The full range of Survey publications is available through the Sales Desks at Keyworth, Murchison House, Edinburgh, and at the BGS London Information Office in the Geological Museum. The adjacent Geological Museum bookshop stocks the more popular books for sale over the counter. Most BGS books and reports are listed in HMSO's Sectional List 45, and can be bought from HMSO and through HMSO agents and retailers. Maps are listed in the BGS Map Catalogue and the Ordnance Survey's Trade Catalogue, and can be bought from Ordnance Survey agents as well as from BGS.

The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the surrounding continental shelf, as well as its basic research projects. It also undertakes programmes of British technical aid in geology in developing countries as arranged by the Overseas Development Administration.

The British Geological Survey is a component body of the National Environment Research Council.

Keyworth, Nottingham NG12 5GG
☎ Plumtree (06077) 6111 Telex 378173 BGSKEY G
Fax 06077—6602

Murchison House, West Mains Road, Edinburgh EH9 3LA
☎ 031—667 1000 Telex 727343 SEISED G
Fax 031—668 2683

London Information Office at the Geological Museum, Exhibition Road, South Kensington, London SW7 2DE
☎ 071—589 4090 Fax 071—584 8270
☎ 071—938 9056/57

19 Grange Terrace, Edinburgh EH9 2LF
☎ 031—667 1000 Telex 727343 SEISED G

St Just, 30 Pennsylvania Road, Exeter EX4 6BX
☎ Exeter (0392) 78312 Fax 0392—437505

Bryn Eithyn Hall, Llanfarian, Aberystwyth, Dyfed SY23 4BY
☎ Aberystwyth (0970) 611038 Fax 0970—624822

Windsor Court, Windsor Terrace, Newcastle upon Tyne NE2 4HB
☎ 091—281 7088 Fax 091—281 9016

Geological Survey of Northern Ireland, 20 College Gardens, Belfast BT9 6BS
☎ Belfast (0232) 6665995 Fax 0232—662835

Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB
☎ Wallingford (0491) 38800 Telex 849365 HYDROL G
Fax 0491—25338

Parent Body
Natural Environment Research Council
Polaris House, North Star Avenue, Swindon, Wiltshire SN2 1EU
☎ Swindon (0793) 411500 Telex 444293 ENVRE G
Fax 0793—411501
EXECUTIVE SUMMARY

A visit to collect water, steam condensate and gas samples has been made to the northern Rift Valley in connection with the United Kingdom-Government of Kenya Geothermal Project. The three-week visit was sufficient to accomplish all the sampling necessary to complete the geochemical investigations for Phase 3 of the Project. The samples collected will be analysed in the UK and the results will appear in a research report at a later date.
1. INTRODUCTION AND PURPOSE OF VISIT

This report describes a visit undertaken by W G Darling in connection with the third phase of the UK-GOK Rift Valley Geothermal Project. The main objective of the visit was to carry out the geochemical sampling necessary to complete the Phase 3 investigations.

2. ITINERARY

1 June Travel to Nairobi
2-3 June Discussions with Drs Dunkley and Smith (resident team), equipment organisation and preparation.
4 June Travel to Baringo
5 June Set up field laboratory. Sampling boiling springs near Namurunu.
6 June Sampling fumaroles on the Barrier. Resampling of Lorusio hot spring.
7 June Sampling hot springs, N.E. Suguta Valley.
8 June Sampling boiling springs, S.E. Bogoria.
9 June Sampling fumaroles on the Barrier, wells at Parakati and Tum.
10 June Resampling at Napeiton and Kampi Ya Samaki wells.
11 June Sample organisation and treatment. Resampling fumarole at Loruk to demonstrate techniques to ODA visitors (A Wood, R Cadwallader).
12 June Resampling Nginyang Polytechnic well.
13 June Travel to Ferguson's Gulf, Lake Turkana, sampling Loyangalani warm spring en route. Sampling warm springs at Eliye in pm.
14 June Sampling fumaroles and spring on North Island (am) and Central Island (pm). Lakewater sampled at each site.
15 June Travel to Baringo, sampling River Kerio en route.
16 June Sampling of Arus fumaroles and 'frying pan' springs.
17 June Sampling Lake Baringo. Travel to Nairobi.
18 June Sample organisation and treatment.
19 June Travel to Olkaria, sampling in N.E. Wellfield, search for possible sinter deposits in Olkaria area. Sample Lake Naivasha.
20 June Sampling fumarole on Suswa ring graben. Return to Nairobi.
21 June Final discussions with resident team and packing of samples.
22 June Return to UK.
3. PROGRESS

The resident team of Drs Dunkley and Smith had previously identified sites of geothermal interest as far north as Loyangalani on Lake Turkana, and these were duly sampled. Also for the sake of regional completeness the volcanic centres of North and Central Islands were briefly visited. South Island was overflown but appeared to have no fumarolic activity worth sampling. This visit was therefore sufficient to carry out all the geochemical sampling necessary for the Phase 3 project area. In addition a few sites elsewhere were sampled or resampled in an attempt to answer questions which had arisen during previous work on Phases 1 and 2.

Details of all sample types collected are given in Table 1, while Figure 1 and the Appendix provide locations and other information about samples collected within the Phase 3 area.

4. PRESENT STATUS AND FUTURE WORK

Geochemical sampling for the Phase 3 area has been completed. The samples collected will be airfreighted to the UK where they will be analysed at BGS Wallingford. The results will be reported at a later date.
Figure 1. Map of Sampling Localities
<table>
<thead>
<tr>
<th>Locality</th>
<th>Site No.</th>
<th>Date</th>
<th>Sample Type</th>
<th>Grid Ref</th>
<th>Temp °C</th>
<th>pH</th>
<th>Chem</th>
<th>δ^{13}C</th>
<th>Gases</th>
<th>NaOH</th>
<th>3He/4He</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorusio</td>
<td>45</td>
<td>6.6.91</td>
<td>H</td>
<td>AM 788 387</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogoria S.E.</td>
<td>62</td>
<td>8.6.91</td>
<td>H</td>
<td>AL 1796 6215</td>
<td>97.1</td>
<td>9.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elboitong S.</td>
<td>236</td>
<td>5.6.91</td>
<td>H</td>
<td>BN 2243 2180</td>
<td>95.0</td>
<td>7.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elboitong N.</td>
<td>237</td>
<td>7.6.91</td>
<td>H</td>
<td>BN 2252 2204</td>
<td>91.8</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logipi N.E.</td>
<td>238</td>
<td>7.6.91</td>
<td>H</td>
<td>BN 2314 2490</td>
<td>69.8</td>
<td>8.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Island</td>
<td>239</td>
<td>14.6.91</td>
<td>C</td>
<td>3 27°N 37°4'E</td>
<td>70.5</td>
<td>7.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arus</td>
<td></td>
<td>16.6.91</td>
<td>H</td>
<td>ZR 8305 0183</td>
<td>86.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliye</td>
<td>240</td>
<td>13.6.91</td>
<td>C</td>
<td>3 15°N 36°2'E</td>
<td>35.4</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eliye N.</td>
<td>241</td>
<td>13.6.91</td>
<td>C</td>
<td>*BB 2276 8684</td>
<td>37.3</td>
<td>8.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loyangalani</td>
<td>242</td>
<td>13.6.91</td>
<td>H</td>
<td>BP 2473 3055</td>
<td>39.2</td>
<td>7.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Napeiton</td>
<td>198b</td>
<td>10.6.91</td>
<td>C</td>
<td>AM 1712 1862</td>
<td>36.8</td>
<td>7.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kampi Y.S.</td>
<td>131</td>
<td>10.6.91</td>
<td>C</td>
<td>AL 6860 6815</td>
<td>8.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nginyang Poly</td>
<td>204</td>
<td>12.6.91</td>
<td>C</td>
<td>AM 1677 1045</td>
<td>34.0</td>
<td>8.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parakati</td>
<td>243</td>
<td>9.6.91</td>
<td>C</td>
<td>BN 2427 2490</td>
<td>7.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tum</td>
<td>244</td>
<td>9.6.91</td>
<td>S</td>
<td>BN 2544 2383</td>
<td>7.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Kerio</td>
<td>245</td>
<td>15.6.91</td>
<td>S</td>
<td>AN 2122 1667</td>
<td>8.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Baringo</td>
<td>150</td>
<td>5.6.91</td>
<td>S</td>
<td>AL 720 680</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Baringo</td>
<td>150</td>
<td>17.6.91</td>
<td>S</td>
<td>AL 720 680</td>
<td>9.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Naivasha</td>
<td>-</td>
<td>19.6.91</td>
<td>S</td>
<td>BK 203 911</td>
<td>7.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Turkana N.</td>
<td>246</td>
<td>14.6.91</td>
<td>S</td>
<td>*BH 2384 9500</td>
<td>9.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Turkana C.</td>
<td>247</td>
<td>14.6.91</td>
<td>S</td>
<td>3 28°N 37°3'E</td>
<td>9.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loruk KR34</td>
<td>162</td>
<td>11.6.91</td>
<td>F</td>
<td>AL 6790 7375</td>
<td>94.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kakorinya ridge</td>
<td>248</td>
<td>6.6.91</td>
<td>F</td>
<td>BN 2306 2562</td>
<td>92.8</td>
<td>7.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kakorinya W. wall</td>
<td>249</td>
<td>6.6.91</td>
<td>F</td>
<td>BN 2308 2562</td>
<td>94.0</td>
<td>5.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kakorinya S.S.E.</td>
<td>250</td>
<td>9.6.91</td>
<td>F</td>
<td>BN 2320 2555</td>
<td>94.4</td>
<td>6.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kakorinya S.W.</td>
<td>251</td>
<td>9.6.91</td>
<td>F</td>
<td>BN 2295 2557</td>
<td>92.9</td>
<td>6.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Island slope</td>
<td>252</td>
<td>14.6.91</td>
<td>F</td>
<td>*BH 2392 9484</td>
<td>95.5</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Island summit</td>
<td>253</td>
<td>14.6.91</td>
<td>F</td>
<td>*BH 2391 9482</td>
<td>95.9</td>
<td>5.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Island lower</td>
<td>254</td>
<td>14.6.91</td>
<td>F</td>
<td>3 27°N 37°4'E</td>
<td>97.3</td>
<td>5.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Island upper</td>
<td>255</td>
<td>14.6.91</td>
<td>F</td>
<td>3 27°N 37°4'E</td>
<td>97.4</td>
<td>5.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arus</td>
<td>-</td>
<td>16.6.91</td>
<td>F</td>
<td>ZR 8305 0183</td>
<td>95.1</td>
<td>4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suswa F-12</td>
<td>-</td>
<td>20.6.91</td>
<td>F</td>
<td>BJ 041 744</td>
<td>94.1</td>
<td>4.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olkarua OW-715</td>
<td>-</td>
<td>19.6.91</td>
<td>G</td>
<td>BK 199 054</td>
<td>4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- H - spring, >50°C; C - borehole or well <50°C; S - surface water; F - fumarole; G - geothermal well
- All grid references to UTM except * which denotes EA grid

TABLE 1: Geochemical field sampling data
APPENDIX: Geochemical Sampling Site Details
KENYA RIFT VALLEY GEOTHERMAL PROJECT

HGS/GUK, MEDD DATASHEET FOR WATER SAMPLES

1. Sampled by: W.G.D
 Sample No: 236
 Date: 5.6.91
 Sample type: SPRING
 Temperature: 95°C

2. Place name: ELBOITONG S.
 Grid Ref.: BN 2243 2180
 Altitude (m):
 Access notes: HELICOPTER

3. Description of springs
 Area of discharge: S. END OF SEVERAL KM OF DISCHARGE AT FOOT OF E. RIFT WALL
 Number of springs:
 Flow rates (liters/second):
 Temperature (Max): 100°C (SLIGHT SUPERHEATING)
 Temperature (Range): 85 - 100°C
 Conductivity (µmhos): 7.10
 pH:
 Gas (amount and constancy): LARGE AMOUNT CO2
 Smell:
 Type of encrustation/alteration: CARBONATE DEPOSITS
 Photograph: ✓
 Notes:

4. Description of streams
 Approx. flow rate (liter/second):
 Conductivity (µmhos):
 pH:
 Photograph:
 Notes:

5. Description of borehole sample
 Sample depth:
 Discharge rate:
 pH:
 Conductivity (µmhos):
 Stratigraphy/Lithology:
 Notes:

6. Descriptive notes of other samples (rainwater, lakewater)

7. Description of geological setting
 Faulting (field evidence, photo interpretation):
 HOT FLUIDS PROBABLY UPEWELLING ALONG FAULT LINE
 Volcanism (age and type of associated activity):
 OPPOSITE NAMAKUNU - SEVERAL KM FROM LATE QUATERNARY BASALTS
 Hydrothermal alteration (general description, sample):
 Other notes: SAMPLED CHEMISTRY, STABLE ISOTOPES: 513C, GASES, HELIUM ISOTOPES
KENYA RIFT VALLEY GEOTHERMAL PROJECT

IGS/GOK, MERN DATA SHEET FOR WATER SAMPLES

<table>
<thead>
<tr>
<th>Sampled by</th>
<th>WD</th>
<th>Sample No: 237</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>7-6-91</td>
<td></td>
</tr>
<tr>
<td>Sample type</td>
<td>HOT SPRING</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>91.8°C</td>
<td></td>
</tr>
</tbody>
</table>

1. **Place name:** ELBOITONG N.
 Grid Ref.: BN22522204
 Altitude (m): 150.000
 Access notes: HELICOPTER

2. **Description of springs**
 Area of discharge: SEE DESCRIPTION FOR 236
 Number of springs:
 Flow rates (liters/second):
 Temperature (Max): 9.00
 Temperature (Range): LESS OUT THAN 236
 Conductivity (μmhos):
 pH:
 Gas (amount and constancy): LESS OUT THAN 236
 Smell:
 Type of encrustation/alteration:
 Photograph:
 Notes:

3. **Description of streams**
 Approx. flow rate (liter/second):
 Conductivity (μmhos):
 pH:
 Photograph:
 Notes:

4. **Description of borehole sample**
 Sample depth:
 Discharge rate:
 pH:
 Conductivity (μmhos):
 Stratigraphy/lithology:
 Notes:

5. **Description of geological setting**
 Faulting (field evidence, photo interpretation):
 Volcanism (age and type of associated activity):
 Hydrothermal alteration (general description, ?sample):

6. **Descriptive notes of other samples (rainwater, lakewater):**

7. **Other notes:** SAMPLED CHEMISTRY, STABLE ISOTOPES, δ13C, GASES, HELIUM ISOTOPES AND δ18O, 304
KENYA RIFT VALLEY GEOThERMAL PROJECT

RGS/COK, MEND DATA SHEET FOR WATER SAMPLES

1. Sampled by: WHO
 Date: 7.6.91
 Sample type: HOT SPRING
 Temperature: 69.8°C

2. Place name: LOGIPA N.E.
 Grid Ref.: 8N 2314 2490
 Altitude (m):
 Access notes: HELICOPTER

3. Description of springs

 Area of discharge SPRING AT N.E. CORNER OF L. LOGIPA
 Number of springs: 1
 Flow rates (liters/second): 1
 Temperature (Max): 69.8°C
 Temperature (Range):
 Conductivity (µhos):
 pH: 8.85
 Gas (amount and constancy): NONE
 Smell:
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams

 Approx. flow rate (liter/second)
 Conductivity (µhos)
 pH
 Photograph
 Notes

5. Description of borehole sample

 Sample depth
 Discharge rate
 pH
 Conductivity (µhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)

7. Description of geological setting

 Faulting (field evidence, photo interpretation)

 Volcanism (age and type of associated activity)
 S.E. FLANK OF BARRIER

 Hydrothermal alteration (general description, sample)

 Other notes SAMPLED CHEMISTRY, STABLE ISOTOPES, 8°3C, GASES, HELIUM ISOTOPES AND 8°18O - 504
Kenyan Rift Valley Geothermal Project

IGS/GUK, MEMD Datasheet for Water Samples

1. **Sampled by**: [Name withheld]
 Date: 14-4-91
 Sample Type: HOT SPRING
 Temperature: 70.5°C

2. **Place Name**: CENTRAL ISLAND GREEN LAKE
 Grid Ref.: 8°27'N 37°4'E
 Altitude (m): [Value withheld]
 Access Notes: HELICOPTER (OR BOAT)

3. **Description of Springs**
 - **Area of Discharge**: SEEPAGES ROUND E. SIDE OF CRATER LAKE
 - **Number of Springs**: NUMEROUS BUT V. SMALL (SOME UNDER WATER)
 - **See Sketch Map for 254.7**

4. **Description of Stream**
 - **Approx. Flow Rate (liters/second)**
 - **Conductivity (µmhos)**
 - **pH**
 - **Photograph**
 - **Notes**

5. **Description of Borehole Sample**
 - **Sample Depth**
 - **Discharge Rate**
 - **pH**
 - **Conductivity (µmhos)**
 - **Stratigraphy/Lithology**
 - **Notes**

6. **Descriptive Notes of Other Samples (Rainwater, Lake Water)**

7. **Description of Geological Setting**
 - **Faulting (Field Evidence, Photo Interpretation)**
 - **Springs Feeding Alkaline Crater Lake, on Same Side as Fumarolic Activity**
 - **Volcanism (Age and Type of Associated Activity)**
 - **Late Quaternary (Very Recent)**
 - **Hydrothermal Alteration (General Description, ?Sample)**

8. **Other Notes**: SAMPLED CHEMISTRY AND STABLE ISOTOPES + 818O - SO4
KENYA RIFT VALLEY GEOTHERMAL PROJECT

BGS/CUK, MERD Datasheet for water samples

1. Sampled by: UGO Sample No: 240
 Date: 13.6.91
 Sample type: SPRING
 Temperature: 35.4°C

2. Place name: ELIYE SPRINGS
 Grid Ref.: 3°15'N 36°2'E 1:50,000 No:
 Altitude (m): Access notes: POSSIBLE BY ROAD

3. Description of springs

 Area of discharge: SPRINGS DISCHARGING IN AND AROUND SMALL LAKE IMPROUNDED BY DAM
 Number of springs: 20 (TOTAL)
 Flow rates (liters/second) 9.00
 Temperature (Max) 9.00
 Temperature (Range) 9.00
 Conductivity (µmhos) 9.00
 pH 9.00
 Gas (amount and constancy) SOME GAS BUBBLES
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams

 Approx. flow rate (liter/second)
 Conductivity (µmhos)
 pH
 Photograph
 Notes

5. Description of borehole sample

 Sample depth
 Discharge rate
 pH
 Conductivity (µmhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)

7. Description of geological setting

 Faulting (field evidence, photo interpretation)

 Volcanism (age and type of associated activity)

 Hydrothermal alteration (general description, ?sample)

 Other notes: ON W. EDGE OF L. TORKANA
 BELT OF SMALL DISCHARGES AND
 SEEPAGES STRETCHING N. FOR SEVERAL KM
 SAMPLED CHEMISTRY, STABLE ISOTOPES, δ 18O,
 GASES, HELIUM ISOTOPES
KENYA RIFT VALLEY GEOTHERMAL PROJECT

BGS/GUK, MEND DATASHEET FOR WATER SAMPLES

1. Sampled by: JREFD
 Date: 13-6-91
 Sample type: SPR
 Temperature: 37.3°C

2. Place name: ELIYE NORTH
 Grid Ref.: 88 L276 8684
 Altitude (m): 1500,000
 EA Grid
 Access notes: POSSIBLE BY VEHICLE

3. Description of springs
 Area of discharge
 Number of springs: 10
 Flow rates (liters/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (µmhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams
 Approx. flow rate (liter/second)
 Conductivity (µmhos)
 pH
 Photograph
 Notes

5. Description of borehole sample
 Sample depth
 Discharge rate
 pH
 Conductivity (µmhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)

7. Description of geological setting
 Faulting (field evidence, photo interpretation)
 Volcanism (age and type of associated activity)
 Hydrothermal alteration (general description, ?sample)
 Other notes: SEE REMARKS FOR SITE 140

Sample chemistry: stable isotopes and $\delta^{13}C$.
KENYA RIFT VALLEY GEOTHERMAL PROJECT

HGS/GOK, MURD DATASHEET FOR WATER SAMPLES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Sampled by</td>
<td>W.S. O.</td>
</tr>
<tr>
<td>Date</td>
<td>18-6-91</td>
</tr>
<tr>
<td>Sample type</td>
<td>SPRING</td>
</tr>
<tr>
<td>Temperature</td>
<td>89.2°C</td>
</tr>
<tr>
<td>2. Place name</td>
<td>LOYANGALANI</td>
</tr>
<tr>
<td>Grid Ref.</td>
<td>BP 2473 3055</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>1:50,000 No.:</td>
</tr>
<tr>
<td>Access notes</td>
<td>POSSIBLE BY ROAD</td>
</tr>
</tbody>
</table>

1. **Description of springs**

- **Area of discharge:** A FEW SQ METRES
- **Number of springs:** SEVERAL
- **Flow rates (liter/second):** TOTAL 2.0
- **Temperature (Max):**
- **Temperature (Range):**
- **Conductivity (μmhos):**
- **pH:**
- **Gas (amount and constancy):**
- **Smell:**
- **Type of encrustation/alteration:**
- **Photograph:**
- **Notes:**

2. **Description of borehole sample**

- **Sample depth**
- **Discharge rate**
- **pH**
- **Conductivity (μmhos):**
- **Stratigraphy/lithology**
- **Notes**

3. **Descriptive notes of other samples (rainwater, lakewater)**

4. **Description of geological setting**

- **Faulting (field evidence, photo interpretation):**
- **Volcanism (age and type of associated activity):**
- **Hydrothermal alteration (general description, ?sample):**

5. **Other notes**

- **Spring in centre of LOYANGALANI near police post. Water appears to be typical rift-wall type (non-volcanic). Sampled for chemistry, stable isotopes, gases, 813C and helium isotopes**
KENYA RIFT VALLEY GEOTHERMAL PROJECT

BGS/GNK, NERD Datasheet for Water Samples

1. Sampled by: WGD Sample No: 243
 Date: 9.6.91
 Sample type: WELL
 Temperature: AMBIENT

2. Place name: PALAKATI MISSION SCHOOL
 Grid Ref: BN 2427 2490 1:50,000 No:
 Altitude (m): POSSIBLE BY VEHICLE
 Access notes: POSSIBLE BY VEHICLE

3. Description of springs
 Area of discharge
 Number of springs
 Flow rates (liters/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (µhos/)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams
 Approx. flow rate (liter/second)
 Conductivity (µhos)
 pH
 Photograph
 Notes

5. Description of borehole sample
 Sample depth SURFACE
 Discharge rate UNKNOWN
 pH
 Conductivity (µhos)
 Stratigraphy/lithology
 Notes WELL NEAR SPRING (OUTPUT < 1 L/s)

6. Descriptive notes of other samples (rainwater, lakewater)

7. Description of geological setting
 Faulting (field evidence, photo interpretation)

 Volcanism (age and type of associated activity)

 Hydrothermal alteration (general description, ?sample)

 Other notes WELL SITUATED ON VOLCANIC
 PRE-RIFT BASEMENT ON RIFT SIDE E
 OF LAKE LOGIPI, SAMPLED FOR
 CHEMISTRY, STABLE ISOTOPES AND δ¹³C
KENYA RIFT VALLEY GEOTHERMAL PROJECT

IGCS/GUK, MERED DATA SHEET FOR WATER SAMPLES

1. Sampled by: WGD Sample No: 244
 Date: 4.6.91
 Sample type: STREAM
 Temperature: ambient

2. Place name: TUM
 Grid Ref.: BN 2544 2383
 Altitude (m): 150,000 No.
 Access notes: POSSIBLE BY VEHICLE

3. Description of springs
 Area of discharge
 Number of springs
 Flow rates (liters/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (μmhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams
 Approx. flow rate (liter/second)
 Conductivity (μmhos)
 pH: 7.55
 Photograph
 Notes: SAMPLE COLLECTED FROM PIPE FEEDING RESERVOIR Intake several hundred metres higher on E. rift wall.

5. Description of borehole sample
 Sample depth
 Discharge rate
 pH
 Conductivity (μmhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)

7. Description of geological setting
 Faulting (field evidence, photo interpretation)
 Volcanism (age and type of associated activity)
 Hydrothermal alteration (general description, sample)
 Notes
 Other notes: TYPICAL RIFT WALL WATER Sampled for chemistry and stable isotopes.
KENYA RIFT VALLEY GEOTHERMAL PROJECT

NCG/CUK, NEKED DATASHEET FOR WATER SAMPLES

1. Sampled by: WJD
Date: 15.6.91
Sample Type: RIVER
Temperature: AMBIENT

2. Place name: R. KERID AT LOKORI
Grid Ref.: 3N 2122 1667
Altitude (m):
Access notes: ROAD BRIDGE

3. Description of springs

Area of discharge:
Number of springs
Flow rates (liters/second)
Temperature (Max)
Temperature (Range)
Conductivity (µhos)
pH
Gas (amount and constancy)
Smell
Type of encrustation/alteration
Photograph
Notes

4. Description of site

Approx. flow rate (liter/second): LARGE RIVER (AMOUNT UNCERTAIN)
Conductivity (µhos)
pH
Photograph
Notes: COPIOUS AMOUNTS OF SEDIMENT IN SUSPENSION

5. Description of borehole sample

Sample depth
Discharge rate
pH
Conductivity (µhos)
Stratigraphy/lithology
Notes

6. Descriptive notes of other samples (rainwater, lakewater)

7. Description of geological setting

Faulting (field evidence, photo interpretation)
Volcanism (age and type of associated activity)
Hydrothermal alteration (general description, ?sample)

Other notes: SAMPLED FOR CHEMISTRY AND STABLE ISOTOPES
KENYA RIFT VALLEY GEOTHERMAL PROJECT

1. Sampled by : W&D
 Date : 14.6.91
 Sample type: LAKESWATER
 Temperature: AMBIENT

2. Place name : NORTH ISLAND
 Grid Ref. : BH 2384 9500
 Altitude (m): 1:50,000 No.: EA GRID
 Access notes: HELICOPTER OR BOAT

3. Description of springs
 Area of discharge
 Number of springs
 Flow rates (liters/second)
 Temperature (°C)
 Temperature (Range)
 Conductivity (µmhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams
 Approx. flow rate (liter/second)
 Conductivity (µmhos)
 pH
 Photograph
 Notes

5. Description of borehole sample
 Sample depth
 Discharge rate
 pH
 Conductivity (µmhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)
 SAMPLE OF L. TURKANA COLLECTED ON THE WESTERN SIDE OF NORTH ISLAND
 PH 9.45. SEE SKETCH MAP FOR SITE 252.

7. Description of geological setting
 Faulting (field evidence, photo interpretation)

 Volcanism (age and type of associated activity)

 Hydrothermal alteration (general description, sample)

 Other notes: SAMPLED FOR CHEMISTRY AND STABLE ISOTOPES
KENYA RIFT VALLEY GEOTHERMAL PROJECT

RGS/GUR, MERD DATA SHEET FOR WATER SAMPLES

1. Sampled by: WGD
Sample No: 247
Date: 14.6.91
Sample type: LAKEWATER
Temperature: AMBIENT

2. Place name: CENTRAL ISLAND
Grid Ref.: 3°28'N 37°3'E 1:50,000 No.: 1
Altitude (m):
Access notes: HELICOPTER OR BOAT. SEE SKETCH MAP FOR SITE 254

3. Description of springs

<table>
<thead>
<tr>
<th>Area of discharge</th>
<th>Number of springs</th>
<th>Flow rates (liters/second)</th>
<th>Temperature (Max)</th>
<th>Temperature (Range)</th>
<th>Conductivity (μmhos)</th>
<th>pH</th>
<th>Gas (amount and constancy)</th>
<th>Smell</th>
<th>Type of encrustation/alteration</th>
<th>Photograph</th>
<th>Notes</th>
</tr>
</thead>
</table>

4. Description of streams

<table>
<thead>
<tr>
<th>Approx. flow rate (liters/second)</th>
<th>Conductivity (μmhos)</th>
<th>pH</th>
<th>Photograph</th>
<th>Notes</th>
</tr>
</thead>
</table>

5. Description of borehole sample

Sample depth
Discharge rate
pH
Conductivity (μmhos)
Stratigraphy/lithology
Notes

6. Descriptive notes of other samples (rainwater, lakewater)

SAMPLE OF LAKE TURKANA COLLECTED ON THE NORTH SIDE OF CENTRAL ISLAND. LESS SUSPENDED MATTER THAN FOR N. ISLAND. pH 9.45

7. Description of geological setting

Faulting (field evidence, photo interpretation)

Volcanism (age and type of associated activity)

Hydrothermal alteration (general description, ?sample)

Other notes SAMPLED FOR CHEMISTRY AND STABLE ISOTOPES
KENYA RIFT VALLEY GEOTHERMAL PROJECT

NGS/GOK, MERD DATASHEET FOR WATER SAMPLES

1. Sampled by:	W.G.D.	Sample No: 249
Date:	6-6-81	
Sample type:	FUMAROLE	
Temperature:	92.8°C	

2. Place name:	KAKORININGA RINGE
Grid Ref.:	NN 2106 2562
Altitude (m):	
Access notes:	HELICOPTER

| 3. Description of springs |
| Area of discharge |
| Number of springs |
| Flow rates (liters/second) |
| Temperature (Max) |
| Temperature (Range) |
| Conductivity (µmhos) |
| pH |
| Gas (amount and constancy) |
| Smell |
| Type of encrustation/alteration |
| Photograph |
| Notes |

| 4. Description of streams |
| Approx. flow rate (liter/second) |
| Conductivity (µmhos) |
| pH |
| Photograph |
| Notes |

| 5. Description of borehole sample |
| Sample depth |
| Discharge rate |
| pH |
| Conductivity (µmhos) |
| Stratigraphy/lithology |
| Notes |

| 6. Descriptive notes of other samples (rainwater, lakewater) |
| WEAK FUMAROLE. pH 7.5. LOW GAS. |

| 7. Description of geological setting |
| Faulting (field evidence, photo interpretation) |

Volcanism (age and type of associated activity): KAKORININGA IS THE MAIN RECENT BARRIER VOLCANO (TELEK AND ANDREWS TO THE N. AND S. RESPECTIVELY.)

Hydrothermal alteration (general description, sample)

Other notes:

SAMPLED FOR CHEMISTRY & STABLE ISOTOPES
KENYA RIFT VALLEY GEOTHERMAL PROJECT

BGS/GUR, NERC DATA SHEET FOR WATER SAMPLES

1. Sampled by: WD Sample No: 249
 Date: 6.6.91
 Sample type: FUMAROLE
 Temperature: 94.0°C

2. Place name: KAKORINYA WEST WALL
 Grid Ref.: BN 230B 2562
 Altitude (m): 150,000 No.
 Access notes: HELICOPTER

3. Description of springs
 Area of discharge
 Number of springs
 Flow rates (liters/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (μmhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams
 Approx. flow rate (liter/second)
 Conductivity (μmhos)
 pH
 Photograph
 Notes

5. Description of borehole sample
 Sample depth
 Discharge rate
 pH
 Conductivity (μmhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)
 MEDIUM TO WEAK FUMAROLE, SOME CO2 DETECTABLE, pH 5.40

7. Description of geological setting
 Faulting (field evidence, photo interpretation)

 Volcanism (age and type of associated activity)
 SEE 248

 Hydrothermal alteration (general description, sample)

 Other notes
 SAMPLED FOR CHEMISTRY, ISOTOPES,
 GASES, HELIUM ISOTOPES
KENYA RIFT VALLEY GEOTHERMAL PROJECT

HCS/GOK, NERD DATASHEET FOR WATER SAMPLES

1. Sampled by: LFOE Sample No: 250
 Date: 9.6.91
 Sample type: FUMAROLE
 Temperature: 94.4°C

2. Place name: KAKORINYA S.S.E.
 Grid Ref.: BN 2310 2555 1:50,000 No.: A
 Altitude (m): Access notes: HELICOPTER

3. Description of springs
 Area of discharge
 Number of springs
 Flow rates (liters/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (µmhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams
 Approx. flow rate (liter/second)
 Conductivity (µmhos)
 pH
 Photograph
 Notes

5. Description of borehole sample
 Sample depth
 Discharge rate
 pH
 Conductivity (µmhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)
 FUMAROLES ON ROCKY MOUND. LOW CO₂.
 pH 6.10

7. Description of geological setting
 Faulting (field evidence, photo interpretation)

 Volcanism (age and type of associated activity)
 SEE 248

 Hydrothermal alteration (general description, ?sample)

 Other notes
 SAMPLED FOR CHEMISTRY, STABLE ISOTOPES,
 GASES AND HELIUM ISOTOPES
KENYA RIFT VALLEY GEOTHERMAL PROJECT

1. Sampled by: *Lito*
 Sample No: 231
 Date: 9.6.91
 Sample type: Fumarole
 Temperature: 92.9°C

2. Place name: *Kakorinya S.W.*
 Grid Ref.: BN 2295 2557
 Altitude (m): HELICOPTER
 Access notes: HELICOPTER

3. Description of Springs
 Area of discharge
 Number of springs
 Flow rates (liters/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (µmhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of Streams
 Approx. flow rate (liter/second)
 Conductivity (µmhos)
 pH
 Photograph
 Notes

5. Description of borehole sample
 Sample depth
 Discharge rate
 pH
 Conductivity (µmhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)
 Fair amount of steam but very little gas.
 pH 6.55

7. Description of geological setting
 Faulting (field evidence, photo interpretation)
 Volcanism (age and type of associated activity)
 See 248
 Hydrothermal alteration (general description, sample)
 Other notes
 Sampled for chemistry and stable isotopes
KENYA RIFT VALLEY GEOTHERMAL PROJECT

BG/UK, MEDD DATASHEET FOR WATER SAMPLES

1. Sampled by: WARD
 Date: 14/6/91
 Sample type: FUMAROLE
 Temperature: 95.5°C

2. Place name: NORTH ISLAND - SLOPE
 Grid Ref.: 88 2392 9484
 Altitude (m):
 Access notes: HELICOPTER OR BOAT

3. Description of springs

 Area of discharge
 Number of springs
 Flow rates (liters/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (µhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams

 Approx. flow rate (liter/second)
 Conductivity (µhos)
 pH
 Photograph
 Notes

5. Description of borehole sample

 Sample depth
 Discharge rate
 pH
 Conductivity (µhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, dewwater)

 FAIRLY VIGOROUS, GALLY FUMAROLE
 DEPOSITING NATIVE SULPHUR
 pH = 4.55 - SULPHURIOUS SMELL

7. Description of geological setting

 Faulting (field evidence, photo interpretation)

 Volcanism (age and type of associated activity)

 Hydrothermal alteration (general description, ?sample)

 Other notes

 SAMPLED FOR CHEMISTRY, STABLE ISOTOPES, GASES, HELIUM ISOTOPES
 AND SULPHUR
KENYA RIFT VALLEY GEOTHERMAL PROJECT

BGS/GUK, Herd DATA SHEET FOR WATER SAMPLES

1. Sampled by: WGD
 Date: 14.6.91
 Sample type: Fumarole
 Temperature: 95.9°C

2. Place name: CENTRAL ISLAND - SUMMIT
 Grid Ref.: BH 2391 9482
 Altitude (m): 1:50,000 No.
 Access notes: HELICOPTER OR BOAT

3. Description of springs
 Area of discharge
 Number of springs
 Flow rates (liter/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (µmhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams
 Approx. flow rate (liter/second)
 Conductivity (µmhos)
 pH
 Photograph
 Notes

5. Description of borehole sample
 Sample depth
 Discharge rate
 pH
 Conductivity (µmhos)
 Stratigraphy/lithology
 Notes

6. Descriptive notes of other samples (rainwater, lakewater)
 FAIRLY VIGOROUS, GASY FUMAROLE,
 SULPHUROUS SMELL. pH = 5.80
 HIGHER WATER/GAS RATIO THAN 752

7. Description of geological setting
 Faulting (field evidence, photo interpretation)

 Volcanism (age and type of associated activity)

 Hydrothermal alteration (general description, sample)

 Other notes
 SAMPLED FOR CHEMISTRY,
 STABLE ISOTOPES, GAS AND HELIUM
 ISOTOPE
KENYA RIFT VALLEY GEOTHERMAL PROJECT

Datasheet for water samples

1. **Sampled by:** WGD
 Date: 14.6.91
 Sample type: Fumarole
 Temperature: 97.5°C

2. **Place name:** CENTRAL ISLAND - LOWER
 Grid Ref.: 8°27'N 33°4'E
 Altitude (m):
 Access notes: HELICOPTER OR BOAT

3. **Description of springs**
 - **Area of discharge**
 - **Number of springs**
 - **Flow rates (liters/second)**
 - **Temperature (Max)**
 - **Temperature (Range)**
 - **Conductivity (µmhos)**
 - **pH**
 - **Gas (amount and constancy)**
 - **Smell**
 - **Type of encrustation/alteration**
 - **Photograph**
 - **Notes**

4. **Description of streams**
 - **Approx. flow rate (liter/second)**
 - **Conductivity (µmhos)**
 - **pH**
 - **Photograph**
 - **Notes**

5. **Description of borehole sample**
 - **Sample depth**
 - **Discharge rate**
 - **pH**
 - **Conductivity (µmhos)**
 - **Stratigraphy/Lithology**
 - **Notes**

6. **Descriptive notes of other samples (rainwater, lakewater)**
 - **FAIRLY VIGOROUS, GASY FUMAROLE IN ZONE OF INTENSE ALTERATION. SULPHUROUS SMELL, NATIVE SULPHUR. pH = 5.85**

7. **Description of geological setting**
 - **Faulting (field evidence, photo interpretation)**
 - **Volcanism (age and type of associated activity)**
 - **Hydrothermal alteration (general description, sample)**

8. **Other notes**
 - **SAMPLED FOR CHEMISTRY, STABLE ISOTOPES, GASES, HELIUM ISOTOPES**
KENYA RIFT VALLEY GEOTHERMAL PROJECT

HGS/GOR, MUIR Datasheet for Water Samples

1. Sampled by: WGD
 Date: 14-6-91
 Sample type: Fumarole
 Temperature: 97.4°C

2. Place name: CENTRAL ISLAND - UPPER
 Grid Ref.: 207'N 37°E 1:50,000 No.:
 Altitude (m):
 Access notes: HELICOPTER OR BOAT

3. Description of springs
 Area of discharge
 Number of springs
 Flow rates (liters/second)
 Temperature (Max)
 Temperature (Range)
 Conductivity (µmhos)
 pH
 Gas (amount and constancy)
 Smell
 Type of encrustation/alteration
 Photograph
 Notes

4. Description of streams
 Approx. flow rate (liter/second)
 Conductivity (µmhos)
 pH
 Photograph
 Notes

5. Description of borehole sample
 Sample depth
 Discharge rate
 pH
 Conductivity (µmhos)
 Stratigraphy/lithology
 Notes

6. Description of other samples (rainwater, lakewater)
 EXTREMELY VIGOROUS FUMAROLE, ABLE TO LIFT SMALL PIECES OF CLAY OR ROCK.
 HIGH WATER/GAS RATIO. SULPHUROUS SMELL. pH = 5.70

7. Description of geological setting
 Faulting (field evidence, photo interpretation)
 Volcanism (age and type of associated activity)
 Hydrothermal alteration (general description, sample)
 Notes

Other notes
 SAMPLED FOR CHEMISTRY, ISOTOPES, GASES, HELIUM ISOTOPES.
MONITORING REPORT: ACTION SUMMARY SHEET

NB This sheet should be kept prominently on file until all recommended action taken or otherwise dealt with. Then to be filed with Monitoring Report as Key Document.

<table>
<thead>
<tr>
<th>Project/Programme</th>
<th>KENYA RIFT VALLEY GEOTHERMAL PROJECT PHASE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name(s) of Monitor(s)</td>
<td>MR W G DARLING</td>
</tr>
<tr>
<td>Date of Monitoring Visit</td>
<td>1-22 JUNE 1991</td>
</tr>
</tbody>
</table>

SUMMARY OF RECOMMENDED ACTION IN ORDER OF IMPORTANCE

<table>
<thead>
<tr>
<th>Recommended Action</th>
<th>Recommended Timing</th>
<th>Action to be Initiated by</th>
<th>Recommendation considered: approved action (if any) taken (initials and date)</th>
<th>See Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO ACTION REQUIRED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>