TABLES AND FIGURES

Table I. Initial nutrient concentrations for each of the three different experimental nutrient treatments that *Neoceratium* were subjected to (measured from experiments on *N. candelabrum*). All experimental seawater was made from NAGSW; the only amendments made were to concentrations of nitrate and phosphate. *Measurements that were below the detection limit of the nutrient analyser.

Experimental Seawater	Nitrate concentration	Phosphate concentration	
	(μM)	(μM)	
Low nutrient seawater (LNSW)	0.58	0.04	
Nutrient replete seawater (RSW)	185	1.40	
Surface North Atlantic gyre	<0.02*	<0.02*	
seawater (NAGSW)			

Fig. 1. Changes in *N. hexacanthum* and *N. candelabrum* cell numbers (A,B), % of dividing cells (C,D), protein cell⁻¹ (E,F) and Fv/Fm (G,H) over the course of 21 days, under two different nutrient treatments: LNSW (filled symbols) and RSW (hollow circles). Error bars represent the standard error of triplicate experimental flasks.

Fig. 2. Growth curves of *N. hexacanthum* demonstrating the effect of exposure to NAGSW for between 1 and 30 days. Changes in cell number (y-axis) for each day of nutrient addition (z-axis, day 1-30) over the course of 50 days (x-axis). The second drop-line for each growth curves represents the point at which nutrients were added.

Fig. 3. Changes in the number of viable cells (A), time-lag in growth (B; dashed line represents maximum survival time), and growth rate (C) of N. hexacanthum cells exposed to NAGSW for 1-30 days. Error bars (A and C) represent the standard error of estimates made.