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ABSTRACT

Sinking dense plumes are important in many oceanographic settings, notably the polar formation of deep

and bottomwaters. The dense water sources feeding such plumes are commonly affected by tidal modulation,

leading to plume variability on short time scales. In a simple unsteady theory of one-dimensional plumes

(based on conservation equations for volume,momentum, and buoyancy), this plume variability is manifested

as waves that travel down the resulting current. Using numerical techniques applied to the hyperbolic con-

servation equations, this study investigates the novel concept that these waves may break as they travel down

the plumes, triggering intense local mixing between the dense fluid and surrounding ocean. The results

demonstrate that the waves break at geophysically relevant distances from the plume source. The location of

wave breaking is very sensitive to plume drag from the seabed, the properties of the dense source, and the

amplitude and period of the sourcemodulation. To the extent that the simplemodel represents the real world,

these results suggest that wave breaking originating from the tidal modulation of dense plumes could lead to

a strong and previously unexplored source of local deep-ocean mixing.

1. Introduction

The global oceans are filled with dense deep and

bottom waters formed at the poles. Around Antarctica,

dense shelf waters, formed by sea ice growth over the

continental shelf seas, cascade down the continental

slopes into the deep ocean, mixing with ambient waters

to form the Antarctic Bottom Water that underlies the

majority of the world’s oceans (Baines and Condie 1998;

Orsi et al. 1999). Similar cascades in the Arctic create

a pool of denser water that contributes to the dense

waters overflowing the Greenland–Scotland Ridge, which

in turn feed the North Atlantic Deep Water that occupies

much of the Atlantic Ocean (Hansen and Østerhus 2000;

Ivanov et al. 2004).

A common feature of these cascades and overflows is

that they occur in relatively shallow shelf-edge regions

where tidal amplitudes are large (Padman and Erofeeva

2004; Padman et al. 2009). This implies that a full un-

derstanding of the formation of globally important dense

water masses requires knowledge of the effects of short-

period modulation of dense water sinking down seabed

slopes. Other dense plumes are also affected by pulsa-

tion at the source, such as the tidally affected Mediter-

ranean outflow into the NorthAtlantic (Nash et al. 2012),

Atlantic overflow into the deep Caribbean (MacCready

et al. 1999), and the diurnally controlled sinking of dense

nearshore waters in lakes and seas (Fer et al. 2001; Biton

et al. 2008).

The most intensively studied tidally affected plume

is in the Ross Sea, Antarctica, which is dominated by

strong diurnal tides with a significant spring–neap cycle

(Whitworth and Orsi 2006; Muench et al. 2009; Padman

et al. 2009; Wang et al. 2010). The effect of tides can be

broken down into three major categories: oscillating
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advection of the plume path, temporal variation of the

shear-driven mixing experienced by the plume, and

pulsation of the plume source. Using a simple model of

unsteady one-dimensional plumes, Holland (2011) in-

vestigated the effects of source pulsation and variable

shear, finding that the impact of pulsation in the plume

source gave best agreement with the observations.

This raises an important possibility. A pulsed source

produces waves that travel down the plume, and simple

analytical investigation of a reduced system suggests

that these waves should break within 50 km of the source

(Holland 2011). If such wave breaking does occur on

geophysically relevant scales, then it will lead to rapid,

localized mixing between dense water and its ambient

fluid, with important consequences for the depth and

characteristics of the deep water masses produced. How-

ever, previous studies have been unable to conclusively

demonstrate the presence of wave breaking, as a result

of the inability of their numerical schemes to represent

a discontinuous solution and the possibility that numeri-

cal diffusion prevents modeled waves from breaking.

The processes governing mixing between oceanic

plumes and their environment are summarized by

Cenedese and Adduce (2010), and references therein.

There are three primary sources of mixing: shear at the

plume–ambient interface, shear or roughness effects in

the bottom boundary layer, and hydraulic jumps. Inter-

facial instability is usually held to be dominant in ocean

plumes, but superimposing a barotropic tidal forcing on

the plume increases the importance of boundary-driven

mixing (Muench et al. 2009). Internal hydraulic jumps

will lead to vigorous and localized mixing (Holland

et al. 2002), but their frequency and distribution in the

oceans are basically unknown. If the breaking of waves

shed from a temporally modulated dense source can

occur on geophysically relevant scales, it would add an

important additional source of mixing between dense

plumes and their environment, with a local and vigor-

ous character that is similar to hydraulic jumps.

In this study, we use modern numerical techniques

applied to a hyperbolic system of conservation equa-

tions for volume, momentum, and buoyancy, in order to

investigate wave breaking of one-dimensional plumes

emanating from a temporally modulated source. The

numerical methodology is chosen to accurately repre-

sent the behavior near a discontinuity associated with the

breaking wave and to minimize the effects of numeri-

cal diffusion, which may otherwise artificially prevent

waves from breaking. The factors preventing previous

studies from considering wave breaking are therefore

alleviated. Another important consideration comes from

the work of Scase and Hewitt (2012), who show that un-

steady extensions of the classical axisymmetric buoyant

rising plume model of Morton et al. (1956) are ill posed.

Clearly, establishing the well-posedness of the conserva-

tive model of a nondiffusive line plume descending a

slope is therefore a necessary prerequisite for this study.

2. Modeling

In an effort to simplify the effects of tidal modula-

tion of source conditions on the evolution of dense

plumes, Holland (2011) formulated an unsteady, one-

dimensional model subjected to unsteady ambient flow

and/or modulation of the source. ‘‘Top hat’’ profiles were

assumed for the plume quantities. The most restrictive

assumption of this model is the neglect of Coriolis

force, which is justified solely by a desire for simplicity

that should be borne in mind when evaluating the con-

clusions. The effects of ambient flow were found to be

less consistent with observations than those of a pulsed-

buoyancy source, so only the latter is pursued here. In

the absence of ambientmotion, theHolland (2011)model

for conservation of volume, momentum, and buoyancy

requires

›D

›t
1

›

›x
(DU)5E sinuU , (1a)

›

›t
(DU)1

›

›x
(DU2)5 g0D

�
sinu2

›D

›x

�
2 cU2, and

(1b)

›

›t
(Dg0)1

›

›x
(DUg0)5 0, (1c)

where D is the plume depth, U is the velocity, g0 is the
reduced gravity, u is the seabed slope angle, c is a drag

coefficient, and E is an entrainment constant. Holland

(2011) considered a variety of forms for the entrainment

term on the right-hand side of (1a). In this study, we

employ a conventional formulation in which entrain-

ment, E sinuU, is simply proportional to seabed slope

and plume speed (Bo Pedersen 1980); however, a range

of values of E will be considered [including the value

used by Holland (2011)] to assess the sensitivity of the

results. The fluid outside the plume is stagnant, so en-

trainment does not add momentum, and the interfacial

stress at the plume–ambient interface is neglected as

much smaller than the seabed stress.

In the remainder of this paper we will use a slightly

different form of (1). The derivation of (1b) makes an

approximation, (9) of Holland (2011), that neglects

(2r0)
21g0D2›r/›x, where g0 5 (r2 ra)g/r0 for a reference

density r0 and an ambient density ra. A reintroduction

of this previously neglected term allows (1) to be written

in a conservative form, which is beneficial for the
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numerical formulation when discontinuous solutions

are to be obtained.

A change of variables from (D,U, and g0) to the plume

depth, volume flux, and cross-sectional total buoyancy

(D, Q 5 UD, and B 5 Dg0) allows the (hyperbolic)

system to be written as

S
›D

›t
1

›Q

›x
5E sinu

Q

D
, (2a)

S
›Q

›t
1

›
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�
Q2

D
1

1

2
BD

�
5B sinu2 c

�
Q

D

�2

, and

(2b)

S
›B

›t
1

›

›x

�
BQ

D

�
5 0. (2c)

Here we have nondimensionalized using a mean source

plume depth Ds, mean source reduced gravity g0s, and
mean source (gravity wave) speed Us 5

ffiffiffiffiffiffiffiffiffiffi
g0sDs

p
. The

parameter S then defines the relative time scales S 5
T21Ds/Us, where T is the period of the modulation in

plume source properties and Ds/Us is the time taken

for a parcel of fluid to travel a distance of one plume

thickness.

For the above nondimensionalization, a steady plume

solution of (2) exists in the form

D5 11Dx, Q5 (11Dx)U, and B5 1, (3a)

where D5E sinu and the plume velocity is constant:

U
2
5 sinu

�
12E/2

E sinu1 c

�
. (3b)

Following the tidal-modulation approach of Holland

(2011), we construct a periodically forced system by im-

posing the analogous unsteady source conditions:

D(x5 0, t)5D0(t), B(x5 0, t)5B0(t), and

Q(x5 0, t)5U0(t)D0(t) , (4a)

with

D0(t)5 11Ap sin(2pt), (4b)

B0(t)5 11Ap sin(2pt), and (4c)

U0(t)5

�
B0(t) sinu

12E/2

E sinu1 c

�1/2
, (4d)

where Ap is an amplitude of pulsation; we recover the

steady solution whenAp 5 0. The source velocity forU0

above is chosen such that it remains consistent with the

governing model equations in the quasi-steady limit.

Throughout this paper, we consider the results of a

central baseline simulation and parameter sensitivity

around it. For consistency with Holland (2011), we choose

baseline values broadly appropriate to the Ross Sea,

Antarctica. Specifically, we use c 5 0.003 and u 5 0.01,

source properties ofDs5 100m and g0s 5 0:002m s22, and

a modulation period of T5 24 h (Holland 2011), giving

S 5 0.002 588. The entrainment coefficient appearing

in (1a) will be chosen to be E 5 0.072, following

Bo Pedersen (1980).

3. Model stability

The work of Scase and Hewitt (2012) showed that the

unsteady analog (Scase et al. 2006) of the axisymmetric

plume model first introduced byMorton et al. (1956) is ill

posed; a comparable result has also been demonstrated in

the context of momentum-driven laminar boundary layers

by Hewitt andDuck (2011). This ill-posedness of unsteady

plume models arises from the rapid downstream growth

of linear high-frequency/small-wavelength perturbations

to the (otherwise well established and successful) steady

solutions. The downstream growth of small-amplitude

perturbations increases without bound as the frequency

increases, which inevitably leads to any time-marching

numerical method being fundamentally flawed. Given

these new results, it is first prudent to consider the well-

posedness of the comparable Holland (2011) model ap-

plied to unsteady dense plumes on shallow slopes.

For the original formulation, (1), a dimensional steady

solution is given by

DB5E sin(u)x, UB5 sin(u)

�
g0sxsE(12E)

E sin(u)1 c

�1/2
, and

g0B5 g0s
xs
x
,

(5)

where subscript B denotes the steady ‘‘base’’ solution

and subscript s denotes a quantity at the source, that is,

xs is the position of the source and g0s is the reduced

gravity at the source. Following Scase and Hewitt (2012),

we may perturb this steady state (for d � 1) by

D5DB[11 d � D(j, t)], U5UB[11 d � u(j, t)], and

g0 5 g0B[11 d � g(j, t)] ,
(6)

using the nondimensional variables defined by j 5
xv/UB and t 5 vt for some constant frequency v. Fur-

thermore, we consider a single Fourier mode such that
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D(j, t) 5 D(j) expfitg, u(j, t) = u(j)expfitg, and g(j)

expfitg, where i is the usual unit imaginary number.

Thus, (1) transforms to become at O(d)

j
d

dj
(D1 u)52D(11 ij) , (7a)

�
11Ek

12E

�
j
dD

dj
1 2j

du

dj
5

�
k

�
12 2E

12E

�
2

E

12E
2 ij

�
D

2 [2(11 k)1 ij]u1 (11 k)g ,

(7b)

d

dj
(D1 u1 g)52i(D1g) , (7c)

where k 5 c/(E sinu).

We can rearrange to find the following second order

ODE for u:

d2u

dj2
1

41 3k2 (51 4k)E1 2ij(12E)

[12E(21 k)]j

du

dj

2
[j2 i(31 2k)](12E)

[12E(21 k)]j
u5 0. (8)

This equation supports solutions of the form of a sum

of Whittaker M and Whittaker W functions (or equiv-

alently suitable confluent hypergeometric functions or

Kummer functions), multiplied by a power of j and an

exponential term with purely imaginary argument. The

subsequent growth/decay of these oscillatory solutions

can be described in the limit as j / ‘ analytically. The

limiting growth/decay exponent is given by

p‘ 5
1

2[12 (k1 2)E]

(
(51 4k)E2 (41 3k)

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(11 k)(12E)

E

r
[(2k1 1)E1 1]

)
, (9)

where u; jp‘ as j / ‘. The plus-or-minus sign corre-

sponds to the two independent solutions of (8). Solu-

tions to (1) with p‘ , 0 exist in the slope range

c

12 2E
, sinu

,
c
�
16E(12E)1 (122E)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1212E(12E)

p
21

�
2E[12 13E(12E)]

.

(10)

We note that the lower limiting value sinu 5 c/(1 2 2E)

is the slope angle for which UB 5
ffiffiffiffiffiffiffiffiffiffiffiffi
g0BDB

p
in (5). The

significance of this value is that, for lower values of u,

the shallow water gravity wave that propagates with

speed UB 2
ffiffiffiffiffiffiffiffiffiffiffiffi
g0BDB

p
can propagate upstream; the values

of p‘ in this regime should not be interpreted as growth

of linear perturbations in the x. xs region, and it is only

the larger slope angle in (10) that concerns us here.

For the baseline parameters relevant to the Ross Sea,

E 5 0.072, c 5 0.003, and u 5 0.01, we find that p‘ 5
21.17 (decay). The neutrally stable cases can be found

when p‘ 5 0, as given by the upper limit of (10), which

for these same baseline parameters predicts growth of

downstream (linear) perturbations for u . 0.071. Numer-

ical results for the integration of (7) subject to initial con-

ditionsD(1)5 1, u(1)5 1, and g(1)5 1 are shown in Fig. 1

FIG. 1. Solutions to the linearizedmodel equation [(7)] for the base caseDs5 100m, g0s5 0.002m s22, u5 0.01,T5
24 h, E5 0.072, and c5 0.003. (a) The steady solution (5a) has been multiplied by the perturbation (11 ApD), with
Ap 5 0.25, for comparison with Fig. 3a. Time has been nondimensionalized by the period of oscillation and the

line styles correspond to t 5 0 (dashed), 1/4 (thin solid), ½ (thick solid), and 3/4 (dot–dashed). Quantities shown

are dimensionless, where D has been nondimensionalized by Ds and x by xs. (b) The decay of the instability is in

agreement with (9), with p‘ 5 21.17.
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together with a comparison of the perturbation growth/

decay rates with the prediction in (9). Figure 1a also

shows the evolving plume depthDB(11 dD) for the base
case values above and d5Ap5 0.25 for later comparison

of this linear theory with the nonlinear results of Fig. 3a

(described in greater detail below). The long-time (lin-

ear) behavior is that the perturbations decay downstream,

as demonstrated by Fig. 1b.

For the fully conservative form of the model equa-

tions [(1)], the relationship in (9) is modified somewhat

with the upper limit for stability given by

sinu,
4c[6E(22E)1 (12E)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 3E(22E)

p
2 1]

E[82 33E(22E)]
,

(11)

and with our baseline parameters, this yields downstream

growth for u . 0.0264. The sensitivity of the maximum

slope angle for stability umax to E is shown in Fig. 2. The

sensitivity of umax under the original Holland (2011)

model (1), corresponding to the upper limit of (10), is

shown as a dashed line. The sensitivity of umax under

the present conservative model (2), corresponding to

the upper limit of (11), is shown as a solid line. The

black circles denote the maximum stable slope angle

for the base case E5 0.072 and c5 0.003 under the two

models considered. We find umax 5 0.0714 and 0.0264

for the original and conservative models, respectively.

The denominators of (10) and (11) vanish at E 5 0.084

and 0.130, respectively (indicated by the white circles),

but because sinu # 1, in fact, (10) and (11) cease to

predict real values for umax at the slightly lower values

FIG. 2. The sensitivity of umax to E. The original Holland (2011)

model (1) is shown by the dashed line, and the present conservative

model (2) is shown by the solid line. For practical values of E, the

present conservative model exhibits low sensitivity to E. Both sys-

tems are approximately linear in their sensitivity to c.With the chosen

base parameter c 5 0.003, the upper limits of (10) and (11) become

greater than 1 for E 5 0.083 and 0.128, respectively. The denomi-

nators vanish at E 5 0.084 and 0.130, respectively, denoted by the

white circles. For the chosen base parameterE5 0.072, the predicted

umax5 0.0714 under the originalHollandmodel and 0.0264 under the

present conservative model (denoted by the black circles).

FIG. 3. (a) Evolution of the periodic (with unit period)D(x, t) at

t 5 0, 1/4, ½, 3/4 with Ap 5 0.25 and S 5 0.002 588; this nonlinear

computation can be compared to the linear results of Fig. 1a. Line

styles correspond to t 5 0 (dotted), 1/4 (short dashed), ½ (long

dashed), and 3/4 (solid). Dimensional results are obtained by mul-

tiplying both axes by the initial plume depth of 100m. (b) The

corresponding profiles for Q(x, t) and B(x, t) at t 5 3/4 with Ap 5
0.25. Also shown are the predictions for the plume depth jump at

the development of a shock in the profile. (c) The corresponding

jumps in Q, D, and B in the post-breaking region.
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E5 0.083 and 0.128, respectively, when umax’ p/2. We

see that the present conservative model is considerably

less sensitive to the entrainment coefficient than the

original model for practical values of E ’ 0.072. As

both (10) and (11) demonstrate that sin(umax) is line-

arly proportional to c, we see that both models have

approximately linear sensitivity to c because u is small

for practical applications.

The majority of ocean cascades occur on slopes of

0.001–0.01; of the 33 plumes considered by Ivanov et al.

(2004), only two exceed the critical value above, so the

oceanographic application of (1) is generally justified. In

comparison, for the free axisymmetric plumes discussed

by Scase and Hewitt (2012), linearized perturbations

of frequency v were shown to grow exponentially as

exp(Cv1/2x2/3), where C is a constant. For such expo-

nential growth, the numerical problem is ill posed and

rapidly becomes swamped by high-frequency compo-

nents. In the current case, even when perturbations grow

downstream, they only do so algebraically, and the nu-

merical initial-value problem remains well posed for all

practical purposes.

4. Numerical investigation of wave breaking

Numerical solutions of (2) subject to (4) are obtained

via a slope-limited monotone upstream-centered scheme

for conservation laws (MUSCL), applying a finite-volume

method to the integral form of the conservative equa-

tions. The scheme assumes a discontinuous solution

across all element boundaries, but it does not explicitly

solve the Riemann problem at each interface, applying

instead the two-step method of Nessyahu and Tadmor

(1990). Given that the model is stable and well posed,

there is no difficulty in time marching the system from

a t 5 0 state that consists of the steady solution, con-

tinuing until all transient behavior has decayed, to a pe-

riodic propagating wave state.

a. Baseline simulation

Figure 3a shows the downstream steepening of the

plume depth during one period of the wave motion

driven by source modulation. Over a full period, at each

downstream location, we can define a maximum nor-

malized gradient of the plume depth (relative to the

steady state) s(x) 5 maxjDx(x, t)/E sinuj, where this

maximum is taken over an entire period. To avoid shock

fitting, a straightforward way of defining the downstream

location at which the wave has ‘‘broken’’ (i.e., where

a shock develops) is to find the smallest value of x 5 xb
such that s(xb) 5 m, where m is a large value for the

normalized gradient. However, to obtain robust results,

onemust ensure that the numerical resolution is increased

in tandem with m for this gradient to be accurately re-

solved by the numerical scheme. Typical values for the

numerical results below arem5 50 and an element size of

1.25, and consistency is checked against m 5 70 and an

element size of 0.625.

In addition to the above gradient condition, one may

also obtain the jump conditions across any such shock

in the conservative model (2):

Scs[D]12 5 [Q]12, Scs[Q]12 5

�
Q2

D
1

1

2
BD

�1
2

, and

Scs[B]
1
2 5

�
BQ

D

�1
2

,

(12)

where cs is the shock propagation speed and the plus

(minus) superscript indicates the state immediately ahead

of (behind) the jump. For a given time during the periodic

cycle, we may determine the [�]6 values numerically and

therefore a comparison of the above three expressions for

the shock speed cs allows an independent check of the

numerical method. Alternatively, using the numerical

estimates for Q1, Q2, B1, and B2, we may use (12) to

derive the corresponding plume depths:

D1 5
B1Q2 2B2Q1

B2 2B1

	
2B1

B2(B1 1B2)


1/2

and (13a)

D2 5B2B
1Q2 2B2Q1

B2 2B1

	
2

B1B2(B1 1B2)


1/2

.

(13b)

Figure 3b shows this predicted jump in plume depth D

is consistent with the numerical solutions in the post-

breaking region. Finally, in Fig. 3c, the downstream

development of the jumps in D, Q, and B are shown for

the same parameter regime illustrated in Figs. 3a and 3b.

In Fig. 4a, we determine the dependence of the wave-

breaking location xb as a function of the forcing ampli-

tude Ap. For the baseline parameter values (shown as

the dashed line), the location of wave breaking increases

from approximately 50 km with Ap 5 0.5 (a 50% pul-

sation of plume variables at source) to 200 kmwithAp5
0.2 (a 20% pulsation of plume variables at source). We

henceforth focus on the range 0.2#Ap # 0.5 because at

lower Ap, the breaking occurs beyond any reasonable

geophysical length scale, while at largerAp, the breaking

occurs ever closer to the plume origin, with no depen-

dence upon model parameters other than Ap.

b. Parameter sensitivity

We now examine the impact of variations in E, c, u,

S, and nonconstant slope angle on the wave-breaking

FEBRUARY 2014 HOLLAND ET AL . 795



position, using the baseline results as the reference case

and changing each of these variables in turn. The base-

line results are shown as the dashed line in Figs. 4a–d.

In addition, Fig. 4 shows the effect of variations in the

entrainment coefficientE5 0.05, 0.072 (dashed), 0.1, and

0.2 (Fig. 4a); the drag coefficient c 5 0.003 (dashed),

0.005, and 0.007 (Fig. 4b); the parameter S 5 0.003,

0.002 588 (dashed), 0.002, and 0.0015 (Fig. 4c); and the

slope angle u 5 0.01 (dashed) and 0.005 (Fig. 4d). In

Fig. 4d, we test the effect of a typical concave continental

slope by testing the effect of a change in slope angle of

the form:

u(x)5 u02
u02 u1

2

�
11 tanh

�
x2 500

20

��
,

for u05 0:01 and u15 0:005, (14)

corresponding to a rapid transition from a slope angle

of 0.01 at the inlet to an angle of 0.005 at a dimensional

distance of approximately 50 km for an inlet plume

depth of 100m. As discussed briefly in section 3, if the

slope angle is reduced sufficiently [below a value of

2c/(22 3E)’ 0.003, for the baseline parameters], then

one of the three waves in this hyperbolic model (2)

propagates ‘‘upstream,’’ corresponding to a shallow

water gravity wave that can overcome the freestream

speed of the plume. For slopes that eventually become

this shallow, even in the absence of modulation of

source conditions, a stationary shock solution is pos-

sible near the point where the local Froude number is

unity. In the results of this paper, we instead concentrate

on the nonstationary shocks (wave breaking) induced by

modulation of the source conditions, which can occur

for any slope gradient.

For all parameters, the sensitivity of the results is

dependent upon Ap. At larger values of Ap, there is

much less variation in the breaking position with the

model parameters, because in this strongly driven re-

gime, the breaking occurs closer to the plume origin,

with Ap being the dominant parameter. In this regime

FIG. 4. Evolution of the numerically approximated point of wave breaking for increasingAp in the cases: (a)E5 0.05, 0.072 (dashed), 0.1,

0.2; c5 0.003; u5 0.01;S5 0.002 588. (b)E5 0.072; c5 0.003 (dashed), 0.005, 0.007; u5 0.01;S5 0.002 588. (c)E5 0.072; c5 0.003; u5 0.01;

S5 0.003, 0.002 588 (dashed), 0.002, 0.0015. (d)E5 0.072; c5 0.003; u5 0.01 (dashed), 0.005; u(x); S5 0.002 588, where u(x) is given by (14).
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the wave breaking occurs on a length scale comparable

to the distance TUs (approximately one wavelength),

and over this (shorter) distance the parameters for en-

trainment, drag, and slope have a limited influence.

Weakly driven waves break further downstream, and

over these longer scales there is more variability with

respect to the model parameters. Considering first the

dependence on the entrainment coefficient E, the dif-

ference in the breaking position (relative to the base-

line case of E 5 0.072) for E 5 0.2 ranges from 14% to

40% for Ap from 0.5 to 0.25 (Fig. 4a). Changing u be-

tween 0.01 and 0.005 causes a variation in breaking lo-

cation of less than 15% across the range shown in Fig. 4d.

This effect is clearly complex, with shallower slopes

causing earlier breaking for high Ap but later breaking

for low Ap (Fig. 4d).

The drag coefficient c is highly important. Varying

from the baseline value of c from 0.003 to c5 0.007, the

wave breaking is (for practical purposes, given the re-

sulting large length scales) completely removed from the

system for Ap , 0.35. For the three drag coefficients

presented, the wave-breaking position can vary dramati-

cally at even moderate pulsation amplitudes of 30%,

with no breaking found within a 200-km domain for the

higher drag coefficient of c 5 0.007. This is a simple

result of the nonlinear drag parameterization in (1b),

which discriminates against the faster-moving wave

crests and thus delays breaking.

The parameter S is also found to be influential. To

a first approximation, the breaking position scales with

1/S, so halving S will double the distance required for

wave breaking. This parameter is always small in re-

alistic applications; an upper bound can be found by

considering semidiurnal tides (T5 12h) and thick plumes

(D5 300m,U5 1ms21), giving S5 0.007. Ameasure of

the advection time scale of the plume is given by Ds/Us.

Given a typical plume aspect ratio of 1000:1 (Fig. 3a),

1000Ds/Us is the time taken for a parcel of fluid to travel

a typical plume length. The wavelength produced in the

plume is the distance traveled by a parcel of fluid during

one period of the source oscillation. Thus, as shown by

Holland (2011), if S ’ 0.001, then 1000Ds/Us ’ T and

the oscillating source will create a wave that is the

length of the plume.

We now examine the influence that the choice of

source pulsation has on the wave-breaking location. In

the above results, we imposed (4) as a generic inflow

boundary condition. We can of course consider unequal

pulsation amplitudes in the form of

B0(t)5 11Ap sin(2pt) and

D0(t)5 11 lAp sin(2pt) , (15)

for a real constant l, with Q0(t) determined as in (4).

In Fig. 5, we compare the point of wave breaking for

l5 1/4, ½, 1, 3/2, where l 5 1 corresponds to the (dashed

line) results of Fig. 4a. This variation in the source

conditions leads to differences of less than 20% in the

predicted point of wave breaking; a variation that is

comparable with that found for modified values ofE and

u. This leaves Ap, S, and the drag coefficient c as the

dominant model parameters in terms of predicting the

wave-breaking position.

c. Diffusive effects

Following Scase and Hewitt (2012), we can also con-

sider the influence of diffusive effects on the evolution of

the plume. Allowing for a velocity/buoyancy diffusion,

with coefficients that scale with both plume depth and

local velocity, introduces two associated dimensionless

parameters � and k. The corresponding form of the

governing system (2) becomes

S
›D

›t
1

›Q

›x
5E sinuU , (16a)

S
›

›t
(UD)1

›

›x

�
U2D1

1

2
BD

�

5B sinu2 cU21 �D
›

›x

�
UD

›U

›x

�
, and (16b)

S
›B

›t
1

›

›x
(UB)5 k

›

›x

�
UD

›B

›x

�
. (16c)

The unsteady source conditions remain as stated in (4),

and owing to the diffusive nature of the system, two

further constraints are imposed downstream:

FIG. 5. Evolution of the point of wave breaking, for increasingAp

and a range of unsteady source conditions [(15)] with l5 1/4, ½, 3/2,
and 1. The arrow indicates the direction of decreasing l.
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›U

›x
5

›B

›x
5 0 at x5 x‘ , (17)

where the computational domain (indicated by the square

brackets to be a closed range) is x 2 [0, x‘], for a suitably

large value x‘. The previously noted steady solutions still

solve this diffusive system exactly.

Choosing k5 �5 1 explicitly scales the diffusion term

to equal advection; increasing the diffusion far above

this value would produce a fundamentally diffusive

problem in which plume physics were unimportant, so

we have investigated the range below this value. Figure 6

shows the influence of diffusion coefficients �5 k5 1, ½,
1/4, and 1/8. Diffusion does not affect the location of break-

ing, but it replaces the actual breaking with a diffusion-

limited slope in all model variables at the same location.

Even at these high diffusion coefficients, the effect of

diffusion is localized and merely acts to mitigate the

discontinuity in plume properties. As may be antici-

pated, the downstream steepening of the wave is ulti-

mately limited by the diffusion coefficient, maintaining

continuity of the solution. It is important to note that the

removal of wave breaking by lateral diffusion does not

detract from the oceanographic significance of the re-

sults. The peak in diffusion required to prevent wave

breaking represents a vigorous local mixing that strongly

resembles the expected effects of a breaking interfacial

wave, and thus the basic result remains that strongmixing

is expected at the wave-breaking location.

5. Discussion

The results are primarily affected by the nature of the

imposed source oscillation, with wave breaking occurring

closer to the source for higher-amplitude (higher Ap) or

shorter-period (higher S) perturbations. In reality, the

tidal forcing amplitude takes the full range from steady

source to fully pulsed source for different plumes. Even

in a single location, the plumes can be steady during

neap tides and fully pulsed during spring tides. For ex-

ample, in the Ross Sea, Antarctica, the spring tides ad-

vect the dense water source around such that it appears

at the top of the slope for only 1/4 of the tidal cycle, but

during neap tides the dense water source is permanently

present (Padman et al. 2009). The modeled position of

wave breaking is relatively insensitive to entrainment,

slope, and differential oscillation between the different

source variables. Modeled wave breaking occurs closer

to the source for lower seabed drag (lower c) and thicker

or less-dense sources (higher S).

In our model, any positive diffusivity will prevent the

development of shocks (which have a formally infinite

gradient) in the plume variables, replacing them with a

gradient in which wave-steepening processes are bal-

anced by diffusion of momentum and buoyancy (Fig. 6).

Thus, to the extent that our model equations represent

the real world, diffusion will always prevent discontin-

uous plume properties, and wave breaking will instead

be manifest as enhanced diffusion. Scaling k and � by

a characteristic velocity of 1m s21 and mixing length of

100m produces dimensional diffusivities of 100m2 s21

in the upper limiting case tested here, k 5 � 5 1. This

high level of diffusivity is consistent with values derived

from field observations of the ocean surface mixed layer

on a horizontal length scale of 100 km (Thorpe 2005), so

it is very much an upper bound for a study of plumes in

the ocean interior (we are not aware of any observation-

based estimates for lateral diffusion in dense ocean

plumes). Choosing any value higher than this would

explicitly scale the diffusive terms to be larger than

advective terms, swamping the model results with dif-

fusion. Any realistic value will be considerably smaller

than this as the mixing length is the plume depth, not its

length, and for these smaller values the results converge

to (and are well approximated by) the nondiffusive

case (Fig. 6), albeit without the development of a for-

mal shock.

In the real oceans, breaking internal waves are a

widely acknowledged source of diapycnal mixing. A

complete suppression of internal wave breaking will

depend upon the temporal and spatial variation of both

the turbulence suppressing a nascent shock and the wave-

steepening processes at play. With parameterized en-

trainment and lateral diffusion, our depth-integrated

model is incapable of fully representing such effects.

However, our model prediction of enhanced diffusion

at the length scale of breaking internal waves suggests

FIG. 6. A profile of the periodic (with unit period) dimensionless

plume depthD(x, t) at t5 3/4 withAp5 0.25 and S5 0.002 588. The

solid line is the diffusion-free result leading to a discontinuity in

plume depth near x’ 1700, while the diffusive cases � 5 k 5 1, ½,
1/4, and 1/8 are shown as the dashed lines. The smaller diffusion

coefficients are associated with the steeper gradients.
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that this process could lead to enhanced local mixing in

real-world plumes affected by a pulsed source.

Turbulence generally fluxes quantities down gradi-

ent. When diffusion is included, wave breaking is rep-

resented by the plume variables attaining the maximum

permissible gradient for the chosen diffusivity. A perti-

nent question, then, is whether this gradient (and its

resulting diffusion) is large relative to gradients (and

thus diffusion) caused by other plume processes. The

maximum gradients in our diffusive results are certainly

found at the location of wave breaking (Fig. 6), so it is

clear that wave breaking provides a much more vigorous

downstream diffusion than is otherwise achieved in our

scenario. This vigorous lateral diffusion is highly unusual

for plumes. The break induces a downstream change in

velocity of up to 50%, which in the diffusive cases is

spread over a length scale of 10 km. In classical steady

line plume theory, the velocity is spatially uniform, so

it is difficult to conceive another situation, other than a

hydraulic jump, in which such a strong downstream shear

is found. It is possible that an external flow might impart

such shear, but it is then debatable whether the result-

ing flow ought to be considered a buoyancy-controlled

plume.

In dimensional terms, for an initial plume depth of

100m and pulsation amplitude of Ap 5 0.5, the point of

wave breaking occurs approximately 50 km from the

source. The results of Holland (2011) did not demon-

strate this samewave breaking; it was artificially damped

by a numerical diffusion, which was uncontrolled in the

sense that it was an emergent feature of the (arbitrary)

computational mesh. Nevertheless, in this work we dem-

onstrate that even with an explicit physically motivated

(and controlled) downslope eddy diffusivity, the conclu-

sions obtained from the diffusion-free equations still

hold. A rapid downslope variation in plume properties

is observed at the same wave-breaking location, but the

downslope gradient of plume properties is inversely

proportional to the eddy diffusion. At physically plau-

sible values of the eddy diffusion, this downslope gra-

dient remains significant.

6. Conclusions

Dense ocean plumes are an important source of deep

and bottom water masses in the world’s oceans, and

these plumes are commonly affected by tides, whichmay

cause a pulsing of the source of dense water. This study

shows for the first time that such pulses lead to waves in

the plume properties that can break at distances down-

stream that are geophysically relevant. To the extent to

which this simple model is able to represent the real world,

we expect such wave breaking to form an important, and

previously unknown, source of mixing in dense ocean

currents.

This study demonstrates that the unsteady line plume

model is well posed, so that its implementation allows

for a study of wave breaking. The results are primarily

affected by the nature of the imposed source oscillation,

with wave breaking occurring closer to the source for

higher-amplitude or shorter-period perturbations. The

modeled position of wave breaking is relatively in-

sensitive to entrainment, slope, and differential oscilla-

tion between the different source variables. Modeled

wave breaking occurs closer to the source for lower

seabed drag and thicker or less-dense sources. The in-

troduction of explicit diffusion into the model removes

the breaking waves, replacing them with localized re-

gions of intense horizontal mixing at the same location.

The results of this study suggest that wave breaking

is an important process in dense water plumes. It is un-

clear to what extent the transmission and steepening

of these gravity waves remains pertinent in a rotating

system subject to baroclinic instability, where dense

currents can break up into a series of eddies rather than

maintaining a coherent plume (Cenedese et al. 2004).

Because all ocean models feature both explicit and nu-

merical diffusion, they cannot host actual wave break-

ing, though they may well represent the effect as intense

horizontal mixing. This study raises the important pros-

pect of a hitherto unconsidered process causing intense

local mixing in dense ocean currents.
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