, annual sales of topsoil in the UK from all retailers are 

likely to exceed $10 million. Sales figures for peat are not readily available although England 

uses ~1.6 million m
3
 of peat for gardening each year (Defra, 2011), though it is hoped to 

phase this out by 2020. Given the US average price for peat of $24.4 per short ton ($26.84 

per tonne) and assuming a bulk density of 0.2 tonnes/m
3
 this would equate to ~$8.5 million. 

Less well known, but vital to our technological revolution, is the extraction of rare earth 

minerals found extensively in laterite iron ore deposits and also in the tropical soils associated 

with these. China, contributes 90% of the global rare earth output with revenue of $12.6 

billion in 2013 (Els, 2014), but countries in the tropics, for instance Jamaica, are looking to 

their soils to see if they too contain rare earth deposits (Howe, 2013).  

What is not included in the turf and retail topsoil numbers is the market value with 

regard to soil bought and sold for use in the construction and landscaping industries. There is 

currently no standard reporting for this economic activity. However, we can get some 

impression of use from Hooke (1994) who estimated how much earth (soil, sediment and 

rock) humans moved in 1988 based on US house construction (HC) (0.8 Gtons/yr); mining 

(3.8 Gtons/yr, of which 0.86 Gtons/yr was sand and gravel (SG)); and road building (RB) 

(3.0 Gtons/yr), giving a total of 7.6 Gtons/yr. If we consider unconsolidated material (the soil 

solum, C horizon, and sands and gravels) we might estimate that half the house building and 

half the road building involved moving this unconsolidated material. This means 0.4 (HC) + 
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0.86 (SG) + 1.5 (RB) = 2.76 Gtons/yr is activity related to moving unconsolidated material, 

or about one third of earth material moved. Hooke (1994) also estimated that agriculture 

moves 1.5 Gtons/yr through tillage but this is turned over rather than transported. Of the 2.76 

Gtons sand and gravel is sold in markets and the price recorded; in 2013 this was 6.4US$ 

billion for construction and 2.2 US$ billion for industrial use (USGS, 2013). Of the 

remaining 1.9 Gtons, if only 1% was sold as top or subsoil, this would equate to US$ 380 

million based on a price of $20 per ton ($22.25 tonne
-1

, see Fig 3). The valuable nature of soil 

in this sense was highlighted following the Tsunami that hit Japan in 2011. Nakamura (2012) 

reported that, “A serious shortage of soil and subsequent price increases are delaying efforts 

to rebuild the disaster-hit Tohoku region and prolonging the misery of survivors who are 

desperately trying to resume normal lives.” It was reported that an estimated 40 million cubic 

meters (~0.05 Gtonnes) of soil was required for reconstruction and defences. According to 

Hooke (2000) an exponential increase in earth moving has occurred during our industrialised 

past, so our movement and use of soil will also have increased; however, the economic value 

is mostly hidden. Businesses have now developed based on soil movement or loss, for 

example, British Sugar in the UK, obtains 300,000 tonnes of topsoil with their 7.5 million 

tonnes of sugar beet delivered annually (British Sugar, 2014). British Sugar, through its 

topsoil division, then turns this soil back into several commercial topsoil products. 

Furthermore, as a response to needs and a way of recycling estuarine dredged products ‘soil 

factories’ have begun to emerge. In the 1980’s a soil factory was established by the Scottish 

Development Agency and the Clyde Port Authority along the river Clyde, Scotland, which 

produced 2000 tonnes of topsoil per week; feasibility studies have also been conducted in the 

USA and Republic of Ireland (Sheehan et al., 2010).  

 

Direct use: Effect on productivity and replacement cost  

When soil is valued it is frequently linked to non-marketable functions such as 

nutrient cycling, carbon storage, soil erosion (Adhikari and Nadella, 2011) and soil salinity 

(Walker et al., 2010). Indirect-use values can account for soil functions such as storing 

carbon, filtering water, recycling waste etc. A review of the literature indicates that, soil 

valuation per se is uncommon, where it occurs, the cost of soil erosion is the more commonly 

assessed aspect of soils (Pimentel et al., 1995; Adhikari and Nadella, 2011); Table 3 presents 

a synthesis of estimated costs regarding soil erosion globally and nationally, demonstrating 

that this represents a major economic loss, moreover, a major environmental loss. These 

estimates only account for the onsite loss of production from the soil; consideration of offsite 



14 
 

costs, such as silting of water ways and pollution would significantly increase the economic 

loss (e.g. Repetto et al, 1997; Pretty et al., 2000; Nanere et al., 2007). These numbers are not 

insignificant, so why would a private landowner allow this economic loss? The answer is 

complex. For example, land tenure in developing nations is often insecure so there is no 

incentive to deploy soil conservation measures (Yirga and Hassan, 2010). In developed 

countries, the costs of soil conservation often falls onto the farmer, who might or might not 

be able to cope with it, depending on financial aids or the state of the farm finances, whereas 

the beneficiaries of soil conservation extend to the whole of society.  

Estimates of soil erosion have been used to modify estimates of Total Factor 

productivity (Repetto et al, 1997). The methods used to conduct this type of analysis are 

based on adjustments to either productivity decline or the replacement cost of maintaining the 

level of soil quality. There have also been efforts to assess the off-site costs of soil erosion. 

For example, Nanere et al. (2007) estimated by how much Australian agricultural 

productivity needs to be changed when off-site costs of soil erosion are taken into account. 

There have also been a few studies estimating the national economic cost of soil erosion and 

sedimentation in New Zealand. See for example Barry et al. (2011) who looked at the cost of 

both on and off site effects. 

Other studies at the micro level examine how specific forms of agricultural practice 

have induced the emergence of negative externalities such as salinity which in turn affects 

productivity (Ali and Byerlee, 2002). This research (and more recent work) shows that 

technology adoption can increase productivity but at the same time have an impact on the 

resource base (ie soil quality) that has a negative impact on productivity. 

One study, Dominati and Mackay (2013), looked at soil ecosystem services per se. 

The study implemented an ecosystem services approach at the farm scale for New Zealand 

hill country sheep and beef farms looking at the quantification of land degradation by erosion 

and the value of soil conservation practices. The study focused on how an erosion event or 

the implementation of soil conservation policies affected soil change and therefore the 

provision of ecosystem services long term. Economic valuation methods were used in a cost 

benefit analysis including the economic value of the whole range of soil services. 

In more developed nations it has been more cost effective to replace lost nutrients 

with cheap fertilizer produced from cheap energy supplies. Moreover, the subsequent damage 

to rivers and streams has generally not been borne by the land manager. This over 

exploitation of the soil resource, largely to produce food, is now attracting greater attention 

(Mueller et al., 2012) and is being checked as soils reach the lower limits of fertility, with the 
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spectrum of nutrients and micro-nutrients in need of replacement (Jones et al., 2013). 

Concurrently, the cost of energy and fertilizer production is increasing, and the environmental 

damage, such as dead zones in rivers such as the Mississippi and Yangzte is becoming more 

socially unacceptable. Moreover, the importance of soils in terms of their multi-functional 

use, e.g. carbon storage, waste recycling, water filtration, climate buffering, rather than just 

their food production function is being recognized by policy makers (Blum et al., 2004). The 

soil thematic strategy is the response of policy makers in the European Union who 

commissioned a valuation exercise to scope the scale of threats to soil function. The findings 

of the Impact Assessment (SEC(2006) 620, 2006) are presented in Table 2 and clearly show 

that the economic costs of allowing our soils to be degraded are sizeable. Moreover, soils also 

present a major economic natural hazard in the form of shrink-swell this can be regarded as a 

degradation process leading to negative outcomes. According to Jones and Jefferson (2012), 

the Association of British Insurers has estimated that the average cost of shrink–swell related 

subsidence to the insurance industry stands at over £400 million a year (Driscoll & Crilly, 

2000). In the US the estimated damage to buildings and infrastructure exceeds $15 billion 

annually.  

 

Indirect values: Stated preference research 

There are a much smaller number of stated preference studies that estimate the value 

of agricultural soil conservation programs (eg, Colombo et al., 2005 and 2006; Almansa et 

al., 2012; Rosario-Diaz et al., 2013). It is these methods that cause so much tension and 

debate in relation to non-market valuation. This in part might explain why there have been so 

few applications.  However, it is also the case that the majority of on-site externalities that 

arise from land use management can be reasonably well captured by the methods already 

discussed. But, when research turns to off-site externalities or on-site effects that relate to 

biodiversity and conservation it is the case that there are more obvious costs to society not 

captured in output prices or land values and it is, therefore, more meaningful to employ stated 

preference research methods. 

In general all these studies set out to examine the preferences of farmers to adopt 

specific farm level soil management practices and the costs associated with adoption and 

implementation, with a view to reducing off-site externalities from soil erosion. In particular, 

Almansa et al. (2012) give an overview of valuation techniques applied to soil erosion, noting 

that replacement valuation methods are most widely used, but that newer stated preference 

techniques offer some advantages when dealing with specific issues. The authors indicate 
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their scepticism when initially applying contingent valuation methods, but conclude that 

stated preference methods can provide useful information for decision makers, providing a 

more accurate assessment of the socio-economic returns. In many ways these observations 

are in keeping with those made by Carson (2012) about the process of undertaking a 

contingent valuation is as informative as the value estimates generated. 

 

Global web survey of soil price 

As part of our review of direct use value, we conducted what we believe to be a first, 

limited, web survey of topsoil prices from around the globe (Fig 3). Prices were collected 

from English and Spanish speaking countries, and from partners in Crete and Iceland, using 

web search engines to find topsoil prices. Searches were conducted in 2013 using the key 

words, soil, topsoil, price and specific countries. The search was limited to topsoil being sold 

in large quantities, e.g. 1 tonne plus for landscaping, as price is highly variable for small 

quantities sold in shops. Values were calculated for 1 tonne of topsoil in $US after removing 

taxes from the prices; these were then plotted as soil value adjusted according to purchasing 

power parity (For more information see: Common and Stagl, 2005) which is a technique that 

can be used to determine a ‘relative value’ for monetary values that are in different 

currencies. Figure. 3 shows that across the western world soil prices show some variability, 

with the median price being ~$22 per tonne in the USA and Canada, and $47 per tonne in the 

UK, perhaps a reflection of energy prices.  

 

Replacement costs 

 In conjunction with this it is insightful to examine some back of the envelope 

calculations with regard to soil replacement costs. This is done by determining the 

components of soil that contribute most to its market price based on replacement costs for 

major constituents. Table 4 considers market retail prices of stocks from the UK (£) that 

could be used to create basic topsoil, not accounting for the transport, mixing, or time 

required to create genuine soil. Examining the costs of the constituents discloses some 

revealing numbers, for instance, simply replacing the mineral component (Sand, silt and clay) 

is expensive because of the large amounts required, so when we see mineral soil blowing 

away, or being washed off a field into a water course, there’s potentially a sizeable equivalent 

replacement cost. The price used for carbon (£150) reflects the approximate current 

abatement cost for a tonne of carbon based on the numbers in the Stern review (Stern, 2006). 

Keeping carbon in soils constitutes a major component of the topsoil value for combating 
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climate change; a 1% loss of soil carbon would be equivalent to the UK’s annual fossil fuel 

emissions (Defra, 2009). Finally, we considered adding 2 tonnes of worms as a surrogate for 

soil biota. Worms are not grown in mass production, so the retail cost for composting worms 

is relatively high. However, it makes the point that small amounts of soil biota add high value 

to the soil. Conserving and encouraging soil biota represents a major investment in 

maintaining and building soil ecological infrastructure and the soils natural capital (Robinson 

et al., 2013b; Dominati et al., 2014). Farmers are often concerned with nutrients, as fertiliser 

inputs are the major input they buy, but although the cost per tonne is relatively high, the 

amount per ha is relatively low and thus not a major contributor to the soils value above what 

is already there.  Although this is a simplistic analysis of the price of topsoil it does reveal 

some insight into the relative replacement costs of the stocks constituting soil natural capital 

(Robinson et al., 2009) and shows the very high economic price of such critical natural 

capital (Ekins 2003). This is before the externalities associated with soil loss are accounted 

for; these increase the costs associated with improved soil management. The analysis in Table 

4 illustrates that replacing soil is expensive and should encourage those managing the land to 

conserve and invest in building their soils. 

 

SOIL AND ITS INCLUSION IN THE DESIGN, IMPLEMENTATION AND 

EVALUATION OF POLICY 

 

Decision support tools for assessing ecosystems services on which valuation can be 

based 

 

Valuation requires information about what it is that we seek to value. This can be 

based on data alone, but increasingly output from models is being used, with an array of 

decision support tools (DSTs), both spatial and non-spatial being developed to assess 

ecosystem services. The output from these models can then serve as the basis of an economic 

valuation and decision making.  

Life Cycle Assessment (LCA) is being increasingly used as a DST in environmental 

impact assessment, adapted from commodity production, for use in policy intervention 

scenarios. LCA consists of a tool to quantitatively evaluate, environmental impacts resulting 

from a product or service life cycle, from material extraction to waste management. By 

means of environmental indicators, associated with specific impact categories (e.g., ‘climate 

change’, ‘land use’, ‘acidification’), resource flows are associated with different impacts 
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(midpoints) and damages (so-called ‘endpoints’) on the environment. The EC 

COM((2011)571) emphasizes the need to look at resources over their whole life cycle, taking 

into account not only the impacts generated from cradle-to-grave, but also their value chain, 

in order to reach a more efficient use and sustainable consumption and production patterns, 

avoiding burden shifting along the life cycle. Several methodologies have been applied, from 

qualitative to quantitative methods, based on monetization, expert panels, proxy approaches, 

technology abatement or distance-to-target. Regarding the monetisation methods, damages 

resulting from a specific production system may be evaluated in monetary terms, with values 

associated with the WTP for the potential reduction or avoidance of these damages. No 

consensus exists on the use of specific methodologies nor the values, or weights, given to 

specific impacts, and little differentiation is done between average and marginal effects. 

Despite the important role of ecosystem services and goods in human well-being and 

activities, some challenges exist for their accounting in LCA (Bakshi and Small, 2011). First, 

some services, such as regulating, are difficult to quantify in physical terms. Second, 

aggregation (by means, for example, monetary valuation), which is used to ease interpretation 

of data, may hide important information on individual resources. Finally, not all methods that 

account for ecosystem services are well suited to a life cycle evaluation. As to what concerns 

soil quality, current modelling still neglects the complexity and interaction of soil 

characteristics and value of functions, such as cycling of nutrients, mainly due to the 

difficulty in relating the impacts on soil quality to specific flows (Garrigues et al., 2012); a 

necessary step in LCA. Moreover, no direct valuation of ecosystem services supplied by soil 

is yet made operational in current life cycle assessments. 

An alternative suite of DSTs seeks to make a fuller assessment of ecosystem services 

through greater biophysical assessment and modelling, using either mechanistic or statistical 

models. There are no spatially explicit DSTs designed for soils or soil management that we 

are aware of. However, within the wider context of managing land for multiple uses and 

particularly in the context of ecosystem services, there are a number of tools developing 

(Vigerstol and Aukema, 2011; Bagstad et al. 2013a). The majority of these utilise soils data 

and predict soil change to some extent, e.g. erosion. The global unified metamodel of the 

biosphere (GUMBO) was perhaps one of the first of these assessment tools containing 

predictions for soil formation, and nutrient cycling, alongside social and economic 

information (Boumans et al., 2002). InVEST (Nelson et al., 2009) is perhaps the best known, 

or more widely applied of the ecosystem service assessment tools, and uses a mechanistic 

modelling approach to predict ecosystem service dynamics, whilst tools such as the 
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ARtificial Intelligence for Ecosystem Services (ARIES) tool takes a more statistical 

approach, set within a conceptual framework which encompasses both the biophysical supply 

and the spatial delivery of service to the beneficiaries (Bagstad et al., 2011 and 2013b). At the 

regional to national level the Land Utilization and Capability Indicator model (LUCI) is 

another emerging tool optimised to quickly use nationally available datasets to determine 

ecosystem services (Jackson et al., 2013). LUCI models a number of soil-mediated processes 

including infiltration, flood control, carbon storage and sequestration and soil fertility. These 

tools link to valuation in different ways. InVEST for example includes a full economic 

valuation tool allowing the user to obtain monetary values, whilst LUCI uses biophysical 

levels as part of a trade-off evaluation component. The user can specify biophysical 

thresholds resulting in five categories, and high existing value, existing value, marginal value, 

opportunity to improve a service, and high opportunity to improve a service.  

In most spatial DSTs to date, soils information has been incorporated purely as a GIS 

input layer, on which to base other derivations (e.g., soil C, agricultural productivity), and 

rarely incorporated for their own sake. With an increasing focus on the essential role of soils 

in the delivery of final services, such as carbon sequestration, or crop production, there is a 

need to address these aspects within DSTs. Moreover, there is the need to recognize the soil 

as a valuable ecosystem in itself and protect the variety of diversity within it.  

If this is to be achieved, there are a number of issues which must be overcome. One 

relates to the spatial resolution of existing soil survey data and land-cover or land-use data, 

which while comprehensively surveyed at a national scale in many countries, does not 

provide resolution down to the farm scale. There are often other data available from a wider 

range of sources e.g. extensive farm surveys, soil quality consulting and scientific survey data 

which could be released and collated centrally (after a suitable period), even exploiting 

crowd-sourcing of data (Shelley et al., 2013). Soil temporal change is also rarely monitored, 

but is important for assessing the impact of policy and management as for example 

highlighted by the findings of the Countryside Survey (Reynolds et al., 2013). Another issue 

is that response functions or models linking the contribution of different soil types to many 

ecosystem services and other functions are currently lacking, e.g. infiltration, or above- and 

below-ground biodiversity. Nor do we have a good understanding of the impact of soil depth 

on ecosystem service delivery, but we know from studies that deep soils (>2m) make 

important contributions to carbon cycling (Jobbagy and Jackson, 2000; Richter and 

Markewitz, 1995). Within the context of ecosystem services it is vital that models consider 
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soils to depths beyond the solum, and that appropriate soil data is obtained and linked to land-

cover and land-use data to support this effort.     

 

Macro-economic performance, indicators and soil 

As we have already explained, societal economic activity impacts the environment, 

however, it is widely recognized that current measures of economic activity such as Gross 

Domestic Product (GDP) and Net National Product (NNP), generated by the system of 

national accounts (SNA) are inadequate at accurately measuring the contribution of, and 

impact on the environment. Basically, the costs of environmental degradation, natural 

resource depletion and non-market values are either not included because the SNA only 

considers goods and services transacted in markets or accounted for as a benefit, as loss often 

incurs additional economic activity (Harris and Fraser, 2002). Thus, the current macro-

economic measures of performance that inform policy and debate can provide misleading 

information with respect to sustainable use of resources. This point has been articulated by 

Robert Repetto (1988) as “steering by the wrong compass”.   

Despite shortcomings the SNA and associated measures of economic activity such as 

GDP remain central to policy making. This can in part be traced to the extent to which the 

SNA are embedded in economic decision making. Introduced by the United Nations 

Statistical Division (UNSD) it provides an internationally agreed national accounting 

framework (ie principles, concepts and classifications) providing a consistent description of 

market based economic activity within, and between, all economies.  

The limitations of the SNA in relation to the environment and depletion of natural 

resources have led to the development of the 2003 System of Environmental and Economic 

Accounts (SEEA, 2012). The approach articulated within the SEEA is not to explicitly 

include monetary estimates of environmental damage (such as soil erosion) and resource use 

in accounts. Instead the SEEA advocates disaggregated, issue specific “satellite” accounts 

that sit beside the existing SNA that captures resource use and environmental degradation.  

 Within the SEEA report soil is dealt with in two main areas, as a physical asset, and 

in the physical supply and use tables (PSUT) (SEEA, 2012). As a physical asset, assessment 

is based on area and volume. In terms of area it states, ‘the focus is on the area of different 

soil types at the beginning and end of an accounting period and on changes in the availability 

of different soil types used for agriculture and forestry.’ (SEEA, 2012, page 174). In terms of 

volume, ‘since the intent of the soil resources account is to recorded changes in the volume 

of soil resources that can operate as a biological system, the loss of the top layers of soil 
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resource due to this extraction should be recorded as permanent reductions in soil resources 

unless the purpose is to create new biological soil systems in other locations.’ (SEEA, 2012, 

page 175); and as we’ve seen in the previous sections the amount of soil moved annually is 

substantial. The implications of this for soil science are that soils must be viewed in a much 

more dynamic way, and assessed more often, to capture this. Furthermore, if the emphasis is 

on soil as a biological system, then the current soil survey lower boundary depth of 1-2m, 

depending on system, may be inadequate to capture this. As previously stated, many soils, 

especially where forests are located, have biological activity going deeper than this (Richter 

and Markewitz, 1995), which will be important for carbon accounting etc (Jobbagy and 

Jackson, 2000). The report makes it clear that, 

 ‘the accounting framework presented in the Central Framework does not fully 

describe the overall state or condition of soil resources, changes in the health of soil 

resources, or their capacity to continue to provide the benefits that soil resources 

generate.’ (SEEA, 2012, page 176). 

Nor is this captured in terms of value where it states, “in the Central Framework the value of 

soil resources is tied directly to the value of land. In this context connections may be made 

between changes in the combined value of land and soil and changes in the associated income 

earned from use of the soil resources.” This means the accounts focus on changes in quantity 

but not quality or functionality, which underpins the delivery of ecosystem services. Hence, 

quantity is a useful start to capture the value of soil as an extracted good but fails to capture 

the value of soil in support of the delivery of ecosystem services.    

Ecosystem services literature has changed the focus of research from just flows to 

include stocks of environmental resources, and in turn has produced new thinking about 

adjustments to economic measures of economic performance, as well as the type of 

environmental data we need to collect. For example, Walker et al. (2010) undertook a case 

study in South East Australia in relation to agricultural land use and soil salinity. They 

focused on stock resilience (defined in this case as water table depth) and showed how it had 

changed (fallen) between 1991 and 2001. However, this practical application is illustrative 

and it highlights the demands for scientific data as well as the associated uncertainties. But 

despite the obvious limitations of this approach, which is a long way removed from green 

GDP it does offer an approach to address the question of land use and sustainability. 

There is also a gradual change in thinking about sustainability and how we assess it. 

For example, in the UK there is now the Natural Capital Committee 

(http://www.defra.gov.uk/naturalcapitalcommittee/). This group, which reports directly to 
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government in the form of the Economic Affairs Committee, provides government with 

better information about Natural Capital and as a result helps set priorities for policy actions. 

This committee has started to examine what is referred to as a Natural Asset Check (NAC). A 

NAC is in many ways an extension of the green GDP research agenda and the development 

of satellite accounts, but with a stronger emphasis on how the information can be used to 

inform policy.  The key issue with the NAC is that it will monitor key environmental 

indicators over time and it will be the changes in these indicators that will help inform policy 

choice. In terms of how best to implement the NAC the work undertaken by the European 

Environment Agency (EEA) and its development of Eco-system accounts has been 

highlighted. In many ways the various activities and research agendas are linked, albeit not 

always explicitly.  But if we wish to pursue a natural asset check then this requires not only 

more effort to augment and extend existing national accounts but it will require the 

comprehensive collection and collation of far more bio-physical data to allow for the 

construction of more comprehensive biophysical  ecosystem accounts. 

 

Valuation for payments for ecosystem services (PES) 

Traditionally farms have been managed for the single function of production. 

Increasingly growers are being asked to manage land for a number of different functions and 

services. Agricultural policies are changing, reflecting the need to make payments to land 

owners for the provision of services that are important for the common good. Payments for 

ecosystem services offer incentives to farmers or landowners in exchange for managing their 

land to provide some sort of ecological service. The concept of PES can perhaps be traced to 

the Dust Bowl era and the initiation of the United States' ‘Conservation Reserve Program’. 

The US Federal government ‘rents’ ~140,000 km
2
 of land annually to reduce soil erosion, 

improve water quality, enhance water supply through groundwater recharge, increase wildlife 

habitat, and reduce damage caused by floods and other natural disasters. This is achieved by 

payment of approximately ~$1.8 billion a year to farmers and landowners to plant long-term 

ground cover. More recently programs such as REDD (Reduced Emissions from 

Deforestation and Degradation; http://www.un-redd.org/) are being promoted as ways to raise 

the viability of sustainable forest management (SFM) through the use of PES. The promotion 

of conservation and SFM in the tropics faces a range of market, policy and governance 

failures that encourage alternative land uses, often resulting in high social and environmental 

externalities (Richards and Jenkins, 2007). 

http://www.un-redd.org/
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In terms of carbon in soil the focus of research efforts relates to climate change. In 

particular, economic analysis has examined the role of agricultural land use and the 

associated implications for soil management as a means to offset, by sequestration, other 

forms of carbon emissions (eg, Gonzalez-Ramirez et al., 2012; Antle et al., 2001; Post et al., 

2004; Lal, 2011). There is also a great deal of interest in soil carbon management in relation 

to developing countries via REDD which is at the forefront of implementation of (PES) in 

developing countries. 

Farley and Costanza (2010) recognize two distinct approaches to PES in the literature. 

I) defined by Wunder (2005), where an ideal PES scheme should integrate ecosystem 

services into markets, and should be like any other market transaction; and II) defining, “PES 

as a transfer of resources between social actors, which aims to create incentives to align 

individual and/or collective land use decisions with the social interest in the management of 

natural resources” (Muradian et al., 2010, page 1205). According to Farley and Costanza 

(2010) the second approach is more closely aligned with ecological economics. One of the 

debates concerning PES is whether payments should be conditional on doing something or 

reciprocal, where payments are seen as a fair share of the costs of undertaking a desired 

activity, such that the recipients feel an intrinsic obligation to reciprocate (Vatn, 2010).  

With regard to soils the new European Union common agricultural policy (CAP) 

contains mechanisms that provide PES. Traditionally focused more on production (Axis 1), 

reforms were phased in between 2004 and 2012 that increasingly transferred more payment 

to land stewardship rather than specific crop production (Axis II). In June 2003, EU farm 

ministers adopted a fundamental reform of the CAP which "decoupled" subsidies from 

particular crops. It introduced a new ‘single farm payment’ which is subject to ‘cross-

compliance’ conditions relating to environment, food safety and animal welfare standards. 

Soil is now explicitly captured under good agricultural and environmental conditions 

(GAEC) and the water framework directive (WFD). The GAEC are the cross-compliance – 

you do and then we pay.  

 

SUMMARY 

 

‘Value is simply that quality of an object that permits measurability and therefore 

comparability’ (Robertson, 2012), and should be seen as helpful in this context. But, 

understanding what constitutes economic value (Fig 2) is necessary if efficient and effective 
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resource management is to occur. Furthermore, understanding value yields key insights into 

the methods required to undertake valuation activities. Valuation (and valuation activities) 

offers an important mechanism to highlight the specific importance of often unseen, 

contributions of soil to benefit humanity, and that of the earth system. Valuation must not be 

confused with price, which is a lower bound to economic value.  

Our review highlights that soils make critical and essential contributions to the 

economy, e.g. through waste processing, climate and water regulation and production of soil 

products such as turf grass, and that soil loss represents a major environmental and economic 

loss. A survey of soil commodity prices on the web indicates that the median direct market 

value of topsoil in terms of price per tonne is ~$22 in the USA and Canada, and ~$47 in the 

UK. Most direct value assessment in the literature is based on replacement costs and relates 

to erosion, whilst relatively little indirect valuation using stated preference methods has been 

undertaken with regard to soil. It is difficult to find studies dealing with soil per se as it is 

usually included in assessments of land or production, making it difficult to assess how the 

soil resource itself is changing.   

Soils are increasingly recognised as a valuable economic resource in their own right, 

for example in the UN SEEA. However, SEEA currently deals more with soil quantity than 

quality or functionality, perhaps as it is easier to assess. In the SEEA it is the ability of soil to 

act as a biological system that is considered, which may challenge how soil survey 

traditionally defines soil depth and spatial extent. Moreover, the accounts require ‘change’ in 

volume and spatial extent to be reported on annual time scales, something not captured in 

traditional soil surveys.  

Yet, and this is a fundamental limitation, soil is valued as a component of land, which 

is insufficient for capturing changes in the value of soil associated with alteration of soil 

quality or functionality as is clearly stated. It is important to capture changes to the soil 

ecosystem and its functionality, and methods should be developed to capture soil value under 

various uses, for both quantity and functionality. This could be achieved by accounting for 

the amount of soil, above and below key biophysical thresholds, e.g. carbon levels, or salinity 

levels, etc. In these situations, economic assessments would require more frequent soil 

functional monitoring on which to base valuation. In order to work well, economists and soil 

scientists must work together to develop indicators that can be used to assess the state of ‘soil 

function,’ if a soil ‘quality’ aspect is to be incorporated into approaches such as the SEEA. 

Economists and soil scientists will benefit from this relationship by developing a more 
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informative soil quantity and functionality accounting framework, with a fuller recognition of 

soils from an economic point of view.           

 

Acknowledgements 

 

Funding for D.A. Robinson, B. Davíðsdóttir, J.O.G. Jónsson, D.M. Souza and S. Banwart for 

this research was provided in part by the European Commission FP 7 Collaborative Project 

“Soil Transformations in European Catchments” (SoilTrEC) (Grant Agreement no. 244118). 

In addition, we would like to acknowledge the 2012 Kirkham Conference for the stimulation 

of ideas in addition to the NERC/LWEC Valuing Nature Network project “Scale dependence 

of stocks and flows in the valuation of ecosystem services”. 

 

 



26 
 

REFERENCES 

Adhikari, B., and K. Nadella. 2011. Ecological economics of soil erosion: a review of the current state 

of knowledge, p. 134-152, In R. Costanza, et al., (eds.) Ecological Economics Reviews. ed. 

Annals of the New York Academy of Sciences. 

Ali, M., and D. Byerlee. 2002. Productivity growth and resource degradation in Pakistan's Punjab: A 

decomposition analysis.  Economic Development and Cultural Change 50:839-863. 

Almansa, C., J. Calatrava, and J.M. Martinez-Paz. 2012. Extending the framework of the economic 

evaluation of erosion control actions in Mediterranean basins.  Land Use Policy 29:294-308. 

Antle, J.M., S.M. Capalbo, S. Mooney, E.T. Elliott, and K.H. Paustian. 2001. Economic analysis of 

agricultural soil carbon sequestration: An integrated assessment approach.  Journal of 

Agricultural and Resource Economics 26:344-367. 

Areppim, 2013. CPI inflation calculator, (http://stats.areppim.com/calc/calc_usdlrxdeflxcpi.php). 

Bagstad, K.J., F. Villa, G.W. Johnson, and B. Voigt. 2011. ARIES—Artificial Intelligence for 

Ecosystem Services: A Guide to Models and Data, Version 1.0 Beta. The ARIES Consortium, 

Bilbao, Spain. 

Bagstad, K.J., D. Semmens, S. Waage, and R. Winthrop. 2013a. A comparative assessment of tools 

for ecosystem services quantification and valuation. .  Ecosystem Services 5 27-39. 

Bagstad, K.J., G.W. Johnson, B. Voigt, and F. Villa. 2013b. Spatial dynamics of ecosystem service 

flows: A comprehensive approach to quantifying actual services.  Ecosystem Services 4:117-

125. 

Bakshi, B., and M.J. Small. 2011. Incorporating Ecosystem Services Into Life Cycle Assessment.  

Journal of Industrial Ecology 15:477-478. 

Banwart, S. 2011. Save our soils.  Nature 474:151-152. 

Barry, L., U. Paragahawewa, R. Yao, and J. Turner. 2011. Valuing Avoided Soil Erosion by 

Considering Private and Public Net Benefits. NZARES Conference. Nelsen, New Zealand: 

New Zealand Agricultural & Resource Economics Society (Inc.). 

Bateman, I.J., R.T. Carson, B. Day, M. Hanemann, N. Hanley, T. Hott, M. Jones-Lee, G. Loomes, S. 

Mourato, E. Ozdemiroglu, D.W. Pearce, R. Sugden, and J. Swanson. 2002. Economic 

Valuation with Stated Preference Techniques: A Manual, Department for Transport, Edward 

Elgar, Cheltenham UK. 

Bateman, I.J. 2012. Economic Values from Ecosystems, Chapter 22, pp 1067-1152, in UK National 

Ecosystem Assessment: Technical Report. 

Beaumont, N.J., M.C. Austen, J.P. Atkins, D. Burdon, S. Degraer, T.P. Dentinho, S. Derous, P. Holm, 

T. Horton, E. van Ierland, A.H. Marboe, D.J. Starkey, M. Townsend, and T. Zarzycki. 2007. 

Identification, definition and quantification of goods and services provided by marine 

biodiversity: Implications for the ecosystem approach.  Marine Pollution Bulletin 54:253-265. 

Blum, W.E.H., J. Busing, and L. Montanarella. 2004. Research needs in support of the European 

thematic strategy for soil protection.  Trac-Trends in Analytical Chemistry 23:680-685. 

Bouma, J. 2005. Soil scientists in a changing world, p. 67-+, In D. L. Sparks, (ed.) Advances in 

Agronomy, Vol 88. ed. Advances in Agronomy. 

Boumans, R., R. Costanza, J. Farley, M.A. Wilson, R. Portela, J. Rotmans, F. Villa, and M. Grasso. 

2002. Modeling the dynamics of the integrated earth system and the value of global 

ecosystem services using the GUMBO model.  Ecological Economics 41:529-560. 

Bridges, E.M., and M. Catizzone. 1996. Soil science in a holistic framework: Discussion of an 

improved integrated approach.  Geoderma 71:275-287. 

British Sugar, 2014. Topsoil. (http://www.britishsugar.co.uk/topsoil.aspx) 

Carson, R.T. 2012. Contingent Valuation: A Practical Alternative when Prices Aren't Available.  

Journal of Economic Perspectives 26:27-42. 

Christians, N.E. 2011. Fundamentals of turf grass management page 333. Wiley.com. 

Cohen, M.J., M.T. Brown, and K.D. Shepherd. 2006. Estimating the environmental costs of soil 

erosion at multiple scales in Kenya using emergy synthesis.  Agriculture Ecosystems & 

Environment 114:249-269. 



27 
 

Colombo, S., N. Hanley, and J. Calatrava-Requena. 2005. Designing policy for reducing the off-farm 

effects of soil erosion using choice experiments.  Journal of Agricultural Economics 56:81-

95. 

Colombo, S., J. Calatrava-Requena, and N. Hanley. 2006. Analysing the social benefits of soil 

conservation measures using stated preference methods.  Ecological Economics 58:850-861. 

Common, M., and S., Stagl. 2005. Ecological Economics: An Introduction. Cambridge University 

Press. 

Costanza, R., J. Cumberland, H. Daly, R. Goodland, and R. Norgaard. 1997a. An introduction to 

ecological economics St. Lucie Press, Boca Raton, FL. 

Costanza, R., R. dArge, R. deGroot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. 

Oneill, J. Paruelo, R.G. Raskin, P. Sutton, and M. vandenBelt. 1997b. The value of the 

world's ecosystem services and natural capital.  Nature 387:253-260. 

Daily, G. 1997. Natures services: societal dependence on natural ecosystems Island Press, 

Washington D.C. 

Daily, G., P. Matson, and P. Vitousek. 1997. Ecosystem services supplied by soils, In G. Daily, (ed.) 

Nature’s services: Societal dependence on natural ecosystems. ed. Island Press, Washington 

D.C. 

Daly, H.E. 1973. Toward a steady-state economy. San Francisco, CA, Freeman, W.H. 

Defra 2007. An Introductory Guide to Valuing Ecosystem Services. London: Department for 

Environment, Food and Rural Affairs, 

http://ec.europa.eu/environment/nature/biodiversity/economics/pdf/valuing_ecosystems.pdf. 

Defra, 2009. Safeguarding our soils, A strategy for England. PB13297, Nobel House, 17 Smith 

Square, London SW1P 3JR, 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69261/pb1329

7-soil-strategy-090910.pdf 

Defra. 2011. Impact Assessment: Reducing and phasing out the horticultural use of peat in England. 

IA No: Defra1063 Defra, Noble House, Smith Sq. London. 

de Groot, R.S., M.A. Wilson, and R.M.J. Boumans. 2002. A typology for the classification, 

description and valuation of ecosystem functions, goods and services. (in English) Ecological 

Economics 41:393-408. 

Dominati, E.J., M. Patterson, and A. Mackay. 2010. A framework for classifying and quantifying the 

natural capital and ecosystem services of soils.  Ecological Economics 69:1858-1868. 

Dominati, E.J., and A.D. Mackay. 2013. An ecosystem services approach to the cost of soil erosion 

and value of soil conservation, report prepared for Hawke’s Bay Regional Council, 

AgResearch, New Zealand. 

Dominati, E.J., Robinson, D.A., Marchant, S.C., Bristow, K.L. & A.D. Mackay. 2014. Natural 

Capital, Ecological Infrastructure and Ecosystem Services in Agro-Ecosystems. Encyclopedia 

of Agriculture and Food Systems (In Press). 

Driscoll, R. and M. Crilly. 2000. Subsidence damage to domestic buildings. Lessons learned and 

questions asked. Building Research Establishment, London.  

EA. 2002. Agriculture and Natural Resources: Benefits, Costs and potential Solutions (Bristol, UK: 

Environment Agency). Accessed 28 June 2012, available at: http://www.environment-

agency.gov.uk/static/documents/Research/natrespt1_673325.pdf. 

EC. 2011. Communication from the Commission to the European Parliament, the Council, the 

European Economic and Social Committee and the Committee of the regions (COM(2011) 

571: Roadmap to a Resource Efficient Europe.  

Edvardsson, K. 2004. Using goals in environmental management: The Swedish system of 

environmental objectives.  Environmental Management 34:170-180. 

Edvardsson, K. 2007. Setting rational environmental goals: Five Swedish environmental quality 

objectives.  Journal of Environmental Planning and Management 50:297-316. 

Edvardsson, K., and S. Hansson. 2005. When is a goal rational?  Social Choice and Welfare 24:343-

361. 

Edwards-Jones, G., B. Davies, and S. Hussain. 2000. Ecological Economics: An Introduction, 

Blackwell Science, Oxford, UK. 

http://ec.europa.eu/environment/nature/biodiversity/economics/pdf/valuing_ecosystems.pdf


28 
 

Ekins, O., C. Folke, and R. De Groot. 2003. Identifying critical natural capital.  Ecological Economics 

44:159-163. 

Els, F. 2014. China's rare earth industry expands but problems persist. 

(http://www.mining.com/chinas-rare-earth-profits-fall-98385/) 

Farber, S.C., R. Costanza, and M.A. Wilson. 2002. Economic and ecological concepts for valuing 

ecosystem services.  Ecological Economics 41:375-392. 

Farley, J., and R. Costanza. 2010. Payments for ecosystem services: From local to global.  Ecological 

Economics 69:2060-2068. 

Forster, J. 2012. For peat's sake... B&Q runs into trouble with new topsoil, Independent, Tuesday 03 

April, http://www.independent.co.uk/environment/for-peats-sake-bq-runs-into-trouble-with-

new-topsoil-7609048.html. 

Garrigues, E., M.S. Corson, D.A. Angers, H.M.G. van der Werf, and C. Walter. 2012. Soil quality in 

Life Cycle Assessment: Towards development of an indicator.  Ecological Indicators 18:434-

442. 

Gasparatos, A., M. El-Haram, M. Horner. 2008. A critical review of reductionist approaches for 

assessing the progress towards sustainability. Environmental Impact Assessment Review 

28:286–311. 

Georgescu-Roegen, N. 1971. The Entropy Law and the Economic Process, Harvard University Press, 

Cambridge, Mass. 

Georgescu-Roegen, N. 1979. Energy and analysis and economic valuation.  Southern Economic 

Journal 45:1023-1058. 

Gonzalez-Ramirez, J., C.L. Kling, and A. Valcu. 2012. An Overview of Carbon Offsets from 

Agriculture, p. 144-159, In G. C. Rausser, (ed.) Annual Review of Resource Economics, Vol 

4. ed. Annual Review of Resource Economics. 

Hannon, B., R. Costanza, and R.A. Herendeen. 1986. Measures of energy-cost and value in 

ecosystems.  Journal of Environmental Economics and Management 13:391-401. 

Harris, M., and I. Fraser. 2002. Natural resource accounting in theory and practice: A critical 

assessment.  Australian Journal of Agricultural and Resource Economics 46:139-192. 

Hausman, J. 2012. Contingent Valuation: From Dubious to Hopeless.  Journal of Economic 

Perspectives 26:43-56. 

Haygarth, P.M., and K. Ritz. 2009. The future of soils and land use in the UK: Soil systems for the 

provision of land-based ecosystem services.  Land Use Policy 26:S187-S197. 

Holmes, T., E. Blackmore, R. Hawkins and T. Wakeford, 2011. The Common Cause Handbook: 
http://valuesandframes.org/Hooke, R., LeB., 2000. On the history of humans as geomorphic 

agents. Geology 28: 843–846. 

Hooke, R., LeB., 1994. On the efficacy of humans as geomorphic agents. GSA Today 4(9):217, 224-

225. 

Howard, B.M., R.S. Hails, A. Watt, M. Potschin, R. Haines-Young, and  2011. Accounting for natural 

capital, Natural Capital Initiative, 

http://www.naturalcapitalinitiative.org.uk/sites/default/files/images/Howard_etal_2011_Natur

al_Asset_Check.pdf  

Howe, 2013. Rare earth minerals discovered in Carribean soil. (http://www.mining.com/rare-earth-

minerals-discovered-in-carribean-soil/) 

Jackson, B., T. Pagella, F. Sinclair, B. Orellana, A. Henshaw, B. Reynolds, N. McIntyre, H. Wheater, 

and A. Eycott. 2013. Polyscape: A GIS mapping framework providing efficient and spatially 

explicit landscape-scale valuation of multiple ecosystem services.  Landscape and Urban 

Planning 112:74-88. 

Jobbagy, E.G., and R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation 

to climate and vegetation.  Ecological Applications 10:423-436. 

Jones, D.L., P. Cross, P.J.A. Withers, T.H. DeLuca, D.A. Robinson, R.S. Quilliam, I.M. Harris, D.R. 

Chadwick, and G. Edwards-Jones. 2013. Review: Nutrient stripping: the global disparity 

between food security and soil nutrient stocks.  Journal of Applied Ecology 50:851-862. 

Jones, H., P. Clough, B. Höck, and C. Phillips. 2008. Economic costs of hill country erosion and 

benefits of mitigation in New Zealand: Review and recommendation of approach. In: ed. 

Scion (Forest Research Institute Ltd). Pp. 



29 
 

Jones, L. D., and I. Jefferson. 2012. Expansive soils (pp. 413-441). Institute of Civil Engineers 

Publishing, London. 

Koch, A., A. McBratney, and R. Lal. 2012. Put soil security on the global agenda.  Nature 492:186-

186. 

Kuhlman, T., S. Reinhard, and A. Gaaff. 2010. Estimating the costs and benefits of soil conservation 

in Europe.  Land Use Policy 27:22-32. 

Lal, R. 2011. Sequestering carbon in soils of agro-ecosystems.  Food Policy 36:S33-S39. 

Lavelle, P., T. Decaens, M. Aubert, S. Barot, M. Blouin, F. Bureau, P. Margerie, P. Mora, and J.P. 

Rossi. 2006. Soil invertebrates and ecosystem services.  European Journal of Soil Biology 

42:S3-S15. 

MEA. 2005. Millennium Ecosystem Assessment, Ecosystems and Human Well-being: Synthesis. 

Island Press, Washington D.C. 

Mueller, N.D., J.S. Gerber, M. Johnston, D.K. Ray, N. Ramankutty, and J.A. Foley. 2012. Closing 

yield gaps through nutrient and water management.  Nature 490:254-257. 

Muradian, R., E. Corbera, U. Pascual, N. Kosoy, and P.H. May. 2010. Reconciling theory and 

practice: An alternative conceptual framework for understanding payments for environmental 

services.  Ecological Economics 69:1202-1208. 

Nakamura, N. 2012. Soil shortage a major problem in Tohoku disaster areas. The Asahi Shimbun 

(http://ajw.asahi.com/article/0311disaster/recovery/AJ201205040069) 

Nanere, M., I. Fraser, A. Quazi, and C. D'Souza. 2007. Environmentally adjusted productivity 

measurement: An Australian case study.  Journal of Environmental Management 85:350-362. 

Nelson, E., G. Mendoza, J. Regetz, S. Polasky, H. Tallis, D.R. Cameron, K.M.A. Chan, G.C. Daily, J. 

Goldstein, P.M. Kareiva, E. Lonsdorf, R. Naidoo, T.H. Ricketts, and M.R. Shaw. 2009. 

Modeling multiple ecosystem services, biodiversity conservation, commodity production, and 

tradeoffs at landscape scales.  Frontiers in Ecology and the Environment 7:4-11. 

Norgaard, R.B. 2010. Ecosystem services: From eye-opening metaphor to complexity blinder.  

Ecological Economics 69:1219-1227. 

Pimentel, D., C. Harvey, P. Resosudarmo, K. Sinclair, D. Kurz, M. McNair, S. Crist, L. Shpritz, L. 

Fitton, R. Saffouri, and R. Blair. 1995. Environmental and economic costs of soil erosion and 

conservation benefits.  Science 267:1117-1123. 

Post, W.M., R.C. Izaurralde, J.D. Jastrow, B.A. McCarl, J.E. Amonette, V.L. Bailey, P.M. Jardine, 

T.O. West, and J.Z. Zhou. 2004. Enhancement of carbon sequestration in US soils.  

Bioscience 54:895-908. 

Pretty, J.N., C. Brett, D. Gee, R.E. Hine, C.F. Mason, J.I.L. Morison, H. Raven, M.D. Rayment, and 

G. van der Bijl. 2000. An assessment of the total external costs of UK agriculture.  

Agricultural Systems 65:113-136. 

Repetto, R., D. Rotham, P. Faeth, and D. Austin. 1997. Productivity Measures Miss the Value of 

Environmental Protection.  Choices 4:16-19. 

Repetto, R. 1988. Report on Natural Resources Accounting, Australian Environment Council, 

information paper, Canberra. 

Reynolds, B., P.M. Chamberlain, J. Poskitt, C. Woods, W.A. Scott, E.C. Rowe, D.A. Robinson, Z.L. 

Frogbrook, A.M. Keith, P.A. Henrys, H.I.J. Black, and B.A. Emmett. 2013. Countryside 

Survey: National "Soil Change" 1978-2007 for Topsoils in Great Britain-Acidity, Carbon, and 

Total Nitrogen Status.  Vadose Zone Journal 12. 

Richards, M., and M. Jenkins. 2007. Potential and Challenges of Payments for Ecosystem Services 

from Tropical Forests. Forestry briefing 16, Overseas Development Institute, 111 

Westminster Bridge Road, London SE1 7JD. 

Richter, D.D., and D. Markewitz. 1995. How deep is soil - soil, the zone of the earths crust that is 

biologically-active, is much deeper than has been thought by many ecologists.  Bioscience 

45:600-609. 

Robertson, M. 2012. Functions, Services and Values, Wetlandia: 

http://wetlandia.blogspot.co.uk/2012/07/functions-services-and-values.html. 

Robinson, D.A., I. Lebron, and H. Vereecken. 2009. On the definition of the natural capital of soils: A 

framework for description, evaluation, and monitoring.  Soil Science Society of America 

Journal 73:1904-1911. 



30 
 

Robinson, D.A., N. Hockley, E. Dominati, I. Lebron, K.M. Scow, B. Reynolds, B.A. Emmett, A.M. 

Keith, L.W. de Jonge, P. Schjonning, P. Moldrup, S.B. Jones, and M. Tuller. 2012. Natural 

Capital, Ecosystem Services, and Soil Change: Why Soil Science Must Embrace an 

Ecosystems Approach.  Vadose Zone Journal 11. 

Robinson, D.A., N. Hockley, D.M. Cooper, B.A. Emmett, A.M. Keith, I. Lebron, B. Reynolds, E. 

Tipping, A.M. Tye, C.W. Watts, W.R. Whalley, H.I.J. Black, G.P. Warren, and J.S. 

Robinson. 2013a. Natural capital and ecosystem services, developing an appropriate soils 

framework as a basis for valuation.  Soil Biology & Biochemistry 57:1023-1033. 

Robinson, D.A., B.M. Jackson, B.E. Clothier, E.J. Dominati, S.C. Marchant, D.M. Cooper and K.L. 

Bristow. 2013b. Advances in soil ecosystem services: concepts, models and applications for 

earth system life support. Vadose Zone Journal, 12 (4), doi:10.2136/vzj2013.01.0027 

Rockstrom, J., W. Steffen, K. Noone, A. Persson, F.S. Chapin, E.F. Lambin, T.M. Lenton, M. 

Scheffer, C. Folke, H.J. Schellnhuber, B. Nykvist, C.A. de Wit, T. Hughes, S. van der Leeuw, 

H. Rodhe, S. Sorlin, P.K. Snyder, R. Costanza, U. Svedin, M. Falkenmark, L. Karlberg, R.W. 

Corell, V.J. Fabry, J. Hansen, B. Walker, D. Liverman, K. Richardson, P. Crutzen, and J.A. 

Foley. 2009. A safe operating space for humanity.  Nature 461:472-475. 

Rosario-Diaz, J.F., A. Haro-De Rosario, and R. Canero-Leon. 2013. Contingent valuation of erosion 

externalities: the case of the hydrographic basin of the Alto Almanzora in Sierra de Filabres, 

Spain. (in English) Journal of Environmental Protection and Ecology 14:1185-1194. 

Sagoff, M. 1988. The Economy of the Earth, Cambridge University Press. 

SEC(2006) 620. 2006. Impact assessment of the thematic strategy on soil protection. Document 

accompanying, Thematic Strategy for Soil Protection. Communication from the commission 

to the Council, the European Parliament, the European economic and social committee and 

the committee of the regions. 

SEEA. 2012. System of Environmental accounts, central framework, 

https://unstats.un.org/unsd/envaccounting/White_cover.pdf. 

Seneviratne, S. I., D., Lüthi, M., Litschi, and C. Schär. 2006. Land–atmosphere coupling and climate 

change in Europe. Nature, 443: 205-209. 

Sheehan, C., J. Harrington, and J.D. Murphy. 2010. An environmental and economic assessment of 

topsoil production from dredge material.  Resources Conservation and Recycling 55:209-220. 

Shelley, W., R. Lawley, and D.A. Robinson. 2013. Crowd-sourced soil data for Europe.  Nature 

496:300-300. 

Stern, N. 2006. Stern Review, economis of climate change. Page 231. 

http://mudancasclimaticas.cptec.inpe.br/~rmclima/pdfs/destaques/sternreview_report_complet

e.pdf 

Tipping, E. 2002. Cation binding by humic substances. Cambridge University Press. 

Turner, R.K. 1999. The place of economic values in environmental valuation. In: Valuing 

Environmental Preferences (Ed. Bateman, I.J. & Willis, K.G.) Oxford University Press: New 

York, 1999. ed. 

USGS. 2013. Mineral commodity summaries 2013. U.S. Government Printing Office. 

Vatn, A. 2004. Environmental valuation and rationality.  Land Economics 80:1-18. 

Vatn, A. 2010. An institutional analysis of payments for environmental services.  Ecological 

Economics 69:1245-1252. 

Vatn, A., and D.W. Bromley. 1994. Choices without prices without apologies.  Journal of 

Environmental Economics and Management 26:129-148. 

Vigerstol, K.L., and J.E. Aukema. 2011. A comparison of tools for modeling freshwater ecosystem 

services.  Journal of Environmental Management 92:2403-2409. 

Walker, B., L. Pearson, M. Harris, K.G. Maler, C.Z. Li, R. Biggs, and T. Baynes. 2010. Incorporating 

Resilience in the Assessment of Inclusive Wealth: An Example from South East Australia.  

Environmental & Resource Economics 45:183-202. 

Wunder, S. 2005. Payments for Environmental Services: Some Nuts and Bolts. Occasional Paper No. 

42. Center for International Forestry Research, Nairobi, Kenya. 

Yirga, C., and R.M. Hassan. 2010. Social costs and incentives for optimal control of soil nutrient 

depletion in the central highlands of Ethiopia.  Agricultural Systems 103:153-160. 

https://unstats.un.org/unsd/envaccounting/White_cover.pdf
http://mudancasclimaticas.cptec.inpe.br/~rmclima/pdfs/destaques/sternreview_report_complete.pdf
http://mudancasclimaticas.cptec.inpe.br/~rmclima/pdfs/destaques/sternreview_report_complete.pdf


31 
 

Zimmerman, M.J. 2010. Intrinsic vs. Extrinsic Value, The Stanford Encyclopedia of Philosophy 

(Winter 2010 Edition), Edward N. Zalta (ed.), 

http://plato.stanford.edu/archives/win2010/entries/value-intrinsic-extrinsic/. 

 

  



32 
 

 

 

Table 1. Soil goods and services and the types of value associated with them that make up the 

total economic value. 
  Total Economic Value (TEV) 

 Goods or Services Use value Non-use value 

  Direct and 

marketable 

Direct and  

non-

marketable 

Indirect Option 

value 

Existence/ 

Altruism 

Bequest 

Provisioning 

services 

Topsoil X      

Subsoil X      

Peat X      

Sand/Clay minerals X      

Soil for rare earth extraction X      

Soil organisms, earth worms X      

Biomedical resources, 

antibiotics & new organisms 

used in medicine 

X      

Provision of physical support  X      

Provision of food wood and 

fibre  

  X    

Regulating 

services 

Waste processing  

 Detoxification 

 Nutrient recycling 

   

X 
X 

 

X 
X 

  

X 
X 

Nutrient/contaminant 

Filtering 

 Water filtration 

   
X 

 
X 

  
X 

Hydrological regulation 

 River flows 

mitigation/water 
levels 

 Flood peak 
regulation 

   

X 

 
X 

 

X 

 
X 

  

X 

 
X 

Climate regulation 

 Carbon storage 

 Soil moisture 

buffering of heat 
and cold waves 

 Greenhouse gases 

mitigation 

   

X 

X 
 

X 

 

X 

X 
 

X 

  

X 

X 
 

X 

Hazard regulation 

 Structural support 
shrink swell 

 Dust emissions 

 Liquefaction 

 Landsliding and 
slumping 

   

X 

 
X  

X 

X 

 

X 

 
X  

X 

X 

  

X 

 
X  

X 

X 

Pests and Disease regulation 

 Human and animal 
pathogens 

 Disease 
transmission and 

vector control 

  

X 

 
X 

 

 

 

X 

 
X 

  

X 

 
X 

Cultural 

services 

Burial ground X     X 

Scenery  X  X X X 

Recreation  X  X  X 

Preservation of artefacts   X X   

 Total 

direct and 

marketable 

Total 

direct and  

non-
marketable 

Total 

indirect 

Total 

option 

Total 

non-use  
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Table 2. EU soil threats, based on the Impact Assessment (SEC(2006) 620, 2006). 

Conversions to 2013 USD use an exchange rate for the given year (1.3, 2006) and inflation 

using a CPI index calculator (Areppim, 2014). 

 

 

 

 

 

 

 

 

 

 

 

  

 

Soil Threat Estimated annual cost 

 1) Erosion  €0.7 – 14.0 billion USD 1.05-21.03 billion, 2013 

 2) Organic matter 

decline 

 €3.4 – 5.6 billion USD 5.11-8.41 billion, 2013 

 3) Compaction  no estimate possible, 

 4) Salinisation  €0.158 – 0.321 billion USD 0.237-0.482 billion, 2013 (1.3) 

 5) Landslides  up to €1.2 billion per event USD 1.80 billion, 2013 

 6) Contamination  €2.4 – 17.3 billion USD 3.61-25.99 billion, 2013 

 7) Sealing  no estimate possible 

 8) Biodiversity decline  no estimate possible 
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Table 3. Estimated annual cost of soil degradation at different administrative scales, for detailed 

references see (1, Adhikari and Nadella, 2011; 2, Kuhlman et al., 2010; 3, Cohen et al., 2006; 4, 

EA, 2002; 5, Jones et al., 2008). Conversions to 2013 USD use an exchange rate for the given 

year and inflation using a CPI index calculator (Areppim, 2014)  

 

Country  Source  Annual Cost  

World Dregne and Chou, 1 42 billion (1990 US$) - ~75 billion, 2013 

EU Crosson modified by 2 370 million (2004 €) - 575 million, 2013 (1.26) 

EU Gorlach et al., 2 532 million (2004 €) - 827 million, 2013 (1.26) 

EU van den Born et al,  

modified in 2 

1700 million (2004 €) - 2641 million, 2013 (1.26) 

EU Kuhlman et al., 2 500 million (2004 €) - 777 million, 2013 (1.26) 

Rwanda Berry et al., 1 23 million (2003 US$) - 29 million, 2013 

Ethiopia  Berry et al., 1 139 million (2003 US$) - 176 million, 2013 

Ethiopia  Bojo and Cassels, 1  130 million (1994 US$) - 204 million, 2013 

Ethiopia  Sutcliffe, 1 155 million (1994 US$) - 244 million, 2013 

Ethiopia  FAO, 1 14.8 million (1994 US$) - 23 million, 2013 

Zimbabwe Grohs, 1  0.6 million (1994 US$) - 0.9 million, 2013 

Zimbabwe  Norse and Saigal, 1  99.5 million (1994 US$) - 156 million, 2013 

Zimbabwe  Stocking, 1 117 million (1994 US$) - 184 million, 2013 

Lesotho  Bojo, 1 0.3 million (1994 US$) - 0.5 million, 2013 

Mali  Bishop and Allen, 1  2.9–11.6 million (1994 US$) - 4.5-18 million, 2013 

Malawi World Bank, 1 6.6–19 million (1994 US$) - 10-30 million, 2013 

Ghana  Convery and Tutu, 1  166.4 million (1994 US$) - 262 million, 2013 

Kenya Cohen et al., 3 390 million (2006 US$) - 451 million, 2013 

England and Wales EA, 4 205 million (2002 £) - 398 million, 2013 (1.5) 

New Zealand Jones et al., 2008, 5 159 million (2008 NZ$) - 112 million, 2013 (0.65) 
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Table 4. Back of the envelope calculations to determine the value of soil components based on 

replacement costs using materials bought in bulk in the UK unless otherwise stated. Soil bulk 

density assumed to be ~1.36g/cm
3
 (Loam:  40% sand  60% clay & silt), prices exclude taxes, 

conversion to USD uses exchange rate of 1.55 for 2013. 

 

 Commodity 

price per tonne 

T/ ha to 30cm Cost, 30cm 

topsoil / ha 

Sand  

Wanlip sand & gravel, Leicester, UK 

£ 17.38   

 

1560 £ 27,113 

$ 42,025 

Silt/Clay mix  

Cardigan sand and gravel, Cardigan, UK 

£ 7.33 

 

2340 £ 17,152 

$ 26,586 

Carbon  

Stern review 

£ 150 .00 

 

107.25 £ 16,088 

$ 24,936 

Nutrients (NPK) 

Representative price Feb 2013 

DairyCo market information 

£ 350  2 £ 700 

$ 1,085 

Water (25m
3
m

-3
) 

Utility retail price metered m
3
 

£ 1.57  750 £ 1,178 

$ 1,826 

Worms (USA) 

Red worm composting blog 

Lowest retail price ($15/lb) 

Range ($15-40) 

£ 4300  2 £ 8,600 

$ 13,300 

Reconstituted topsoil  Total £ 70,830 

$ 109,787 

Bulk recycled screened topsoil, Wanlip sand 

& gravel, Leicester, UK 

£ 10 

 

3900 £ 39,000 

$ 60,450 

Bulk topsoil  

Median UK price Fig 3 

£ 30.38 

 

3900 £ 118,482 

$ 183,647 

Retail topsoil premium grade 

1m
3
 / ~1 tonne, Rolawn loam topsoil, 

Tesco.com 

£ 100  

 

3900 £ 390,000 

$ 604,500 
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Figure 1.  

Figure 1, Dimensions for value frameworks based on value type on the horizontal axis and moral 

standing of humans and biota on the vertical axis. The dashed line represents the sustainability axis 

indicating where within the value dimensions different sustainability world views tend to be located. 

Economic valuation is for example anthropocentric and extrinsic, and often classified as very weak 

sustainability.  
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Fig. 2a The total economic value framework (TEV) showing different types of economic value. 

Note price comes under direct use. 2b. Economic methods used to estimate different types of 

value.  
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Fig 3. Geospatial assessment of soil prices around the globe based on a web survey of sites 

selling bulk topsoil. Median price in the USA and Canada $22.25 per tonne, Median price in 

the UK is $47.09 per tonne. Red dots indicate where there was no bulk soil data available and 

prices reflect small quantities sold in supermarkets where prices might be as much as $1000 per 

tonne. The soil price data collected for the different countries is expressed in power purchasing 

parity (PPP). PPPs are the rates of currency conversion that equalize the purchasing power of 

different currencies by eliminating the differences in price levels between countries. All soil 

prices are adjusted to the US$ which has the ratio of 1.0.  
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