Can an Anthropocene Series be defined and recognised?

JAN ZALASIEWICZ1, MARK WILLIAMS1, COLIN N. WATERS2

1. \textit{Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK.}
2. \textit{British Geological Survey, Keyworth, Nottingham, NG12 5DP, UK}

Abstract: We consider the Anthropocene as a physical, chronostratigraphic unit across terrestrial and marine sedimentary facies, from both a present and a far future perspective, provisionally using a \textasciitilde{}1950 CE base that approximates with the ‘Great Acceleration’ of Steffen \textit{et al.} (2007), worldwide sedimentary incorporation of A-bomb-derived radionuclides and light nitrogen isotopes linked to the growth in fertilizer use, and other markers. More or less effective recognition of such a unit today (with annual/decadal resolution) is facies-dependent and variably compromised by the disturbance of stratigraphic superposition that commonly occurs at geologically brief temporal scales, and that particularly affects soils, deep marine deposits and the pre-1950 parts of current urban areas. The Anthropocene, thus, more than any other geological time unit, is locally affected by such blurring of its chronostratigraphic boundary with Holocene strata. Nevertheless, clearly separable representatives of an Anthropocene Series may be found in lakes, land ice, certain river/delta systems, in the widespread dredged parts of shallow marine systems on continental shelves and slopes and in those parts of deepwater systems where human-rafted debris is common. From a far future perspective, the boundary is likely to appear geologically instantaneous and stratigraphically significant.

Keywords: Anthropocene, chronostratigraphy, sedimentary facies
The concept that we may be living in an Anthropocene geological time interval has attracted considerable interest and scrutiny since its latest restatement by Crutzen & Stoermer (2000) and Crutzen (2002) (see also Revkin 1992). These authors effectively regarded the Holocene as having terminated because of the scale and significance of human impact upon the Earth System. In this view, a new and distinct phase of Earth history has already begun, and Crutzen in 2002 regarded the beginning of the Industrial Revolution as marking the beginning of profound global change.

Formalizing this concept within the Geological Time Scale (Zalasiewicz et al. 2008, 2011, 2012) would result in the creation of an Anthropocene Epoch. Higher levels (e.g. Period, Era) might be considered because of the lack of precedent in Earth history for some of the component stratigraphical signals, such as the lithostratigraphical signal in urban regions (Price et al. 2011, Ford et al. this volume) and the scale and character of the biotic change (Barnosky 2008, this volume; Barnosky et al. 2011, 2012). Lower hierarchical levels are possible too (e.g. an Anthropocene Age as subdivision of the Holocene Epoch), and this would result in less modification of the Geological Time Scale. However, we continue to discuss the Anthropocene in terms of the hierarchical level of Epoch, not least because it brings clear focus on the important scientific question of whether or not the Earth system now lies outside of the ‘Holocene envelope’ of stratigraphically significant environmental conditions (cf. Röckstrom et al. 2009; Steffen et al. 2011).

Anthropocene boundary level

To carry out the analysis below, we must provisionally select a start date for the Anthropocene. Potential dates for the beginning of this phenomenon have fallen into three categories. Firstly, dates a few to several millennia back within the Holocene (Certini & Scalenghe; Ruddiman 2013) have been suggested, reflecting the growing evidence for widespread, low-intensity human modification of the terrestrial environment (Ellis 2011, Kaplan et al. 2011) and, more
controversially (Ruddiman 2003, 2013; cf. Elsig et al. 2009) resultant release of sufficient greenhouse gases to maintain the Holocene within stable conditions of climate and sea level. Secondly, the beginning of the Anthropocene at ~1800 CE, as originally suggested by Crutzen (2002): that is, around the beginning of the Industrial Revolution when the rapid increase in human numbers, energy use and atmospheric carbon dioxide levels began (Zalasiewicz et al. 2008, Fig. 1). And thirdly ~1950 CE, the beginning of the post-war ‘Great Acceleration’ of economic activity (Steffen et al. 2007).

We regard the latter two as the more suitable candidates, because of the clear break between Holocene global stability (or very slow change) and the more rapid and geologically striking changes of the last two centuries (e.g. Zalasiewicz et al. 2008, Fig. 1; Steffen et al., 2011, Fig. 1). The Anthropocene does not represent the detectable incoming of human influence (which in any case is clearly diachronous: e.g. Kaplan et al. 2011) but major change to the Earth system, that happens to be currently driven by human forcing, but that may geologically soon be more significantly controlled by a number of secondary positive feedbacks such as methane release from permafrost and ice-albedo changes (e.g. Hay 2013, pp. 897-939).

For the purposes of this exercise we choose the later, ~1950 CE date. This level coincides with changes to lacustrine dynamics and sedimentation worldwide (expressly linked to a potential Holocene/Anthropocene boundary by Wolfe et al. 2013, and partly reflecting worldwide shift in nitrogen isotopes associated with increase in global fertilizer use: Holtgrieve et al. 2011). It also coincides with the beginning of the nuclear age and the spread of artificial radionuclides into contemporary sediments worldwide, and both biotic (Barnosky, this volume, Wilkinson et al., this volume) and physical (Ford et al., this volume) stratigraphical signals that seem to be both stratigraphically sharp (to ~decadal level) and globally widespread. These changes are traceable by scientists living today, and not just by hypothetical ‘far-future’ geologists. They represent a significant and permanent shift in the Earth system, though likely not the
greatest changes, that will almost certainly take place in the coming centuries and millennia (Barnosky et al. 2011, 2012; New et al. 2011).

Thus, while it is still too early to make a formal recommendation, the ~1950 level currently seems to provide sharper stratigraphic definition than the relatively more diffuse and diachronous signals associated with the Industrial Revolution (e.g. the shift in carbon isotopes from the increase in fossil fuel burning: Al-Rousan et al. 2004).

We do not here examine the question of whether the boundary should be defined by a Global Standard Stratigraphic Age (GSSA or more simply a numerical age) or Global Stratigraphic Section and Point (GSSP = ‘golden spike’). For practical purposes in current use, we consider that either would be effective. By whichever means defined, this ~1950 CE level might be regarded as stratigraphically challenging, in encompassing (to date) the geologically almost infinitesimally brief interval of ~65 years: over three orders of magnitude shorter than the Holocene and over five orders of magnitude shorter than the average epoch in the Cenozoic (Fig. 1).

The Anthropocene in geochronology and chronostratigraphy

Given current stratigraphic practice, we must consider the Anthropocene as a potential formal stratigraphic unit in not one but two meanings.

Firstly, it is a potential geochronological unit, that is, one of geological time, over which a variety of events have taken place on Earth. An Anthropocene Epoch, as an Earth-based time unit, would (as with the Holocene Epoch and all other geochronological units) hence be used as temporal reference for events in the Earth’s deep interior as much as those at the surface.

Separate geological time scales have been set up for other bodies such as the Moon and Mars (Tanaka & Hartmann 2012) and so an Anthropocene Epoch
would be limited to this planet, as holds currently true for other terrestrial
geochronological units. The limits on Earth extend from the core to the
atmosphere and arguably to the region of space immediately dominated by the
Earth’s gravitational field, though excluding the Moon, that has a separate
stratigraphic scheme (Tanaka & Hartmann 2012). However, we note that it is
now beginning to be possible to correlate the Anthropocene across space, in
what might be regarded as the first interplanetary stratigraphic marker since the
products of the Late Heavy Bombardment of the late Archaean. Infinitesimally
smaller in bulk though very much more synchronously distributed, human-
projected spacecraft and associated debris have now left physical traces on and
around several planets and moons of this Solar System.

For all past geological units, with the exception of the later part of the Holocene
Epoch (that we still, formally, live in) all of our knowledge of the history of the
Earth is derived from the rock record. From the beginning of a human written
record, this proxy record began to be augmented by human observations of
terrestrial events. This human observation has developed, today, to the extent
that many terrestrial processes are now routinely monitored, recorded and
analysed; this means that geological proxy data of the Anthropocene, being
captured within rock currently forming, can now be directly compared with the
geological events themselves.

The Anthropocene, in tandem with other geological units, should also be
considered as a material rock unit of chronostratigraphy (commonly referred to
as ‘time-rock’). Chronostratigraphic units are commonly regarded as the
material ‘rock’ record of geological time, and thus the physical embodiment of
(and evidence for) the passage of time. Thus, the Jurassic System comprises all
of the rock formed during the Jurassic Period, while the Pleistocene Series is the
equivalent rock record of the Pleistocene Epoch. There is hence a hierarchical
system of chronostratigraphical terms, exactly parallel to those of
geostratigraphy. The Anthropocene, if considered as an Epoch, should also be
considered as a Series.
Chronostratigraphy, scale-dependence and the Anthropocene

Not all geologists consider chronostratigraphy to be a necessary and fundamental part of the Geological Time Scale (e.g. Carter 2007; Zalasiewicz et al. 2004, 2007). In such an interpretation there need not be both a Pleistocene Epoch and a Pleistocene Series, but simply an Epoch, to which the material record is referred descriptively (thus: strata formed during the Pleistocene Epoch, or more simply 'Pleistocene strata'). Currently, though, most stratigraphers, as represented by voting members of the International Commission on Stratigraphy, prefer to use the dual hierarchy of geochronology + chronostratigraphy (Zalasiewicz et al. 2013), and so we here regard consideration of an Anthropocene Series as an integral part of the analysis of the Anthropocene concept.

Chronostratigraphy in practice only effectively applies to stratified rocks, where superposition applies and hence ‘lower’ equals ‘older’ and ‘upper’ equals ‘younger’ (Zalasiewicz et al. 2013). Single hand specimens of igneous and (especially) metamorphic rocks commonly include a number of intermeshing fabrics of distinctly different ages (that can be dated and placed within a geochronological framework), and so ‘upper’ and ‘lower’ have no meaning and the rock itself cannot be regarded as having ‘formed’ at a particular moment in time. Thus, a putative Anthropocene Series encompasses only stratified deposits currently accumulating and not (say) mineral assemblages now crystallizing (i.e. during the Anthropocene Epoch) in the roots of current mountain belts.

Chronostratigraphy is also scale-dependent (Zalasiewicz et al. 2007). That is, on short time-scales, the superpositional fabrics of sedimentary stratification may be disrupted by such processes as bioturbation (in marine deposits especially: Anderson 2001) or by soil-forming processes (Bacon et al. 2012), giving disrupted sedimentary fabrics in which temporal information has been mixed or homogenized. This process commonly affects time units of durations of some thousands of years (Anderson 2001) but it can also act over time scales of
millions of years (e.g. Bacon et al. 2012) and length scales of kilometres in the case of subsurface sedimentary diapirism (e.g. Shoulders & Cartright 2004).

For most stratigraphic units in the deep time record, this scale-dependence effect may be neglected, given that currently achievable levels of time resolution are typically measured in fractions of millions of years. However, the duration of epochs, both actual (Holocene) and potential (Anthropocene) becomes much shorter towards the present day (Fig. 1). Thus, for Pleistocene and (especially) for Holocene strata the scale dependence effect becomes significant, and for the Anthropocene (where decadal time resolution may reasonably be sought) it becomes an important factor in chronostratigraphic definition.

Components of an Anthropocene Series

Despite the complications noted above, an attempt to define an Anthropocene Series is both part of formal stratigraphic analysis and, independently of this, is useful in helping to understand the Anthropocene phenomenon (formal or informal) as a part of Earth history.

What might an Anthropocene Series, and its various material stratigraphic components, comprise? We consider the strata that accumulate in a range of geographic settings, from terrestrial (in the sense of ‘land-based’) to deep marine, and discuss how they might be recognised and characterised. We reiterate that the Anthropocene here is a time boundary, and not a boundary between anthropogenic ‘artificial’ and ‘natural’ sedimentary facies. Hence an Anthropocene Series (and, indeed, pre-Anthropocene deposits) will include both of these facies, the boundary between them being diachronous. Nevertheless, the extent of facies diachroneity will vary, both geographically and between different types of stratigraphic signal, and this might offer the possibility of effective discrimination of an Anthropocene Series.
These strata include a number of proxies for time – not least fossils, a form of evidence that remains key to the subdivision of Phanerozoic strata (Gradstein et al. 2012) and that has the potential to help characterise an Anthropocene interval (Barnosky, this volume; Wilkinson et al., this volume), when used in combination with other stratigraphic indicators (Waters et al., this volume).

Terrestrial settings

Geologically, the terrestrial realm may be divided into areas of erosion, particularly of older rock, and areas of deposition. The former in stratigraphy may be considered as unconformity surfaces, only to be preserved at the transition between phases of erosion and subsequent sedimentation. Although such erosion surfaces may be studied by techniques such as Terrestrial Cosmogenic Nuclide (TCN) dating (e.g. Gosse & Phillips 2001), we will not consider them further here, except via the indirect record they leave via the sedimentary deposits eroded from them. These may be broadly categorized as the following.

Soils: Soils are perhaps the most widespread terrestrial sedimentary facies, forming on both erosional and depositional surfaces, and having deep time equivalents, palaeosols, when preserved upon depositional surfaces.

The alteration of soils by anthropogenic activities is widespread, striking and increasingly well documented (Richter, 2007). But, the spread of anthropogenic soils has been strongly diachronous through the Holocene, and reflects the spread of agriculture across the globe (Ellis et al. 2012). At present, therefore: which soils are Holocene and which are Anthropocene?

One approach here has been to take a major phase of soil expansion two thousand years ago across northern Europe (Certini & Scalenghe 2011) and suggest that the base of that may be taken as a ‘golden spike’ to mark the base of the Anthropocene. This is an intriguing and imaginative suggestion, but is not
without problems (Gale & Hoare 2012). Firstly, the base of a soil upon older regolith is gradational and cannot capture a boundary with the resolution required for the Anthropocene. Secondly, and more generally, soils exemplify the ‘scale-dependence’ phenomenon noted above, being continually reworked by both natural and anthropogenic processes as long as they are at the Earth’s surface. Hence, it may in some ways be more appropriate to place all surface soils in the Anthropocene, because they are continually being modified, even though many of them have fabrics and components which range back for thousands and, in some cases (Bacon et al. 2012) for millions of years. This ongoing modification is arguably greatest for agricultural soils, because of the intensive nature of human reworking. Because of the breakdown of superposition, soils are generally problematic to classify chronostratigraphically at the very high levels of temporal resolution required for the Anthropocene.

Thirdly, the criteria for definition of a ‘golden spike’ recommends that a section be used in which there is a continuous succession, where observed gaps in deposition are absent or at a minimum. In existing chronostratigraphical units, palaeosols are considered to represent time-gaps and would be avoided as a basis on which to define a chronostratigraphical boundary (Remane et al. 1996).

Lacustrine deposits: Lake deposits are perhaps the most straightforward to deal with stratigraphically. Their deposits commonly form ordered strata, which - especially in those lakes with low-oxygen bottom waters – tend not to be seriously disrupted by bioturbation. The resulting high-resolution stratigraphic archives can show a clear signal of the environmental changes that may potentially characterise a ~1950 CE Anthropocene Series base, such as widespread, marked N isotope (Holtgrieve et al. 2011) and palaeontological (Wolfe et al. 2013) signals in northern lakes far from urban centres, while the incoming of A-bomb test-related radionuclides provides another marker (Appleby 2008; Hancock et al. 2011; Yan et al. 2002; Hancock, this volume). If it was decided to define the Anthropocene boundary via a physical reference level or GSSP (‘golden spike’) rather than a designated numerical date GSSA (see discussion below), then lake deposits will figure strongly as settings for candidate stratotypes. Lacustrine sediments, though, include anthropogenic
signals of other ages too, some markedly diachronous, such as sediment influxes associated with land use changes (Edwards & Whittington 2001).

Fluvial deposits: The human management of rivers, and consequent alteration of their patterns of sedimentation and erosion, has a long history, and the consequent spread of indirect anthropogenic deposits has been marked (e.g. Syvitski & Kettner 2011; Merritts et al. 2011; Brown et al. 2013), multi-faceted (e.g. the 19th century modification of fluvial sedimentation in north America, as numbers of beavers – and hence beaver dams – fell sharply as a result of hunting: Kramer et al. 2011) and strikingly diachronous across the world, and even in part on a regional scale within the UK (Lewin 2012). Indeed, the difficulty of consistently recognising an Anthropocene boundary in modern fluvial deposits was regarded by Autin & Holbrook (2012) as one reason to reject the concept of a formalised Anthropocene.

However, globally, the rate of fluvial transformation saw significant rises that coincided with the two main inflections in human economic activity at ~1800 and at ~1950 (Syvitski & Kettner 2011) both of which are candidate dates for the beginning of the Anthropocene. To what extent these may be generally ‘traceable’ within the sedimentary record seems still to be an open question. Locally, at least, major, distinct Anthropocene bodies of sediment are building up behind the major dams that in recent decades have been constructed on nearly all major rivers of the world (Syvitski & Kettner 2011), with rates of sediment supply commonly increased by deforestation and related processes (Wilkinson, 2005). For instance, most sediment that used to be transported down to the Nile Delta is now trapped behind the Aswan Dam (producing a substantial, and rapidly growing Anthropocene sediment body) or held within artificially multiplied (for irrigation) distributaries within a system that has been completely altered by human activity (Stanley 1996).

Significant future rise in sea-level would be expected to result in development of transgressive estuarine to marine deposits in the distal parts of river systems. However, the interplay of associated changes in precipitation, vegetation and
human forcing would certainly be complex, making patterns of sedimentation hard to predict.

Aeolian deposits Windblown deposits occur both within the major sand seas of the world, such as the ergs of the Sahara desert, as more localised dune fields, such as those associated with coastal areas, and also as far-travelled loess and related deposits. All are sensitive to local climate and to vegetation cover, and human activity, in particular through over-grazing, over-cultivation, unsustainable irrigation techniques and deforestation, which has strongly influenced the generation of loess through desertification, and whose effects include increases in dust flux (Goudie 2009). There is evidence of an increase of a factor of two in background dust loads over the Atlantic since the mid-1960’s, the likely product of desertification caused by the doubling of the population in the Sahel region over the past 40 years (Moulin & Chiapello 2006). The extent to which these might translate into an Anthropocene Series boundary is uncertain. It seems likely that within contemporary large, long-lived dune fields, at least, the shifting sands will render a boundary difficult to locate and trace precisely – though in this the Anthropocene is not alone in facing difficulties of chronostratigraphic classification (see below).

Glacial deposits: Glacial deposits are sensitive recorders of changes in ice volume and extent, and many present-day glacial valleys in Europe include terminal moraines reflecting the greater extent of ice during the Little Ice Age of the 16th to mid-19th centuries (Mann 2002). Similarly, the shrinking of most mountain glaciers since the 1850’s, with regional variations in both retreat and advance during the mid-20th Century and large-scale retreats since the 1980’s (IPCC 2001, figure 2.18.), linked to global temperature increases, has exposed morainic deposits that may be clearly identified and mapped as of Anthropocene age, particularly where detailed cartographic and photographic records occur of glacier extents earlier in the 20th century (e.g. Kulkarni et al. 2007). Associated deposits include those laid down catastrophically by dam-bursts, as increased volumes of meltwater have accumulated behind and destabilized morainic dams and wasting morainic ice cores (Nayar 2009).
Ice: This is also a terrestrial sedimentary deposit that is found on all the continents (except in Australia, and probably not for much longer in Africa, where it is represented only by rapidly-thawing Kilimanjaro). Ice sheets record snow layers extending back many thousands of years, and encapsulating (in the Arctic and Antarctic) the entire interval of human history, including levels that can be identified for 1800 and 1950, and which provide data on rising CO$_2$ intervals. Snow layers record human pollutants from the atmosphere back to classical times (e.g. lead aerosols derived from Roman smelting). Following this, there is a succession of recorded events that might provide geochemical criteria to identify either a ~1800 CE or a ~1950 CE level. This includes the CO$_2$ levels preserved in air pockets (though this is compromised by the ‘lock-in’ time for air post-dating the deposition of the snow). However, events such as the appearance of nitrogen derived from the Haber-Bosch process (cf. Holtgrieve et al. 2011), the change in lead isotopes reflecting the use and then abandonment of lead additives in petrol (Bollhöfer & Rosman 2000), and the incorporation of artificial radionuclides provide useful global stratigraphic markers. The range of palaeoenvironmental proxies recorded in this medium and the annual resolution make selection of a GSSP within a snow/ice core a potential option, as for the Pleistocene/Holocene boundary (cf. Walker et al. 2009).

Artificial deposits The transformation of primary raw materials (sand and gravel, limestone, mudrock, metal ores) into the fabric of urban areas represents the creation of a novel and substantial type of stratum in which the buildings themselves and the associated landscape changes (the latter mapped as various types of Artificial Ground on British Geological Survey maps, for instance: Price et al. 2011; Ford et al. this volume) provide something that combines features of a lithostratigraphic unit and of an extraordinarily large trace fossil system. The resulting deposit is clearly anthropogenic but, because towns and cities have been a feature of human civilization since the Epi-palaeolithic (Mesolithic) about 9000 BC (see Edgeworth this volume), also clearly diachronous. We may discuss two features of relevance here.
Firstly, the extraordinary post-war growth of cities and megacities allows, by simply mapping the historical growth of urban areas, a distinction between post-1950 CE artificial deposits and those that predate them (Fig. 2). Prior to the 1950’s, large cities tended to be located close to natural resources or be suitable coastal locations for the import/export of these resources. The post-1950s evolution of megacities has relied upon the contained population of the megacity to be the key resource, and these cities have been a centre for the inward influx of natural resources sourced from rural areas and transported to the cities to fuel industry and construction. This change can be seen as a product of improvement of transport networks and greater efficiencies in the mass-transport of bulk materials during the late 20th century (Haff, this volume; see also Williams et al., this volume). This creation of laterally continuous but temporally distinct deposits may be compared with, say, those created naturally during the progradation (outgrowth) of a delta system.

Secondly, even within the older parts of existing cities, the continuous replacement of the urban fabric, both above and below ground, means that these artificial deposits comprise complex mixtures of pre-Anthropocene and Anthropocene rocks and minerals (and, locally, indeed fossils). The presence of novel materials and minerals in both direct and to a lesser extent indirect anthropogenic deposits (Ford et al. this volume, Zalasiewicz et al. this volume b) provides an approach to dating these deposits to decadal level, a resolution far beyond that applicable for previous epochs. This is a rather coarser-grained equivalent of the situation noted above with soils, and again underscores the awkwardness of chronostratigraphy in dealing with short time scales and complex sedimentary processes and geometries. It is only towns and cities abandoned pre-1950 that may be said to comprise wholly pre-Anthropocene representatives of this deposit type.

Below ground, artificial ground locally deeply extends into underlying strata via the many mineshafts and boreholes sunk to extract resources, with considerable ‘halo’ effects via such as hydrocarbon extraction (and now, injection of fluids and
sand for shale gas extraction). Geologically, this is something of a hybrid, combining features of burrowing, albeit on an enormous scale, with those of intrusive bodies, showing cross-cutting relationships, and even of diagenetic alteration. Neither of the last two phenomena are generally classified within chronostratigraphic units (as they do not show superpositional relationships), as their history may be protracted and only related in general terms to processes acting at the Earth’s surface (Ford et al. this volume). The subsurface anthropogenic phenomena, by contrast, are very much related to surface activities (and can also impact on the surface, as for instance with aquaculture-related subsidence on the Yellow River delta in China now reaches 250 mm/year: Higgins et al. 2013). They clearly form a pronounced and temporally constrained event, given the post-war surge in drilling and mining (Ford et al. this volume).

Marine settings

Coastal systems These systems include beaches, tidal flats and deltas. Throughout much of the latter half of the Holocene, these have been commonly progradational, as sediment eroded from the land, has accumulated around a coastline more or less fixed as sea level stabilized following its post-glacial rise. Where sediment has built up and built out in this way, then distinct stratal packets that relate to industrialization and land use change have been recognised and suggested as Anthropocene markers (e.g. Poirier et al. 2011). Some are distinctive through their content of heavy metals, organic chemicals and so on (e.g. Allen 1988; Marshall et al. 2007; Vane et al. 2011; Galuszka et al., this volume), with eutrophication of coastal environments due to influx of excess nitrogen, and these may also be used to help identify an Anthropocene/Holocene boundary. Globally, the overall facies changes are diachronous, but within them some signals (such as distinct chemical markers related to particular industrial processes: Kruege 1999) may provide more or less synchronous marker levels.
Within the last couple of centuries – and particularly the last several decades, many coastal systems have seen large-scale change that is clearly relevant to the historical characterisation of the Anthropocene, but that complicates the simple progradational picture. For instance, as rivers have been dammed, sediment is temporally stored behind the dams (see above) and does not nourish growing deltas, some of which have as a consequence shrunk back (e.g. Nile, Mississippi etc – Törnqvist et al. 2008). Related phenomena include the draining of coastal wetlands for farmland, resulting in the large-scale loss of such strata as surface peat deposits through desiccation, deflation and oxidation. For instance, some 2000 km² of peat up to 4 m thick in the English Fenland alone has disappeared since the 18th century, resulting in the exposure of the underlying geology, now itself compacted and oxidised (Smith et al. 2011). Attempts at stabilization of coastal erosion rates through construction of coastal defences produces artificial deposits, while impacting upon sediment flux and erosion rates adjacent to protected regions. The Anthropocene boundary here approximates to a regional sedimentary hiatus and disconformity - likely to be buried beneath new coastal sedimentary deposits, a century or two hence, as only a geologically trivial sea level rise will suffice to trigger marine transgression across such areas.

The expression of the Anthropocene in the environmentally sensitive coastal systems, therefore, represents a diverse patchwork of deposits and lacunae that reflect local interplays of natural and anthropogenic forces.

Shelf/slope marine systems Human impact on open marine systems has in general substantially lagged those on land. The marine fisheries in northern Europe began in earnest in Medieval times, perhaps as a result of technological improvements (e.g. effective drift nets) and their spread across the world has been charted by Roberts (2007). The concomitant, diachronous decline in fish stocks through overfishing changed the structure of marine ecosystems, though impacts on the kind of organisms (e.g. foraminifera, dinoflagellates – much lower in the food chain) used in biostratigraphy have likely been small, even with the dramatic fish declines reported (e.g. Myers & Worm 2003).
More profound physical and chemical impacts on recent marine strata are associated with the industrial age, from ~1800 CE. The greatest physical impact on sediments has been the physical disruption caused by sea bottom trawling. This is not a modern technique: the 14th century saw a petition to regulate the use of the ‘wondyrechaun’ – essentially a wooden beam trawl used in shallow coastal waters (Roberts 2007) – but open sea trawling came with steam-powered ships, and has continued to expand markedly in recent decades, moving into slope settings in waters approaching a kilometre deep.

Sea bottom trawling now affects some 15 million km² each year (Gattuso et al. 2009) – representing most of the world’s continental shelf area and also including significant areas of deepwater slope (Puig et al. 2012) and seamount surface. The process in effect ploughs the sea floor, producing a coarsening-upwards sedimentary signature (Palanques et al. 2001; M. Coughlan, pers. comm.), with mud swept up into an expanded nepheloid layer and transported more distally, and nutrients redistributed (Dounas et al. 2007). Benthic assemblages are altered (Malakoff, 2002) and some sensitive ones (e.g. deepwater coral systems) effectively destroyed (Sheppard 2006). Topographic effects may be substantial, with evident smoothing of topographic contours (Puig et al. 2012).

More recent extension of ‘Worked Ground’ into a marine setting can be seen with increased extraction of mineral resources including hydrocarbons and aggregates. It is only since the 1940’s that technology and economics has made offshore extraction of hydrocarbons feasible and it has grown to the point where it currently accounts for about 30% of total global output. Aggregate extraction significantly modifies the marine landscape, causes habitat modification and impacts on benthic communities both within, and downcurrent, of extraction sites and can significantly change sediment fluxes, potentially starving supplies of sand to coastal areas. Similar concerns are being raised about offshore wind turbine construction, an even more recent and expanding innovation.
Within tropical waters, bleaching of coral reefs in response to rising sea temperatures, in addition to other stressors, such as increased turbidity of marine waters due to runoff, the fishing process of dynamiting reefs and ultimately decreasing ocean pH (Tyrrell 2011) may lead to the extinction of whole reef systems, resulting in a drowned reef horizon.

In aggrading sedimentary systems, the resultant facies should have considerable preservation potential. It is of limited diachroneity, given the marked post-1950 expansion of many of the processes involved.

Deep sea: This is usually considered as those areas where water is >200 m deep (i.e. largely below wave base and off the continental shelf edge) and might be simplified into two main systems: the clastic wedges of turbidite fans and contourite drifts that fringe the continental masses, and the slowly accumulating deep-sea oozes that lie beyond. Both systems have been and continue to be affected by physical disturbance (e.g. by trawling, offshore mineral extraction), by input of particulate material (‘litter’) varying from micron to metre scale in size (and locally indeed larger, in the case of shipwrecks), by chemical contamination with both organic and inorganic substances, by effects associated with atmospheric CO₂ increase and warming (such as variations in pH and dissolved oxygen content) and by biological changes driven by all of the above processes, either directly or indirectly. The extent of these effects – all of which can affect the nature of sediments being deposited - have been qualitatively described but not yet rigorously mapped (Ramirez-Llodra et al. 2011). The stratigraphic signal is patchy but locally may be striking. As with the effects of urbanization, local signals go back millennia. Major expansions of activity and hence extent of stratigraphic imprint were associated with the Industrial Revolution at ~1800 CE and with the ongoing ‘Great Acceleration’ that started ~1950 CE.

The accumulation of litter – material dropped overboard - has reached the level where it rivals the extent of ice-rafted debris (IRD) in scale (Ramirez-Llodra et al. 2011), and is now seen in most surveys of the sea floor, where it is easily distinct
from the surrounding (mostly very fine-grained) sediment. We suggest hence
termining this material, sedimentologically, as human-rafted debris (HRD) to help
categorize a deep-water facies of a putative Anthropocene Series. Given
technical progress, it shows the kind of extremely high-resolution
‘biostratigraphy’ of human artefacts and products also seen on land (Ford et al.,
this volume). Hence, spreads of clinker (combustion products from the coal that
powered steam-ships) were universally dumped on the sea floor in the period
~1800 CE to ~1950 CE, - now colonised by a specific biota - might be regarded
as immediately pre-Anthropocene in our provisional definition, while those with
plastics, aluminium and other such more modern materials largely date from
after 1950 CE (Ramirez-Llodra et al. 2011). In the distal, naturally slow-
accumulating parts of the sea floor, such HRD from different centuries will in
effect fall within and contribute to the same physical layer.

More broadly, within the clastic wedges, the pattern of turbidite/contourite
deposition seems not yet to have been substantially affected by human activity; it
is not clear that changes in sediment supply caused by large-scale anthropogenic
modification of river systems (e.g. Syvitski & Kettner 2011) have yet filtered
down to cause substantial change to deep-sea clastic systems, though we regard
significant longer-term change as likely (see below). However, local effects
include the triggering of turbidity currents (that may also rework HRD into
concentrations: Ramirez-Llodra et al. 2011) by bottom trawling (Puig et al.
2012). In the longer-term, clastic shut-off caused by sea-level rise may be
envisioned.

The slowly accumulating deep-ocean oozes beyond will, in addition to such
accumulations, be influenced by anthropogenic change, via such signals as a
lighter carbon isotopic content in foraminifera shells, from the burning of fossil
fuels. Additional chemical signals such as those from anthropogenic organic
pollutants or artificial radionuclides are rapidly (e.g. Robison et al. 2005) if
unevenly (Buesseler et al. 2007) transported to the sea via aggregated sinking
planktonic debris. However, the very slow accumulation rate over most of this
realm means that this material is thoroughly intermixed, by bioturbation, with
pre-Anthropocene sediment, precluding recognition at such scale of a distinct
Anthropocene Series. Only in regions of significantly more rapid deposition (e.g.
Al-Rousan et al. 2004) does such a potential Series emerge as a distinct entity
with coherent upper (sedimenting) and lower surfaces. However, potential
changes to ocean chemistry may result in more extensive anoxia, with eutrophic
bottom conditions limiting bioturbation, and changes to the elevation of the
Calcite Compensation Depth in response to reduced oceanic pH (Tyrrell 2011),
producing a carbonate dissolution layer. In addition, the types of deep-sea
mineral extraction planned, if put into practice (of manganese nodules, for
instance), will cause widespread and distinct physical and biological
modification.

Duration of the Anthropocene: the long-term perspective

The complexities of diachronous event and process boundaries and scale
dependence effects, visible today, will largely or wholly disappear in any
consideration of far future perspective.

We do not consider the Anthropocene as a short transitional phase to some kind
of post-Anthropocene interval, even were there to be a catastrophic decrease in
the global human population in the near future. Rather, we consider that the
future course of geological evolution, with both natural and human feedbacks,
will inevitably be shaped by the anthropogenic perturbations that have taken
place to date. Thus the Anthropocene has only just begun and will play out over
geological rather than human timescales. The Toarcian and Paleocene-Eocene
Thermal Maximum (PETM) (Cohen et al. 2007; Zachos et al. 2005) events may be
regarded as comparable, with an initial perturbation of the carbon cycle,
amplification by natural feedbacks including massive carbon release from
ground to air, modulated by astronomical pacing (Kemp et al. 2005), and slow
recovery over the order of 0.1-0.2 Myr. Although each of these events in detail
represents a succession of distinct phases, each may also be (and are, in practice)
regarded as a whole.
In detail, the Anthropocene departs from the Toarcian and PETM models in a number of ways. It is an incipient ‘hyperthermal’ in an icehouse rather than greenhouse world, and so the ultimate sea level rise (barely begun) should give a stronger transgressive signal (Rahmstorf, 2007) than that in an essentially ice-free world. Indeed, if the glacial-interglacial cycle is significantly perturbed (Tyrrell 2011) with ice loss that exceeds Quaternary norms, then the geologically rapid transgression that followed the collapse of the end-Ordovician glaciation (Brenchley et al. 1994) might be considered as a closer analogue (Zalasiewicz & Williams, in press).

The Anthropocene also has a biotic pattern where perturbations (habitat clearance, predation, trans-global rather than local species invasions) are not simply forced by climate and ocean chemistry; as with previous biotic revolutions, these will be geologically long-lasting quantitatively (i.e. regarding diversity measures) and effectively permanent qualitatively (with new lineages arising from survivors and invaders) (see also Barnosky, this volume). This pattern is also unique in modification by unpredictable but likely important feedbacks, both planned and unplanned, within the perturbatory human system (Kellie-Smith & Cox 2011).

One might compare the scale of effects with those recently proposed (the 8.2 and 4.2 kyr events) to subdivide the Holocene Epoch into Ages (Walker et al. 2012; see also Gibbard & Walker, this volume). As regards global climate, current effects (a <1 degree C global temperature rise since the beginning of the 20th century) might not be regarded as yet comparing with the 8.2 and 4.2 kyr events in magnitude. However, near-future temperature rises are projected to considerably exceed these (IPCC 2001, 2007), given the unprecedented and ongoing rise in greenhouse gas levels. Other signals, though (lithostratigraphic, biostratigraphic, chemostratigraphic) are already pronounced and, as an ensemble, have no parallel in Earth’s stratigraphic history. Debate over the current formal significance of the Anthropocene will need to assess the relevant importance of all the relevant signals, and this is not a trivial task.
Nevertheless, the unprecedented rate of change in its early stages (within a small part of a single interglacial phase) means that the lower boundary to deposits of Anthropocene facies will appear synchronous globally. One may develop the 'superinterglacial' concept of Broecker (1987) by envisaging a variety of stratigraphic signals that vary from 'event beds' (e.g. the urban lithostratigraphic signal), to longer-lasting perturbations of chemical cycles and related effects on global temperature and sea level, to the effectively permanent changes to the course of the Earth’s biotic evolution.

Discussion

How might the Anthropocene be characterized? Clearly, it is not simply by the appearance of anthropogenic signals in the stratigraphic record, as these are diachronous, locally dating back to earlier parts of the Holocene and indeed into pre-Holocene deposits. Such early records have been used in favour of an ‘early Anthropocene’ hypothesis that encompasses much of the Holocene (e.g. Ruddiman 2003, 2013) and also in criticism of the attempt to define an Anthropocene unit in stratigraphy at all (e.g. Gale & Hoare 2012; Gibbard & Walker, this volume).

The key question seems to be whether the present-day Earth system now has been changed (by whatever agent) sufficiently in scale and permanence to justify a new geological time interval. If that is the case, one also may accept that the change from a putative pre-Anthropocene to an Anthropocene state has taken place non-instantaneously and diachronously. Most changes to the Earth system in our planet’s history have been neither instantaneous nor globally synchronous (e.g. Williams et al. this volume), and most established geological time boundaries have been compromises – generally vigorously debated - of one sort or another.
The task then becomes one of finding the most effective – or, if one prefers, the least worst – criteria for defining a boundary. Then, one has to decide whether a boundary so defined can function effectively to define both a unit of time (an Anthropocene Epoch) and a body of strata (an Anthropocene strata). This is the question we examine here. We note that the further test for a formal Anthropocene - its use to both geological and arguably wider (Vidas, 2011; Nature, 2012; Zalasiewicz 2013) communities - falls outside the scope of this paper, as does the question – see above and Zalasiewicz et al. 2008, 2011, 2012, Wolfe et al. 2013 – over whether a boundary, if agreed, is best defined by GSSP ('golden spike') or GSSA (numerical date).

It is clear that the material record of a putative Anthropocene Series, even considered with a ~1950 CE boundary, is locally distinctive and substantial – a feature reflecting the globally enhanced rates of erosion and sedimentation caused by humans (Hooke, 2000; Wilkinson 2005; Syvitski & Kettner 2011; Price et al. 2011). It is in many places also effectively distinguishable from pre-Anthropocene strata, on a decadal or even annual scale of resolution. Elsewhere, though, the distinction of Anthropocene from pre-Anthropocene strata is less obvious. This may be because there are no significant markers or facies changes (as in desert dune strata, for instance). Or, it might reflect widespread irresolvable mixing of Anthropocene and pre-Anthropocene strata, through non-human bioturbation and other mixing processes (as in the deep ocean). Or there may have been protracted, complex human reworking of the ground (as in long-inhabited cities). Such phenomena prevent the clear, unambiguous and consistent delineation of a laterally continuous ‘Anthropocene Series’. We may discuss them in turn as regards comparison with older chronostratigraphic units.

The local inability to unambiguously assign particular units of strata to chronostratigraphic units is a problem as old as is geology. One may take the case of the ‘Permo-Triassic’, long used as a descriptive bucket label given the difficulty of locating a boundary between Permian and Triassic deposits in ‘red
bed' deposits that lack fossils, even if it is as sharp and catastrophically founded as that between the Permian and Triassic systems (and between the Palaeozoic and Mesozoic Erathems). Even in less stratigraphically opaque strata, chronostratigraphic boundaries, away from the reference ‘golden spike’ section, can rarely be located within an error bar of less than a few hundred thousand years (Zalasiewicz et al. 2013). Most stratigraphic research is based upon the most informative and correlatable sections, but between these there are many stratal units within which major chronostratigraphic boundaries are located only approximately.

Similar uncertainty will certainly apply to an ‘Anthropocene Series’, with boundaries (now being placed at a decadal/annual scale) being effectively locatable in some places and more uncertainly placed in others. Hence, at least qualitatively, the Anthropocene shares the correlation problems attached to chronostratigraphic units generally, and it is not yet clear whether it possesses these kinds of uncertainties in greater measure than do the established units of the Geological Time Scale.

The problem of the disruption of superposition is rather different. This arises in part out of the exceedingly short timescale of the Anthropocene (to date) and in part out of complex, intermingled sedimentary geometries commonly created by human activity, where clear principles of superposition cannot be applied. This creates situations that archaeologists, for instance, are more familiar with, in discriminating numerous successive historical events within geometrically complex deposits (Edgeworth this volume) and on palimpsest surfaces (where the evidence from different phases of human history is preserved upon essentially two-dimensional surfaces).

The practice of basing chronostratigraphic subdivision upon the principle of superposition reflects the tendency on Earth for thick successions of strata to have built up, virtually since the origin of the planet. For most of the geological record it is an effective means to build and operate the geological time scale, and in older rocks, where stratigraphic uncertainties are measured in millions of
years, then superpositional blurring through bioturbation and allied processes may be regarded as negligible. In such circumstances, chronostratigraphy and geochronology have operated in parallel, in their long-established ‘dual hierarchy’.

However, at brief geological time scales and/or when extremely fine temporal resolution is sought, disruption of superpositional relationships may become a practical, rather than theoretical problem. This is already the case in the discrimination of high-resolution climate histories from deep sea floor deposits, where those strata with the highest sedimentation rates (and therefore least prone to bioturbational mixing) are actively sought. This phenomenon is, hence, most acutely expressed in the Anthropocene, with its extremely short timescale exacerbated by its peculiarly human-made complex stratal geometries. It might regarded as a problem as much inherent of chronostratigraphic practice as it is of the Anthropocene.

Nevertheless, despite the complicating effects of these various processes, we propose that a reasonably consistent Holocene-Anthropocene boundary placed at ~1950 CE might be effectively traceable over large areas in both marine and non-marine settings. Attempts to consistently trace and delineate such a unit would reveal the extent to which this proposal is true. They would also help in the understanding of the extraordinary episode of history – whether formalised in stratigraphy or not – which the Earth is currently experiencing.

Conclusions

A material ‘Anthropocene Series’ might be defined with a historically recent boundary at ~1950 CE, characterised by time proxies such as artificial radionuclides, biostratigraphic changes and human-made novel materials such as plastics and uncombined aluminium. It locally forms substantial, distinct and correlatable sediment bodies in both terrestrial and marine realms.
Locally, too, Anthropocene deposits so defined are difficult to recognise and correlate for want of appropriate time markers to fix the boundary. These are analogous to stratigraphically indeterminate deposits in the older stratigraphic record.

Commonly, also, Anthropocene deposits are difficult to separately recognise as distinct units because of intermixing, for instance by human or non-human bioturbation, reflecting the very short duration of the Anthropocene. This may be regarded as a problem inherent in very high-resolution chronostratigraphy as much as one of the Anthropocene.

Attempts to better delineate and analyse the material expression of the Anthropocene will increase our understanding of the phenomenon as a whole.

Acknowledgements: Colin Waters publishes with the permission of the Executive Director, British Geological Survey, Natural Environment Research Council. We thank Will Steffen and Mike Ellis for thorough and helpful reviews.

References

BARNOSKY, A.D. 2013. Palaeontological evidence for defining the Anthropocene. In: A Stratigraphical Basis for the Anthropocene. Waters et al. (eds)

27

EDGWORTH, M. 2013. Archaeological stratigraphy and artificial ground. *In: A Stratigraphical Basis for the Anthropocene*. Waters et al. (eds).

FINNEY 2013 *In: A Stratigraphical Basis for the Anthropocene*. Waters et al. (eds).

GALUSZKA et al. this volume. Assessing the Anthropocene with geochemical methods. *In: A Stratigraphical Basis for the Anthropocene*. Waters et al. (eds).

HAF F, P. this volume. Technology as a geological phenomenon: Implications for human well-being. *In: A Stratigraphical Basis for the Anthropocene*. Waters et al. (eds).

and geomorphological agents in the Anthropocene: the significance of artificial
ground in Great Britain. Philosophical Transactions of the Royal Society, A369,
1056-1084.

PUIG, P., CANALS, M., COMPANY, J.B., MARTIN, J., AMBLAS, D., LASTRAS, G.,
489, 286-289.

Science, 315, 368-370.

RAMIREZ-LLODRA, E., TYLER, P.A., BAKER, M.C., BERGSTAD, O.A., CLARK, M.R.,

REMANE, J., BASSETT, M.G., COWIE, J.W., GOHRBANDT, K.H., LANE, H.R.,
MICHELSON, O. & NAIWEN, W. 1996. Revised guidelines for the establishment
of global chronostratigraphic standards by the International Commission on
Stratigraphy (ICS). Episodes 19, 77-81.

American Museum of Natural History, Environmental Defense Fund,
Abbeville Press.

RICHTER, D. 2007. Humanity’s transformation of Earth’s soil: pedology’s new
frontier. Soil Science 172, 957-967.

houses: rapid carbon transport to the deep sea floor. Science, 308, 1609-1611.

ROCKSTRÖM, J., STEFFEN, W., NOONE, K., PERSSON, Å, CHAPIN, III, F.S., LAMBIN,
E.F., LENTON, T.M., SCHEFFER, M., FOLKE, C., SCHELLNHubER, H.J., NYKVIST,
B., de Wit, C.A., HUGHES, T., van der LEEUW, S., RodHE, H., SÖRLIN, S.,
SNYDER, P.K., COSTANZA, R., SvedIN, U., FALKENMARK, M., KARLBERG, L.,
CORELL, R.W., FABRY, V.J., HANSEN, J., WALKER, B., LIVERMAN, D.,
RICHARDSON, K., CRUTZEN, P. & FOLEY, J.A. 2009. A safe operating space for

RUDDIMAN, W F. 2003. The Anthropogenic Greenhouse Era began thousands of
Years Ago. Climatic Change, 61, 261-293.

WILKINSON, I.P. et al. this volume. Micropalaeontological signatures of the Anthropocene. *In: A Stratigraphical Basis for the Anthropocene. Waters et al. (eds).*

WILLIAMS, M., et al. This volume.

Figure 1. Comparison of lengths of epochs from the mid-Cenozoic to the present, showing progressive shortening in time span. Dates from Gradstein et al. 2012.

Fig. 2. The rapid mid-twentieth century growth of Shanghai, as an example of the formation of a distinct, extensive sedimentary facies that may be referred to a putative Anthropocene Series. Information from Larmer (2010) and Map of Central Shanghai, printed by the British War Office/US Army Map Service in 1935.