nerc.ac.uk

The changing role of ecohydrological science in guiding environmental flows

Acreman, M.C.; Overton, I.C; King, J.; Wood, P.J.; Cowx, I.G.; Dunbar, M.J.; Kendy, E.; Young, W.J.. 2014 The changing role of ecohydrological science in guiding environmental flows [in special issue: Hydrological science for environmental flows] Hydrological Sciences Journal, 59 (3-4). https://doi.org/10.1080/02626667.2014.886019

Before downloading, please read NORA policies.
[img]
Preview
Text
N506959PP.pdf - Accepted Version

Download (812kB) | Preview

Abstract/Summary

The term “environmental flows” is now widely used to reflect the hydrological regime required to sustain freshwater and estuarine ecosystems, and the human livelihoods and well-being that depend on them. The definition suggests a central role for ecohydrological science to help determine a required flow regime for a target ecosystem condition. Indeed, many countries have established laws and policies to implement environmental flows with the expectation that science can deliver the answers. This article provides an overview of recent developments and applications of environmental flows on six continents to explore the changing role of ecohydrological sciences, recognizing its limitations and the emerging needs of society, water resource managers and policy makers. Science has responded with new methods to link hydrology to ecosystem status, but these have also raised fundamental questions that go beyond ecohydrology, such as who decides on the target condition of the ecosystem? Some environmental flow methods are based on the natural flow paradigm, which assumes the desired regime is the natural “unmodified” condition. However, this may be unrealistic where flow regimes have been altered for many centuries and are likely to change with future climate change. Ecosystems are dynamic, so the adoption of environmental flows needs to have a similar dynamic basis. Furthermore, methodological developments have been made in two directions: first, broad-scale hydrological analysis of flow regimes (assuming ecological relevance of hydrograph components) and, second, analysis of ecological impacts of more than one stressor (e.g. flow, morphology, water quality). All methods retain a degree of uncertainty, which translates into risks, and raises questions regarding trust between scientists and the public. Communication between scientists, social scientists, practitioners, policy makers and the public is thus becoming as important as the quality of the science.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1080/02626667.2014.886019
Programmes: CEH Topics & Objectives 2009 - 2012 > Water > WA Topic 2 - Ecohydrological Processes > WA - 2.3 - Assess the responses of river, lake and wetland ecosystems to ecohydrological drivers
CEH Sections/Science Areas: Acreman
ISSN: 0262-6667
Additional Keywords: environmental flows, ecohydrology, hydroecology
NORA Subject Terms: Ecology and Environment
Hydrology
Date made live: 14 May 2014 14:42 +0 (UTC)
URI: http://nora.nerc.ac.uk/id/eprint/506959

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...