- 1 Defining biological assemblages (biotopes) of conservation interest in the submarine canyons
- of the South West Approaches (offshore United Kingdom) for use in marine habitat mapping.
- 3 Jaime S. Davies^{a,*}, Kerry L. Howell^a, Heather A. Stewart^b, Janine Guinan^{c,d} and Neil

4 Golding^e

5

- 6 Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, PL4 8AA, UK
- ^b British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK
- 9 d Present address: INFOMAR Programme, Geological Survey of Ireland, Beggars Bush, Haddington
- 10 Road, Dublin 4, Ireland
- 11 Goint Nature Conservation Committee, Monkstone House, City Road, Peterborough, PE1 1JY, UK
- * jaime.davies@plymouth.ac.uk

13

- 14 Abstract
- 15 In 2007, the upper part of a submarine canyon system located in water depths between 138 and
- 16 1165 m in the South West (SW) Approaches (North East Atlantic Ocean) was surveyed over a
- 17 2 week period. High-resolution multibeam echosounder data covering 1106 km², and 44
- 18 ground-truthing video and image transects were acquired to characterise the biological
- 19 assemblages of the canyons. The SW Approaches is an area of complex terrain, and intensive
- 20 ground-truthing revealed the canyons to be dominated by soft sediment assemblages. A
- 21 combination of multivariate analysis of seabed photographs (184-1059 m) and visual
- 22 assessment of video ground-truthing identified 12 megabenthic assemblages (biotopes) at an
- 23 appropriate scale to act as mapping units. Of these biotopes, 5 adhered to current definitions of
- 24 habitats of conservation concern, 4 of which were classed as Vulnerable Marine Ecosystems.
- 25 Some of the biotopes correspond to descriptions of communities from other megahabitat
- 26 features (for example the continental shelf and seamounts), although it appears that the
- 27 canyons host modified versions, possibly due to the inferred high rates of sedimentation in the
- 28 canyons. Other biotopes described appear to be unique to canyon features, particularly the sea
- 29 pen biotope consisting of *Kophobelemnon stelliferum* and cerianthids.

- 31 Keywords (Submarine canyons, Conservation, Deep-sea, Benthos, Habitat mapping,
- 32 Biotopes, Cold-water corals, *Lophelia pertusa*)

33	
34	1. Introduction
35	Submarine canyons are topographically complex features (Harris and Whiteway 2011) that
36	are incised into many of the world's continental shelves and margins (e.g. Hickey, 1995;
37	Brodeur, 2001). Canyons have been reported as containing diverse bottom types (Kottke et al.
38	2003), described as areas of high habitat heterogeneity (Schlacher et al. 2007), and are
39	suggested to enhance biodiversity on landscape scales (Vetter et al. 2010). The presence of
40	submarine canyons on the continental slope can significantly alter the hydrodynamic regime
41	of the region, thus canyons may be highly unstable environments subject to periodically
42	intense currents, debris transport, sediment slumps and turbidity flows (Shepard and Marshall,
43	1973; Inman et al. 1976; Gardner, 1989).
44	
45	Canyons may act as conduits, transporting sediment and organic matter from the continental
46	shelf to the deep sea (Shepard, 1951; Heezen et al. 1955; Monaco et al. 1990), and can be
47	areas of enhanced production and species diversity as a result of the accumulation of organic
48	matter and/or upwelling of nutrient rich waters (Hickey 1995).
49	
50	Submarine canyons have been suggested to play a role in generating areas of high
51	megabenthic biodiversity due to their complex topographies (Schlacher et al. 2007). Canyon
52	fauna flourish as a result of suspension feeding organisms benefiting from accelerated
53	currents within canyons (Rowe, 1971) as well as increased secondary production (Vetter et al.
54	2010) due to the exploitation of local increases in zooplankton during vertical migration
55	(Greene et al. 1988). In addition, detritivores benefit from enhanced sedimentation rates and
56	accumulated macrophytic detritus (Vetter, 1994; Harrold et al. 1998). However, a high
57	incidence of disturbance through sediment transport by intense tidal currents, turbidity

currents and detrital flows may be unfavourable to sessile invertebrate megafauna while
favouring highly motile species (Rowe, 1971; Vetter and Dayton, 1999; Vetter et al. 2010).
Topographic features such as canyons, which provide enhanced food supply, diverse habitats,
and alter hydrodynamic activity have been described as 'Keystone structures' (Vetter et al.
2010). Keystone structures are defined as "distinct spatial structures providing resources,
shelter or 'goods and services' crucial for other species" (Tews et al. 2004). Those canyons
which act as keystone structures, and may be described as biodiversity hotspots, merit special
attention in management (Smith et al. 2008). The inclusion of canyons as examples of
topographical features that may potentially support Vulnerable Marine Ecosystems (VMEs)
(FAO 2009) reflects this.

Establishing a representative network of deep-sea Marine Protected Areas offers one tool with which to address the conservation needs of the deep sea. The need to establish such networks is driven by a number of international and national policies. The United Nations Convention of the Law of the Sea (UNCLOS) is an international agreement that provides the legal basis for high seas Marine Protected Areas (UNCLOS 1982). The Convention on Biological Diversity (CBD) is an international legally binding treaty which includes within it a requirement for nations to establish a 'comprehensive, effectively managed and ecologically representative network of Marine Protected Areas by 2020' [(COP 10 Decision X/2) CBD 2010]. The Oslo-Paris Convention (OSPAR) is the current legal mechanism guiding international cooperation on the protection of the marine environments of the North-East Atlantic; the agreement is between 15 European countries and the European Commission. Annex V of the OSPAR convention (The convention for the protection of the Marine Environment of the North East Atlantic) lists a number of deep-sea habitats as 'threatened or declining', including: seamounts, *Lophelia pertusa* reefs, coral gardens, carbonate mounds, and sea pen and burrowing megafauna communities. It calls for nations to

84	establish, "an ecologically coherent network of well managed Marine Protected Areas by
85	2020" for the protection of these listed habitats.
86	Within Europe, the main legislative power for managing fisheries and marine nature
87	conservation is based on the Common Fisheries Policy and Habitats Directive (92/43/EEC)
88	The Habitats Directive (conservation of the natural habitats of wild fauna and flora) is the
89	first international tool to address the protection of selected habitats and species, listed under
90	the Directive's Annex I (habitats) and II (species). The Habitats Directive requires member
91	states to designate and protect sites as Special Areas of Conservation (SACs). These
92	protected areas together create the Natura 2000 sites, a network of protected areas throughout
93	the EC. Cold-water coral reefs, coral gardens and sponge dominated communities all come
94	under the definition of Annex I listed 'reef' habitat.

The challenge now is how to practically implement such networks given our limited understanding of the deep sea ecosystem. While a number of deep-sea habitats have been identified as vulnerable to anthropogenic activities (e.g. cold-water coral reefs and sponge aggregations) (FAO 2008), poor knowledge of the distribution of these habitats hinders conservation efforts and network planning. Additionally, it is difficult to use criteria (such as those set out by the FAO) that have been developed for assessing habitat vulnerability (FAO 2008) as many deep-sea habitats have yet to be described, particularly in terms of their rarity, resistance, resilience and vulnerability. For example, although some habitats, such as cold-water coral reefs, are easily damaged from activities such as bottom trawling, it is not cold-water coral reefs that are subject to repeated trawling action in the way that some soft bottom deep-sea habitats are (Thrush et al. 2001). Additionally, to create the synergy needed for an MPA network design, a better understanding is urgently needed of which species are present, their distribution, and some detail about their connectivity; this may be achieved through the

use of physical oceanography proxies and/or knowledge about species reproduction/larval dispersal.

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

109

110

For nations to fulfil their legal requirements in terms of conservation they require maps that inform them of the spatial distribution of species and habitats. In light of the vast area covered by the deep sea, numerous approaches have been adopted to mapping, with a view to preserving deep-sea habitats (Harris and Whiteway, 2009; Howell, 2010). Mapping at a landscape scale (megahabitat scale of kilometres to tens of kilometres; sensu Greene et al. 1999), using large topographic features such as submarine canyons, allows large areas to be covered using lower resolution data, and is thus both cost and time effective. Whilst mapping at this scale may be appropriate for generalised, global conservation efforts, these mapping units have less ecological or biological meaning due to their lack of detail. Most ecological and biological processes occur at a finer scale. Therefore, the production of meaningful finescale habitat maps (< 1 km) which adequately take into account lateral and vertical variation within these megahabitat features is necessary. In recent years significant research effort has been focused on seamount features, adding much to our understanding of these systems (Clark et al. 2010; Howell et al. 2010a; Rowden et al. 2010; Shank, 2010). However, contrastingly, submarine canyons are more poorly sampled, and thus less well understood (De Leo et al. 2010).

128

129

130

131

132

133

134

To implement ecologically representative networks, biologically meaningful maps are required to inform managers on the distribution and diversity of habitats. To adequately protect species and habitats, particularly those that are listed as being of conservation interest, the approach taken needs to be at a scale that is relevant to the biology. Taking a bottom-up approach, through first defining benthic assemblages that can then act as fine-scale mapping units, cannot only be used to inform the distribution of assemblages, but may also allow the

inference of associations between biology and larger scale features (geomorphology), which
may then enable these large scale features to be used for mapping across broad areas. To
achieve an ecologically coherent network across regions, and globally, we need to be able to
combine habitat maps originating from national and international programmes. To date deep-
sea maps produced by different projects / countries are not able to be combined because of a
lack of an agreed deep-sea classification system and recognised and agreed definitions of
mapping units. To overcome this, standardisation of mapping practices is necessary, with
consistent terms used.

To adequately protect vulnerable habitats, there is a need for clarity in the working definitions used. Habitats such as *Lophelia pertusa* reefs have been widely documented (Wilson, 1979; Mortensen et al. 1995; De Mol et al. 2002) and the definition of these habitats are more widely recognised. There are few descriptions of benthic assemblages from canyon systems (Schlacher et al. 2010), and none in the context of statistically defining units for use in habitat mapping, or assessing the potential conservation value of canyons. Consequently, the objective of this study is to: support international habitat mapping efforts through developing standardised descriptions of deep-sea biological assemblages, with a focus on assemblages that fit descriptions of 'listed' habitats, for use as functional and consistent mapping units (biotopes).

- 2. Material and methods
- 156 2.1 Study area
- 157 The SW Approaches study area is located on the Celtic Margin and is an area characterised
- by a number of submarine canyons (Figure. 1; Huthnance et al. 2001; Mulder et al. 2012).
- The upper reaches of three canyons were the target of this investigation. Two of those are
- located in UK waters: Dangeard Canyon (also known as Dangaard Canyon), and Explorer

Canyon (first in this special issue, see Stewart et al. (2014, this issue)). The head of Dangeard
Canyon is around 12 km in width and ~1500 m at its deepest point, including its network of
tributary gullies that feed into the main canyon which is itself around 7 km in width. The
head of Explorer Canyons is around 11 km wide, compared to the main Explorer Canyon
which is around 8 km in width and $\sim \! 1500$ m deep. We are constrained by the dataset as the
canyons continue before merging downslope, feeding into the Whittard Canyon. The shelf
break, which marks the boundary between the near horizontal sea floor of the continental
shelf and the steeper continental slope, occurs between 180 and 250 m water depth. Mean
slope angles along the Celtic Margin are 11° although locally very steep gradients to the
vertical occur along canyon walls (Cunningham et al. 2005; Stewart et al. 2014). Two
canyons are located in UK waters, the Dangeard (also known as Dangaard) and Explorer
(first named here) canyons, and were the target of this study.

The Dangeard and Explorer canyons are separated by smooth interfluves, which are areas of un-dissected relict continental shelf and slope (Figure 2). These interfluves host two minimound provinces with individual mounds up to 3 m in height above the surrounding sea floor and 50-150 m in diameter (Stewart et al. 2014). In the canyon heads, the dendritic pattern of tributary gullies is clearly imaged in the study area forming drainage basins. Well developed "cauliflower" shaped amphitheatre rim features were identified in the canyon heads and flanks indicative of shelf-ward erosion. Stewart et al. (2014) present a geological interpretation of the study area.

2.2 Data acquisition

From 4th-18th June 2007 Dangeard and Explorer canyons and the flank of a third canyon (located in Irish waters) in the SW Approaches were surveyed onboard the *RV Celtic Explorer* (The Marine Institute, Ireland). High-resolution ground-truthing and multibeam

echosounder (MBES) data were acquired (Figures 2 and 3) over an area of 1106 km²; MBES was acquired using a hull mounted Kongsberg Simrad EM1002 system capable of collecting swath bathymetry to ~1000 m water depth (see Stewart and Davies (2007) and Stewart et al. (2014) for more details). A Seatronics drop-frame camera system was used to acquire video and image data. The camera system comprised a DTS 6000 digital video telemetry system with a live feed to the vessel, and a five megapixel Kongsberg Simrad digital stills camera (containing a Canon Powershot G5). The cameras were mounted opposite each other (with lights either side) at oblique angles to the seabed for optimal seabed coverage and to aid species identification. The frame was also fitted with a CDT sensor to record depth, altitude and temperature, and an ultra-short baseline (USBL) beacon to collect accurate positional data for the frame, allowing accurate environmental and positional data for still images to be extracted from data files. To enable quantitative analysis of data, the fields of view for both the stills and video cameras were calibrated (an image taken) at varying altitudes of the camera frame above the seabed (on seabed, 1 m, 2 m and 3 m) to enable area to be calculated. Calibration was achieved by attaching a gridded quadrat of known dimensions (grid cell size of 4.9 cm by 5.5 cm) to the base of the camera frame and the area of each still image was calculated using the appropriate calibration grid image for its altitude.

204

205

206

207

208

209

210

211

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Transect locations were chosen using the processed multibeam bathymetry and backscatter data. 'Sampling' was stratified by depth, topographic feature, and seabed substratum (inferred from backscatter data); and where possible, replicate sampling was undertaken within and between canyons. Transect position and orientation was chosen dependent on the terrain, on the steep areas of the canyon flank it was decided that it was safer for the towed camera to travel down-rather than along-slope. The vessel's DP was used to keep the camera on chosen transects.

- 2.3 Biological data analysis
- 2.3.1Quantitative analysis of image data

'Sample' images and those taken at abrupt changes in substratum were reviewed and poor quality images removed, predominantly due to silt clouds obscuring the image or the image being out of focus. The remaining images were quantitatively analysed using image area (derived from the calibration grids). An inherent problem with working in the deep sea is the lack of specimens to aid in identification, and without physical samples it is difficult, and in many cases impossible to identify organisms to species level from image data; however, observed organisms can be identified as distinct morphospecies (morphotypes).

All visible organisms >1 cm (at their widest point), as determined using the calibration grid for scale, were identified as distinct morphospecies and assigned an Operational Taxonomic

¹ The principal purpose of the Mapping European Seabed Habitats (MESH) project is to harmonise the way in which habitat mapping initiatives are undertaken in the northwest Europe (www.searchmesh.net).

Unit (OTU) number. OTUs were identified to the lowest possible taxonomic level, which can
correspond to species, genus, family or higher taxonomic levels depending on the group. All
individuals were enumerated except in the case of encrusting, colonial and lobose forms
where area cover was used.

2.3.2 Community analysis

Count and cover data were treated independently prior to multivariate analysis, each were standardised to 1 m² (percent/1 m² for cover). To allow combined analysis of count and percent cover data, a standardisation function was employed to place each matrix on the same scale (Stevens and Connolly, 2004; Howell et al. 2010b). First the data were transformed to standardise the distribution of the data then each entre in the matrix was divided by the sum of the matrix total and multiplied by an appropriate factor to put the count and cover on relative scales (Prof. R. Clarke *pers. comm*). Count data were square root transformed, each entre divided by the sum of the matrix and multiplied by 200; cover data were 4th root transformed, divided by the sum of the matrix and multiplied by 100, to place both matrices on a scale of 0.01-1.019. Once each matrix was standardised, they were merged in PRIMER (v.6) and multivariate community analysis was undertaken as described below. Seabed substratum composition was assigned to each 'sample' image using the modified Folk diagram (Folk 1954; Long 2006).

Standard multivariate community analysis techniques were used to identify faunally distinct benthic assemblages within the study area. Highly mobile species such as fish, which use multiple habitats and can thus confound the result of the cluster analysis, were removed prior to data analysis. Cluster analysis with group-averaged linkage was performed using a Bray-Curtis similarity matrix derived from transformed (standardised), combined species count and percent cover data. The SIMPROF routine of the PRIMER software [similarity profile

263	(Clarke et al. 2008)] was used to identify significant clusters (p < 0.01) and the SIMPER
264	[similarity percentages (Clarke, 1993)] routine used to identify those species that characterise
265	those clusters. Characterising species were defined as those species with a high
266	similarity/standard deviation ratio (Clarke, 1993), and contributed > 5% to that cluster
267	similarity.
268	
269	2.3.3 Characterising mapping units (biotopes)
270	There is a discrepancy between the faunal assemblages identified using community analysis
271	methods and what is required from a practically applicable mapping unit used in producing
272	necessarily generalised maps of variation in the biological composition of the seabed.
273	Clusters identified by SIMPROF ($p < 0.01$) were assessed against the following criteria and
274	rejected or accepted as faunally distinct clusters on that basis: 1) Outlier clusters were taken
275	at a 1% Bray-Curtis similarity level on the dendrogram and discarded. 2) Clusters that
276	contained small numbers of images (in this study less than 7 images) were deemed not
277	sufficient to allow an adequate description of a coherent assemblage and were also discarded.
278	3) Those clusters that had an average similarity (SIMPER) of less than 15% were defined as
279	not being coherent. 4) In line with existing habitat classification systems (e.g. EUNIS,
280	(Davies and Moss, 1999-2002), SIMPROF clusters were split on the basis of substratum type.
281	5) SIMPROF clusters were combined at a lower similarity node on the dendrogram if it
282	produce a more practical mapping unit (appropriate scale).
283	
284	Following standard multivariate analysis, faunally distinct clusters were assessed against a
285	second set of criteria to determine their use as mapping units. Only those clusters that
286	subsequently met these criteria were further analysed in terms of their faunal composition. To
287	function as a mapping unit assemblages must 1) occur at a scale relevant to the resolution of

288	the acoustic data and the scale of existing widely accepted benthic communities such as cold
289	water coral reefs (e.g. 10 m scale), and 2) be easily identified from video data.
290	
291	Mapping units, hereinafter referred to as 'biotopes', were defined in terms of their
292	characterising species, as determined by SIMPER analysis, together with the range of
293	environmental conditions over which they occurred in this study, and named according to the
294	dominant species, in accordance with the EUNIS classification system. As a result of the
295	small size of the sampling unit (field of view of the image 'samples') the larger conspicuous
296	fauna were not always adequately sampled, thus additional descriptive elements were added
297	from video observations. A 1-way Analysis of Similarity (ANOSIM) was performed on a
298	normalised depth and temperature, Euclidean distance matrix to test if biotopes (factor) were
299	different in terms of measured environmental variables.
300	
301	To identify those biotopes which could be considered of conservation concern, biotopes were
302	compared with current definitions of 'listed' habitats under the OSPAR Convention and the
303	EC Habitats Directive. Specifically, to identify those which are VMEs, the guidelines of the
304	FAO (FAO 2009) and current OSPAR definitions were used (OSPAR (Agreement 2008-6).
305	
306	2.3.4 Distribution of biotopes
307	Video transects were reviewed and visually classified (guided by the sample image
308	classification) using the newly defined biotopes, and changes of biotope type within a
309	transect were mapped using ArcGIS 9.3 Abiotic data were extracted from the mapped data to
310	define the environmental range of the distribution of each biotope.
311	
312	
313	

314	3. Results
315	3.1 Biological data analysis
316	Twenty three hours of video footage and 5000 still images were collected over the survey
317	area. Of these images, 1073 were 'sample' images [those taken at approx. 1 minute intervals
318	(equating to ~30 m)]; upon inspection 199 were discarded due to poor quality.
319	3.1.1 Quantitative analysis of image data
320	Eight hundred and seventy four 'samples' were quantitatively analysed with 161
321	morphospecies identified and catalogued. Those samples where no fauna were recorded were
322	removed prior to the multivariate analysis. Cluster analysis was performed on the remaining
323	746 samples. Three broad categories of substratum were revealed from the image analysis:
324	hard substratum (16 %), reef habitats (4%) and soft substratum (80%).
325	
326	3.1.2 Community analysis
327	The SIMPROF routine identified 43 clusters ($p < 0.01$) (see Table A2 for statistical results of
328	clusters). Using the criteria described in Sect. 2.3.3, outlier clusters were removed (cluster a-q)
329	and those that did not act as coherent units for mapping discarded. The remaining 11 clusters
330	were accepted as practically applicable mapping units. Results from the cluster analysis of
331	still image "samples", including SIMPER analysis (characterising species) and a description
332	of the environmental characteristics associated with each cluster are shown in Table A2 (see
333	appendix A1 for SIMPER results).
334	
335	3.1.3 Characterising mapping units (biotopes)
336	In total 11 biotopes were identified from the cluster analysis (Figure. 4) and related to
337	available environmental data to describe distinct biotopes (see Table 1 for details). A 1-way
338	ANOSIM test of environmental data (depth and temperature) for the 11 biotopes defined
339	from image data revealed a significant difference in environmental conditions between

to either of the main groups observed in Figure. 5.
of biotopes). Biotope r and ah are most dissimilar, although appear not to be strongly related
the other having 4 biotopes (am, aq, ap and ao) at shallower depths (326-477 m average depth
of 5 biotopes (x, y, al, ac and aj) a deeper zone (654-894 m average depth of biotopes) and
Two groups are apparent and appear to be related to depth zones, one on the left comprising
illustrates an nMDS plot showing a variation of biotopes relating to environmental conditions
biotopes (Global $R = 0.265$, $p < 0.01$). Thirty one pairwise tests were significant and Fig. 5

Visual classification of video data according to the newly defined biotopes revealed an assemblage that did not fit with any of those defined (Lop.Cri: *L. pertusa* and crinoids on bedrock). Upon reviewing the data, it was apparent that image sample data had failed to capture this assemblage (due to limited areas of bedrock captured by the still images). Based on visual assessment of the assemblage it appears similar to assemblages described by Wienberg et al. (2008) and Howell et al. (2010b) and was therefore classified as such. In the interests of fully characterising the Canyons region, and given that this previously described biotope is of particular conservation importance due to the occurrence of listed species (*L. pertusa*), as well as being the only bedrock community observed in the canyons that may be classed as Annex I bedrock reef (under the EC Habitats Directive), its distribution within the canyon system is also considered here. Thus a total of 12 biotopes were described from the SW Approaches (Figure 6).

3.1.4 Distribution of biotopes

Qualitative assessment of biotope distribution, determined from visually classified video transect data, (Table 1, see also Fig A1-A2 for mapped distribution of biotopes) revealed that six of the 12 biotopes were observed in all 3 canyons, 4 soft sediment biotopes (Kop.Cer, Cer, Amp.Cer and Oph), a mixed substratum (shell hash) biotope (Mun.Lep) and Lop.Cri on

bedrock. Five biotopes fit with the 'listed habitats' definition. The sea pen biotope Kop.Cer was observed in all three canyons on the flank and incised channels over a depth of 463-1059 m. The bedrock associated biotope, Lop.Cri, was also observed in all canyons, occurring on incised channels, tributary gullies, flank and amphitheatre rims features over a depth of 253-1022 m. The *L. pertusa* reef biotope Lop.Mad was only observed once in Explorer canyon on flute features 795-940 m, while the dead framework biotope Lop.Hal was observed in both Explorer and Dangeard canyons on the flanks and flute features (697-927 m). The coral rubble biotope Oph.Mun was observed in Explorer and Dangeard canyons on incised channel and mini-mound features over a depth of 303-1017 m.

4. Discussion

Submarine canyons are considered to be potential biodiversity hotspots; however, to date there is very little data on canyon community composition of these features, particularly potential importance as features of conservation interest. Soft sediment habitats dominate the canyons of the SW Approaches, with 80% of analysed images and 60% of the described biotopes. Five of the biotopes could be considered of conservation interest. Of these five, only four come under the definition of VMEs, three could be classified as cold-water coral reefs under the EC Habitats Directive and OSPAR Convention, whist the fourth could be classed as 'Sea pen and burrowing megafauna communities' or coral garden under the current OSPAR definition. The fifth could be considered bedrock reef under the EC Habitats Directive. Seven biotopes were soft sediment communities or faunally-sparse and thus, have little or no perceived conservation interest; of these, three have been previously described by a number of authors while four are new descriptions (see Appendix A2 for descriptions). Those habitats that are listed under policy (OSPAR and EC Habitats Directive) will be discussed in terms of a description of the new biotopes defined and related to other research.

391	those which are not 'listed' habitats will not be discussed; however full descriptions for each
392	are given in Appendix A2.
393	
394	4.1 Descriptions of 'listed' habitats for use as mapping units (biotopes)
395 396	4.1.1 Cold-water coral reef
397	Three biotopes were defined that could be considered as cold-water coral reef, these
398	communities represent distinct reef zones (sensu Mortensen et al. 1995) or macrohabitats
399	(sensu Greene et al. 1999) each with different associated fauna forming distinct communities.
400	
401	Lophelia pertusa reef
402	This biotope (Lop.Mad, cluster ah) was characterised by dead L. pertusa framework and live
403	patches of L. pertusa and Madrepora oculata which provide a structural habitat for associated
404	species. Other characterising species (as identified by SIMPER) were small anemones
405	(Actiniaria sp.13) and an unidentified species (Unknown sp.26) which were associated with L.
406	pertusa. Additional species identified from qualitative video observations were Pandalus
407	borealis and the echinoid Cidaris cidaris; halcampoid anemones (Halcampoididae sp.1)
408	inhabited the interspersed sediment patches in the reef. Other conspicuous fauna observed
409	from the image and video data were large cerianthid anemones, the decapod Bathynectes sp.
410	and the fish Lepidion eques. This assemblage was observed on steep flute features on the
411	flank of Explorer canyon over a depth of 795-940 m and temperature of 9.41-9.92°C.
412	This assemblage corresponds to the 'live Lophelia zone' as described by Mortensen et al.
413	(1995) which is the main reef habitat found on the summit of the reef and consists of
414	predominantly live L. pertusa interspersed with areas of dead broken skeleton.

Lophelia pertusa is widely distributed in the North Atlantic, in oceanic waters at temperatures
of 4-12°C (Roberts et al. 2006) and is predominantly found at depths of 200-1000 m but has
been recorded shallower and deeper (Zibrowius, 1980). L. pertusa has been identified as
occurring in areas subjected to fast currents such as carbonate mounds (De Mol et al. 2002),
ridges and pinnacles (Howell et al. 2007). Pfannkuche et al. (2004) observed L. pertusa reef
on the slopes of the Castor mound in the Belgica mound province (Porcupine Seabight) from
950-1036 m depth, and describe complete cover of live and dead coral colonies of L. pertusa
and Madrepora oculata with antipatharians, actinians and hexactinellid sponges present.
Howell et al. (2010b) described a similar L. pertusa reef from various locations within UK
waters as being characterised by the reef-forming corals L. pertusa and M. oculata, hydroids,
anemones, decapods, cerianthids and echinoderms (ophiuroids and echinoids); whilst a
similar assemblage was observed from Anton Dohrn Seamount (Davies et al. subm.)
consisting of L. pertusa (dead and live), M. oculata, Cidaris cidaris and anemones.

Whilst the assemblage defined from the SW Approaches canyons has some of the same associated species as described previously from reef habitat, the canyon assemblage appears to be subject to increased sedimentation which is clearly visible from the image and video data; although an analysis of sedimentation rates has not been carried out. Canyons are likely to experience increased rates of sediment transport as a result of hydrodynamic regime (Vetter and Dayton, 1998). The interpreted higher level of sedimentation in the study area may result in a lower proportion of live *L. pertusa* colonies and fewer suspension feeders (Brooke and Ross, 2014); however, a full comparative analysis would be required to test this.

Predominantly dead low-lying coral framework

The assemblage identified as Lop.Hal (cluster aj) was characterised by small live colonies of *L. pertusa* and dead *L. pertusa* framework with sediment infill, the sediment areas provided

microhabitats for soft sediment dwelling organisms such as cerianthid (Cerianthidae sp. 1)
and halcampoid (Halcampoididae sp.1) anemones. Fauna associated with the dead framework
were small growths of live Madrepora oculata, the bamboo coral Acanella, ascidians and
crinoids. This assemblage was observed from the Explorer and Dangeard canyons on the
flanks, and on a flute feature over a depth of 697-927 m and temperature of 8.97-9.77°C.
Mortensen et al. (1995) and Roberts et al. (2009) describe a 'Dead coral framework' zone
that is characterised by suspension feeders including sponges, actinians, and other coral
species (gorgonians) with smaller epifauna such as bryozoans, hydroids and barnacles.
Similar assemblages have also been described from Rockall Bank (Wilson 1979; Howell et al
2010b), Hatton Bank (Howell et al. 2010b) and Anton Dohrn Seamount (Davies et al. subm.).
The 'Dead coral framework' zone (sensu Mortensen et al. 1995) is known to be the most
diverse area of a reef (Jensen and Frederiksen, 1992; Mortensen et al. 1995). Whilst the
assemblage described by the present study may be functionally similar to the dead framework
assemblages of Wilson (1979), Mortensen et al. (1995) Roberts et al. (2009) and Howell et al.
(2010b), based on their descriptions it would appear this assemblage is more sediment in-
filled, as there are more sediment dwelling organisms associated with this biotope. A similar
assemblage has been reported on the upper slope and summit of Erik mound in the Belgica
province from 818-855 m depth (Pfannkuche et al. 2004). Coral rubble with isolated live
patches of L. pertusa and M. oculata and a low abundance of associated fauna (antipatharians
and Aphrocallistes sp.) was described with muddy sand areas between the rubble inhabited by

Cerianthus sp. (Pfannkuche et al. 2004).

466	
467	Ophiuroids and Munida sarsi associated with coral rubble
468	
469	Biotope Oph.Mun (cluster ap) was identified as a typical reef rubble habitat which was
470	characterised by coral fragments in the form of rubble/biogenic gravel. The rubble was acting
471	as a habitat for the squat lobster Munida sarsi and the ophiuroid Ophiuroidea sp.5. The
472	assemblage was found associated with incised channels and mini-mound features on the
473	interfluves in Explorer and Dangeard canyons over a depth range of 303-1017 m and a
474	temperature of 7.98-11.5°C.
475	
476	Oph.Mun biotope corresponds to 'the Lophelia rubble zone' described by Mortensen et al.
477	(1995) which is the outer 'apron' of the reef where the framework has been (bio)eroded and
478	accumulates at the base of the reef, the squat lobster Munida sarsi dominates this zone.
479	
480	4.1.2 'Sea pen and burrowing megafauna' communities/coral gardens
481	Kophobelemnon stelliferum and cerianthids on mud/sand
482	The assemblage Kop.Cer (cluster y) was associated with mud and muddy sand substratum
483	and was characterised by the sea pen Kophobelemnon stelliferum and cerianthid anemone.
484	Other conspicuous fauna associated with this assemblage were the large Bolocera-like
485	anemones (Sagartiidae sp. 3), sea pens Halipteris sp., a number of echinoderm species
486	including the asteroid <i>Pseudarchaster</i> sp., the crinoid <i>Pentametrocrinus atlanticus</i> (sediment
487	dwelling) and the holothurian Benthogone sp. Video observations revealed the bamboo coral
488	Acanella arbuscula to be more abundant than suggested from the image analysis. Kop.Cer
489	biotope was observed most frequently and was widespread throughout the canyons. The

490	assemblage was observed from all three canyon flanks, and from an incised channel in
491	Explorer Canyon, over a depth range of 463-1059 m and a temperature of 8.87-10.85°C.
492	
493	Kophobelemnon stelliferum is an upper bathyal species (Rice et al. 1992) and is known to be
494	a deeper sea pen species (López-González and Williams, 2010) widely distributed at depth
495	from 400-2500 m in the north Atlantic and Pacific oceans (Rice et al. 1992). Rowe (1971)
496	reported the occurrence of a K. stelliferum from Hatteras canyon between 1440-2060 m and
497	considered this species to be a 'canyon indicator' as it was not found away from the canyon.
498	Whether this assemblage is unique to the canyon system here is unknown as no comparable
499	data are available from the neighbouring continental slope.
500	
501	The sea pen assemblage has not been described from the deep sea but is similar to the
502	shallower EUNIS 'Sea pen and burrowing megafauna in circalittoral mud' biotope and that
503	described by Kenchington et al. (2014). Kenchington et al. (2014) describe a biotope from the
504	Gully Canyon characterised by 3 corals, the sea pens <i>Pennatula</i> spp. and <i>Halipteris</i> spp. and
505	the small soft coral Acanella arbuscula. A xenophyophore biotope with an abundance of sea
506	pens has also been described from Anton Dohrn Seamount (Davies et al. subm.), although
507	this community is distinct from that observed on Anton Dohrn Seamount.
508	
509	Sea pens are known to increase local biodiversity through increased habitat heterogeneity
510	(Birkeland, 1974; Buhl-Mortensen et al. 2010). Sea pens are protected under the UK
511	Biodiversity Action Plan (UKBAP) as 'Mud habitats in deep water' which corresponds to the
512	OSPAR 'Threatened and/or Declining Habitat' 'Sea pen and burrowing megafauna
513	communities' (OSPAR Agreement 2008-6). The newly described assemblage could also be
514	considered both a VME (FAO 2009) and a 'coral garden' habitat (OSPAR 2010). The
515	OSPAR definition is very broad and incorporates both hard and soft substratum assemblages;

516	this may lead to misinterpretation, and thus misrepresentation of this habitat within a network
517	of MPAs. Soft-bottom coral gardens can be dominated by solitary scleractinians
518	(caryophyllids), sea pens or certain types of bamboo corals (e.g. Acanella sp.), whilst hard-
519	bottom coral gardens are often found to be dominated by gorgonians, stylasterids, and/or
520	black corals (ICES, 2007). The 'Kophobelemnon stelliferum and cerianthid' biotope
521	described from the submarine canyons of the SW Approaches may also satisfy the criteria for
522	being classed as a VME. This assemblage is 'unique or rare' in the sense that it may be
523	unique to canyons, and sea pens are known to be vulnerable to fishing activities (Troffe et al.
524	2006) and provide structural complexity for associated species (Buhl-Mortensen et al. 2010).
525	They may also be important nursery grounds for fish, for example, Redfish larvae have been
526	associated with 5 species of sea pen in the northwest Atlantic (Baillon et al. 2012).
527	4.1.3 Other reef habitat under EC Habitats Directive
528	L. pertusa and crinoids on bedrock
529	As this biotope was described from the video, characterising species were assessed visually.
530	Small growths of Lophelia pertusa (live & dead), the holothurian Psolus squamatus and
531	Holothuroidea sp.4; the corkscrew antipatharian Stichopathes sp. and crinoids were identified
532	as characterising species from video. The assemblage was associated with bedrock and was
533	observed from the Dangeard, Explorer and Irish canyons associated with incised channels,
534	amphitheatre rims, tributary gullies (canyons heads) and the flanks over a depth of 253-1022
535	m and temperature range of 7.93-11.42°C.
536	
537	The assemblage appears to be a highly sedimented version of the 'Discrete coral' biotope
538	described by Wienberg et al. (2008) and Howell et al. (2010b). The assemblage described by
539	Wienberg et al. (2008) was associated with ridge features on the flanks of Rockall Bank
540	between 650-675 m and dominated by a diverse range of corals (gorgonians, antipatharians,
541	soft corals and stylasterids); whilst Howell et al. (2010b) describe a modified version of this

542	assemblage from Hatton Bank with a lower proportion of gorgonians and antipatharians but
543	with the addition of <i>L. pertusa</i> .
544	
545	4.2 Potential modelling use of biotope data
546	It is generally recognised that organisms show a particular affinity for certain types of
547	topographical features or terrain (Džeroski and Drumm 2003) and multibeam bathymetry and
548	derived terrain variables can potentially provide important information that can aid in the
549	delineation and characterisation of biological communities (Wilson et al. 2007). Typically,
550	surrogates used in habitat mapping are parameters that can be derived directly from the
551	acoustic multibeam data, such as slope, aspect, rugosity, Bathymetric Position Index (BPI)
552	and backscatter strength.
553	Once biotopes have been characterised, it is possible to use predictive modelling technique to
554	map their distribution using such surrogates. This has been achieved for single species
555	mapping (e.g. Davies & Guinotte, 2011) and has recently been applied to habitat mapping
556	(Dolan et al. 2008; Guinan et al. 2009; Howell et al. 2011; Ross and Howell, 2012). However
557	to date, there are few examples of this approach being applied in the deep sea. Where this
558	approach has been applied in the deep sea, it has generally been either on a basin-wide scale
559	(Davies & Guinotte, 2011), or over small areas focused on specific habitats (using ROV
560	acquired resolution acoustic data), such as cold water coral reefs (Dolan et al. 2008;
561	Anderson et al. 2011), seeps (Sager et al. 1999; Baco et al. 2010) or vents (Desbruyères et al.
562	2001; Kelley et al. 2001), using project specific mapping units (or facies / biotopes).
563	
564	Multibeam bathymetry data and its derived layers have proved significant in mapping and
565	predicting the distribution of benthic assemblages in the deep sea (e.g. Ross and Howell,
566	2012; Knudby et al. 2013). However submarine canyons are complex topographic features
567	that are often associated with increased sedimentation rates and sediment transport, and are

often hydrodynamically complex (Shepard 1951; Heezen et al. 1955) . The degree to which
topographic variables are able to act as surrogates for the environmental parameters important
in determining species and assemblage distributions within these complex environments is
unknown. Studies which undertake predictive modelling mapping approaches validated using
independent data are required to further elucidate the effectiveness of predictive modelling
the distribution of habitats and species in submarine canyons.

5. Conclusion

With easily recognised, defined biological assemblage units, the identification of assemblages that could be considered VMEs becomes much simpler and more comprehensive, i.e. not restricted to those communities that have received the most research attention. Efforts to map the distribution of VMEs are more easily combined across studies and / or regions. In addition, the classification of all benthic assemblages into named 'habitats' allows a more effective assessment of representativeness of a network, and consideration of anthropogenic impacts on habitats other than those that are highly 'charismatic', such as cold water coral assemblages.

The SW Approaches submarine canyons harbour a range of biological assemblages, some of which correspond to those described from other megahabitat features, such as seamounts or the continental shelf. Other assemblages may be unique to canyons, but this is merely speculative as there is little comparable data. The SW Approaches canyons harbour assemblages of conservation concern, including three *L. pertusa* biotopes, one sea pen and burrowing megafauna biotope, and one bedrock reef and thus could be considered a keystone structure. The findings of this work have extended our knowledge of submarine canyons by providing much needed, comprehensive descriptions of biological assemblages, and suggest

593	that canyons may harbour modified versions of assemblages observed on other megahabitat
594	features.
595	
596	Acknowledgments
597	The authors wish to thank the captain, crew and scientific complement of the R/V Celtic
598	Explorer for assistance in data collection during MESH Cruise 01-07-01, Joint copyright ©
599	2007 Defra, JNCC, Marine Institute, BGS, UoP. These data were recorded during a
600	collaborative survey involving the Joint Nature Conservation Committee, the Marine Institute
601	Galway, the British Geological Survey and the University of Plymouth. The Department of
602	the Environment, Fisheries and Rural Affairs (Defra) Natural Environment Group Science
603	Division (CRO 361) made a significant financial contribution to this work. This work
604	contributes to the MESH project (www.searchmesh.net) that receives European Regional
605	Development Funding through the INTERREG IIIb Community Initiative
606	(www.nweurope.org). HAS publishes with permission of the Director, British Geological
607	Survey (Natural Environment Research Council).
608	*6
609	References
610	Allen CE Windsight C Thomas DE Francis MCC Mades DI 2001
611	Allen, S.E., Vindeirinho, C., Thomson, R.E., Foreman, M.G.G., Mackas, D.L., 2001.
612	Physical and biological processes over a submarine canyon during an upwelling event. Can. J
613	Fish. Aquat. Sci. 58, 671-684.
614	
615	Anderson, T.J., Nichol, S.L., Syms, C., Przeslawski, R. and Harris, P.T., 2011. Deep-sea bio-
616	physical variables as surrogates for biological assemblages, an example from the Lord Howe
617	Rise. Deep-sea Research II 57, 979-991.

619 Baco, A.R., Rowden, A.A., Levin, L.A., Smith, C.R. and Bowden, D.A., 2010. Initial 620 characterization of cold seep faunal communities on the New Zealand Hikurangi margin. 621 Marine Geology 272(1-4), 251-259. 622 623 Baillon, S., Hamel, J.-F., Wareham, V.E., Mercier, A. 2012. Deep cold-water corals as 624 nurseries for fish larvae. Frontiers in Ecology and the Environment Research Communication. 625 10 (7), 351-356. 626 627 Birkeland, C., 1974, Interactions between a sea pen and seven of its predators. Ecol. Monogr. 628 44, 211-232. 629 Brodeur, R.D., 2001. Habitat-specific distribution of Pacific ocean perch (Sebastes alutus) in 630 631 Pribilof Canyon, Bering Sea. Cont. Shelf Res. 21(3), 207-224. 632 Brooke, S., Ross, S.W., 2014, this issue. First observations of the cold-water coral Lophelia 633 634 pertusa in Mid-Atlantic canyons of the USA. Deep-Sea Research II. Buhl-Mortensen, L., Vanreusel, A., Gooday, A.J., Levin, L.A., Priede, I.G., Buhl-Mortensen, 635 636 P., Gheerardyn, H., King, N.J., Raes, M., 2010. Biological structures as a source of habitat 637 heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21-50. 638 Cartes, J.E., Company, J.B., Maynou, F., 1994. Deep-water decapod crustacean communities 639 640 in the Northwestern Mediterranean: influence of submarine canyons and season. Mar. Biol. 641 120, 221-229. 642

643 Clark, M.R., Rowden, A.A., Williams, A., Consalvey, M., Stocka, K.I., Rogers, A.D., O'Hara, 644 T.D., White, M., Shank, T.M., Hall-Spencer, J.M., 2010. The ecology of seamounts: structure, 645 function, and human impacts. Annual Review of Marine Science 2, 253-278. 646 647 Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. 648 Australian J. Ecol. 18, 117-143. 649 650 Clarke, K.R., Somerfield, P.J., Gorley, R.N., 2008. Testing the null hypotheses in exploratory 651 community analyses: similarity profiles and biota-environment linkage. J. Experimental Mar. 652 Biol. Ecol. 366, 56-69. 653 Davies, A.J. & Guinotte, J.M., 2011. Global habitat suitability for framework-forming cold-654 655 water corals. Plos One, 6(4), e18483. doi:10.1371/journal.pone.0018483. 656 Davies, C.E., Moss, D., 1999-2002. EUNIS Habitat Classification. European Environment 657 658 Agency. 659 660 Davies, J.S., Howell, K.L., Stewart, H., Narayanaswamy, B.E., Jacobs, C., Spicer, J., Golding, 661 N., 2014 (submitted). Benthic assemblages of the Anton Dohrn Seamount (NE Atlantic): 662 defining deep-sea biotopes to support habitat mapping and management efforts with a focus 663 on Vulnerable Marine Ecosystems. 664 665 De Leo, F.C., Smith, C.R., Rowden, A.A., Bowden, D.A., Clark, M. R., 2010. Submarine 666 canyons: hotspots of benthic biomass and productivity in the deep sea. Proc. Royal Soc. B: 667 Biol. Sci, 277, 2783-2792.

669 De Mol, B., Van Rensbergen, P., Pillen, S., Van Herreweghe, K., Van Rooij, D., McDonnell, 670 A., Huvenne, V., Ivanov, V., Swennen, R., Henriet, J.P., 2002. Large deep-water coral banks 671 in the Porcupine Basin, southwest of Ireland. Mar. Geol. 188, 193-231. 672 673 Desbruyères, D., Biscoito, M., Caprais, J.C., Colaço, A., Comtet, T., Crassous, P., Fouquet, 674 Y., Khripounoff, A., Le Bris, N., Olu, K., Riso, R., Sarradin, P.M., Segonzac, M. and 675 Vangriesheim, A., 2001. Variations in deep-sea hydrothermal vent communities on the Mid-676 Atlantic Ridge near the Azores plateau. Deep Sea Research Part I: Oceanographic Research 677 Papers 48(5), 1325-1346. 678 679 Dolan, M.F.J., Grehan, A.J., Guinan, J.C. and Brown, C., 2008. Modelling the local distribution of cold-water corals in relation to bathymetric variables: Adding spatial context 680 681 to deep-sea video data. Deep-sea Research I 55, 1564-1579. 682 Duineveld, G., Lavaleye, M., Berghuis, E., Wilde, P., 2001. Activity and composition of the 683 684 benthic fauna in the Whittard Canyon and the adjacent continental slope (NE Atlantic). 685 Oceanologica Acta 24(1), 69-83. Džeroski, S. and Drumm, D., 2003. Using regression trees to identify the habitat preference 686 687 of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Islands. Ecological 688 Modelling 170, 219-226. 689 690 Emery, K.O., Hülsemann, J., 1963. Submarine canyons of southern California. Part 1, 691 Topography, water and sediment. 692 693 Etter, R.J., Grassle, J.F., 1992. Patterns of species diversity in the deep-sea as a function of 694 sediment particle size diversity. Nature 360, 576-578.

695	
696	FAO (2008). Report of the FAO Workshop on Vulnerable Ecosystems and Destructive
697	Fishing on Deep-sea Fisheries. Rome, 26-29 June 2007. FAO Fisheries Report. No. 829.
698	
699	FAO (2009). International Guidelines for the Management of Deep-sea Fisheries in the High
700	Seas. Rome.
701	
702	Flach, E., Heip, C., 1996. Vertical distribution of macrozoobenthos within the sediment on
703	the continental slope of the Goban Spur area (NE Atlantic). Mar. Ecol. Prog. Ser. 141(1-3),
704	55-66.
705	
706	Flach, E., Thomsen, L., 1998. Do physical and chemical factors structure the macrobenthic
707	community at a continental slope in the NE Atlantic? Hydrobiologia 376, 265-285.
708	
709	Folk, R.L., 1954. The distinction between grain size and mineral composition in sedimentary
710	rock nomenclature. J. Geol. 62, 344-359.
711	Gage, J.D., 1986. The benthic fauna of the Rockall Trough: regional distribution and
712	bathymetric zonation. Proc. Royal Soc. Edinburgh 88B, 159-174.
713	
714	Gage, J.D., 2001. Deep-sea benthic community and environmental impact assessment at the
715	Atlantic Frontier. Cont. Shelf Res. 21 (8-10), 957-986.
716	
717	Gage, J.D., Lamont, P.A., Tyler, P.A., 1995. Deep-sea macrobenthic communities at
718	contrasting sites off Portugal, preliminary results. 1. Introduction and diversity comparisons.
719	Internationale Revue Der Gesamten Hydrobiologie 80(2), 235-250.

721 Gardner, W.D., 1989. Baltimore Canyon as a modern conduit of sediment to the deep sea. 722 Deep-Sea Res. 36, 323-358. 723 724 Greene, C.H., Weibe, P.H., Burczynski, J., Youngbluth, M.J., 1988. Acoustical detection of 725 high-density demersal krill layers in the submarine canyons off Georges Bank. Science 241, 726 359-361. 727 728 Greene, H.G., Yoklavich, M.M., Starr, R.M., O'Connell, V.M., Wakefield, W.W., Sullivan, 729 D.E., McRea Jr, J.E., Cailliet, G.M., 1999. A classification scheme for deep seafloor habitats. 730 Oceanologica Acta 22(6), 663-678. 731 732 Guinan, J., Brown, C., Dolan, M.F.J. and Grehan, A.J., 2009. Ecological niche modelling of 733 the distribution of cold-water coral habitat using underwater remote sensing data. Ecological 734 Informatics 4(2), 83-92. 735 736 Harris, P.T., Whiteway, T., 2009. High sea marine protected areas: Benthic environmental 737 conservation priorities from a GIS analysis of global ocean biophysical data. Ocean and Coastal Management 52, 22-38. 738 739 Harris, P.T., Whiteway, T., 2011. Global distribution of large submarine canyons: 740 741 Geomorphic differences between active and passive continental margins. Mar. Geol. 285, 69-742 86. 743 744 Harrold, C., Light, K., Lisin, S., 1998. Organic enrichment of submarine-canyon and 745 continental-shelf benthic communities by macroalgal drift imported from nearshore kelp 746 forests. Limnology and Oceanography 43(4), 669-678.

747	
748	Headrich, R.L., Rowe, G.T., Polloni, P.T., 1975. Zonation and faunal composition of
749	epibenthic populations on the continental slope of New England. J. Mar. Res. 33, 191-212.
750	
751	Hecker, B., Logan, D.T., Gandarillas, F.E., Gibson, P.R., 1988. Canyon and slope processes
752	study, III. Biological processes, Lamont-Doherty Geological Observatory, Columbia
753	Universiy, New York. III: 1-134.
754	
755	Heezen, B.C., Ewing, M., Menzies, R.J., 1955. The influence of Submarine Turbidity
756	Currents on Abyssal Productivity. Oikos 6, 170-182.
757	
758	Hickey, B. M., 1995. Coastal submarine canyons. In: Muller, P. and D. Henderson (eds),
759	Proceedings of the University of Hawaii 'Aha Huliko'a Workshop on Flow Topography
760	Interactions, Honolulu, Hawaii, SOEST Spec. Pub.: 265p.
761	Houston, K.A., Haedrich, R.L., 1984. Abundance and biomass of macrobenthos in the
762	vicinity of Carson Submarine Canyon, northwest Atlantic Ocean. Mar. Biol. 82, 301-305.
763	
764	Howell, K.L. (2010). A benthic classification system to aid in the implementation of marine
765	protected area networks in the deep/high seas of the NE Atlantic. Biol. Conserv. 143, 1041-
766	1056.
767	
768	Howell, K.L., Davies, J.S., Hughes, D.J., Narayanaswamy, B.E., 2007. Strategic
769	Environmental Assessment/Special Area for Conservation Photographic Analysis Report.
770	Department of Trade and Industry, Strategic Environmental Assessment Report, UK: 163p.
771	

772 Howell, K.L., Mowles, S.L., Foggo, A., 2010a. Mounting evidence: near-slope seamounts are 773 faunally indistinct from an adjacent bank. Mar. Ecol. 31(Suppl. 1), 1-11. 774 775 Howell, K.L., Davies, J.S., Narayanaswamy, B.E., 2010b. Identifying deep-sea megafaunal 776 epibenthic assemblages for use in habitat mapping and marine protected area network design. 777 J. Mar. Biol. Assoc. UK 90(1), 33-68. 778 779 Howell, K.L., Holt, R., Pulido Endrino, I., Stewart, H., 2011 When the species is also a 780 habitat: comparing the predictively modelled distributions of Lophelia pertusa and the reef 781 habitat it forms. Biological Conservation. 144, 2656–2665. 782 Huthnance, J.M., Coelho, H., Griffiths, C.R., Knight, P.J., Rees, A.P., Sinha, B., 783 784 Vangriesheim, A., White, M., Chatwin, P.G., 2001. Physical structures, advection and mixing 785 in the region of the Goban Spur. Deep-Sea Res. II, Top. Stud. Oceanogr. 48, 2979-3021. 786 ICES (2007). Report of the Working Group on Deep-Water Ecology (WGDEC), 10-14 787 March 2008. ICES J. Mar. Sci. 1-122. 788 789 Inman, D.L., Nordstrom, C.E., Flick, R.E., 1976. Currents in submarine canyons: an air-sea 790 land interaction. Annual Review of Fluid Mechanics, 8, 275-310. 791 792 Jensen, A., Frederiksen, R., 1992. The fauna associated with the bank-forming deepwater 793 coral Lophelia pertusa (Scleractinaria) on the Faroe shelf. Sarsia 77, 53-69. 794 795 Jones, J. B., 1992. Environmental impact of trawling on the seabed: A review. New 796 Zealand J. Mar. Freshwater Res. 26 (1), 59-67.

797	
798	Kelley, D.S., Delaney, J.R. and Yoerger, D.R., 2001. Geology and venting characteristics of
799	the Mothra hydrothermal field, Endeavour segment, Juan de Fuca Ridge Geology 29, 959-
800	962.
801	
802	Kenchington, E.L., Cogswell, A.T., MacIsaac, K.G., Beazley, L., Law, B.A., Kenchington,
803	T.J., 2014, this issue. Limited depth zonation among bathyal epibenthic megafauna of the
804	Gully submarine canyon, northwest Atlantic. Deep-Sea Research II,
805	
806	Kottke, B., Schwenk, T., Breitzke, M., Wiedicke, M., Kudrass, H.R., Spiess, V., 2003
807	Acoustic facies and depositional processes in the upper submarine canyon Swatch of No
808	Ground (Bay of Bengal). Deep-Sea Res. II, Top. Stud. Oceanogr. 50, 979-1001.
809	
810	Knudby, A., Kenchington, E., Murill, F.J., 2013. Modeling the distribution of Geodia
811	sponges and sponge Grounds in the Northwest Atlantic. PLoS ONE 8(12):e82306.
812	Doi:10.1371/journal.pone.0082306.
813	
814	Lavaleye, M.S.S., Duineveld, G.C.A., Berghuis, E.M., Kok, A., Witbaard, R., 2002. A
815	comparison between the megafauna communities on the N.W. Iberian and Celtic continental
816	margins - effects of coastal upwelling? Progr. Oceanogr. 52, 459-476.
817	
818	Long, D., 2006. BGS detailed explanation of seabed sediment modified Folk classification.
819	$http://ec.europa.eu/maritimeaffairs/emodnet/documents/standards/mesh_geology.pdf).$

821	López-González, P.J., Williams, G.C., 2010. A new deep-sea pennatulacean (Anthozoa:
822	Octocorallia: Chunellidae) from the Porcupine Abyssal Plain (NE Atlantic). Helgol Mar. Res.
823	Pub. online 30 October 2010, 1–10.
824	
825	Maurer, D., Robertson, G., Gerlinger, T., 1994. Comparison of Community Structure of Soft-
826	Bottom Macrobenthos of the Newport Submarine Canyon, California and the Adjoining Shelf
827	Internationale Revue der gesamten Hydrobiologie und Hydrographie 79(4), 591-603.
828	
829	Monaco, A., Biscaye, P.E., Soyer, J., Pocklington, R., Heussner, S., 1990. Particle fluxes and
830	ecosystem responses on a continental margin: the 1985-1988 Mediterranean ECOMARGE
831	experiment. Cont. Shelf Res. 10, 809-839.
832	
833	Mortensen, P.B., Hovland, M., Brattegard, T., Farestveit, R., 1995. Deep water bioherms of
834	the scleractinian coral Lophelia pertusa (L.) at 64° N on the Norwegian shelf: structure and
835	associated megafauna. Sarsia 80, 145-158.
836	Mulder, T., Zaragosi, S., Garlan, T., Mavel, J., Cremer, M., Sottolichio, A., Sénéchal, N.,
837	Schmidt, S., 2012. Present deep-submarine canyons activity in the Bay of Biscay (NE
838	Atlantic). Mar. Geol. 295-298, 113-127.
839	
840	Narayanaswamy, B.E., Howell, K.L., Hughes, D.J., Davies, J.S., Roberts, J.M., Black, K.D.,
841	2006. Strategic Environmental Assessment Area 7 - Photographic Analysis. Department of
842	Trade and Industry, Strategic Environmental Assessment Report, UK: 178p.
843	
844	Okey, T.O., 2003. Macrobenthic colonist guilds and renegades in Monterey Canyon (USA)
845	drift algae: partitioning multidimensions. Ecological monographs 73(3), 415-440.

847	OSPAR (2010). Background Document for Coral Gardens. Biodiversity Series: 38p.
849	OSPAR (Agreement 2008-6). OSPAR Agreement 2008-6 that replaced an earlier version of
850	the list contained in OSPAR Agreement 2004-6 (see also the Summary Record of the 2008
851	meeting of the OSPAR Commission contained in OSPAR 08/24/1, Para. 7.12).
852	
853	Pfannkuche, O., Bannert, B., Beck, T., Beuck, L., Dullo, W.C., Flögel, S., Freiwald, A., Gass,
854	S., Gektidis, M., Heger, A., Jamieson, A., Kavanagh, F., King, N., Kuhanec, B., Linke, P.,
855	Martin, B., Neulinger, S., Noe, S., Queisser, W., Rüggeberg, A., Ruseler, S., Schiemer, I.,
856	Schmidt, S., Schönfeld, J., Taviani, M., Türk, M., Vertino, A., Wigham, B., 2004. Geo-
857	Biological Investigations on Azooxanthellate Cold-Water Coral Reefs on the Carbonate
858	Mounds along the Celtic Continental Slope. L. A. t. M. Meteor Cruise No. 61, 2004, Lisbon –
859	Cork.
860	
861	Pilskaln, C.H., Churchill, J.H., Mayer, L.M., 1998. Resuspension of sediment by bottom
862	trawling in the Gulf of Maine and potential geochemical consequences. Conserv. Biol. 12 (6),
863	1223-1229.
864	
865	Ramirez-Llodra, E., Ballesteros, M., Company, J.B., Dantart, L., Sardá, F., 2008. Spatio-
866	temporal variations in the diversity, biomass and abundance of bathyal invertebrates in the
867	Catalan Sea (Western Mediterranean). Mar. Biol. 153, 297-309.
868	
869	Rice, A.L., Tyler, P.A., Paterson, G.J.L., 1992. The pennatulid Kophobelemnon stelliferum
870	(Cnidaria: Octocorallia) in the Porcupine Seabight (North-East Atlantic Ocean). J. Mar. Biol.
871	Assoc. UK 72, 417-434.

873 Roberts, J.M., Wheeler, A.J., Freiwald, A., 2006. Reefs of the deep: The biology and geology 874 of cold-water coral ecosystems. Science 312(5773), 543-547. 875 876 Roberts, J.M., Wheeler, A.L., Freiwald, A., Cairns, A., 2009. Cold-water corals. The biology 877 and Geology of Deep-Sea Coral Habitats. New York. 878 879 Ross., R, Howell, K.L., 2012. Use of predictive habitat modelling to assess the distribution 880 and extent of the current protection of 'listed' deep-sea habitats. Diversity and Distributions. 881 19, 433-445. DOI: 10.1111/ddi.12010 882 883 Rowden, A.A., Sclacher, T.A., Williams, A., Clark, M.R., Stewart, R., Althaus, F., Bowden, 884 D.A., Consalvey, M., Robinson, W., Dowdney, J., 2010. A test of the seamount oasis 885 hypothesis: seamounts support higher epibenthic megafaunal biomass than adjacent slopes. 886 Mar. Ecol. 31(Suppl. 1), 1-12. 887 Rowe, G. T., 1971. Observations on bottom currents and epibenthic populations in Hatteras 888 Submarine Canyon. Deep Sea Res. Oceanogr. Abs. 18(6), 569-576. 889 890 Rowe, G.T., Polloni, P.T., Haedrich, R.L., 1982. The deep-sea macrobenthos on the 891 continental-margin of the Northwest Atlantic Ocean. Deep-Sea Res.- I, Oceanogr. Res. Pap. 892 29(2), 257-278. 893 894 Sager, W.W., Lee, C.S., MacDonald, I.R. and Schroeder, W.W., 1999. High-frequency near-895 bottom acoustic reflection signatures of hydrocarbon seeps on the Northern Gulf of Mexico 896 continental slope. Geo-Marine Letters 18(4), 267-276.

898	Sardà, F., Cartes, J.E. and Company, J.B., 1994. Spatio-temporal variation in megabenthos
899	abundance in three different habitats of the Catalan deep-sea (Western Mediterranean). Mar.
900	Biol. 120, 211-219.
901	
902	Schlacher, T.A., Schlacher-Hoenlinger, M.A., Williams, A., Althaus, F., Hooper, J.N.A.,
903	Kloser, R., 2007. Richness and distribution of sponge megabenthos in continental margin
904	canyons off southeastern Australia. Mar. Ecol. Prog. Ser. 340, 73-88.
905	
906	Schlacher, T.A., Williams, A., Franziska, A., Schlacher-Hoenlinger, M.A., 2010. High
907	resolution seabed imagery as a tool for biodiversity conservation planning on continental
908	margins. Mar.Ecol. 31 (1), 200-221.
909	
910	Shank, T.M., 2010. Seamounts. Deep-ocean laboratories of faunal connectivity, evolution,
911	and endemism. Oceanography 23, 108-122.
912	
913	Shepard, F.P., 1951. Mass movement in submarine canyon heads. Trans. American Geophys.
914	Union 32, 405-419.
915	
916	Shepard, F.P., Marshall, N.F., 1973. Currents along floors of submarine canyons. American
917	Assoc. Pet. Geol. Bull. 57(2), 244-264.
918	
919	Smith, C.R., De Leo, F.C., Bernardino, A.F., Sweetman, A.K., Arbizu, P.M., 2008. Abyssal
920	food limitation, ecosystem structure and climate change. Trends in Ecol. Evolution 23, 518-
921	528.
922	

923	Stevens, T., Connolly, R.M., 2004. Testing the utility of abiotic surrogates for marine habitat
924	mapping at scales relevant to management. Biol. Conserv. 119, 351-362.
925	
926	Stewart, H.A., Davies, J.S., Guinan, J, Howell, K.L., 2014. The Dangeard and Explorer
927	Canyons, South-West Approaches, UK: geology, sedimentology and newly discovered cold-
928	water coral mini-mounds. Deep-Sea Res. II, Top. Stud. Oceanogr., this issue.
929	
930	Stewart, H.A., Davies, J.S., 2007. SW Approaches MESH Survey, R/V Celtic Explorer
931	Cruise CE0705, BGS Project 07/06, Operations Report. British Geological Survey
932	Commercial Report CR/07/123.
933	
934	Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M.C., Schwager, M., Jeltsch, F.,
935	2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of
936	keystone structures. J. Biogeogr. 31, 79-92.
937	
938	Thrush, S.F., Hewitt, J.E., Funnell, G.A., Cummings, V.J., Ellis, J. Schultz, D., Talley, D.,
939	Norkko, A., 2001. Fishing disturbance and marine biodiversity: the role of habitat structure in
940	simple soft-sediment systems. Mar. Ecol. Prog. Ser. 223, 277-286.
941	
942	Thrush, S.F., Dayton, P.K., 2002. Disturbance to Marine Benthic Habitats by Trawling and
943	Dredging: Implications for Marine Ecosystems. Annual Rev. Ecol. Systematics 33, 449-473.
944	
945	Troffe, P.M., Levings, C.D., Piercey, G.E., Keong, V., 2006. Fishing gear effects and ecology
946	of the sea whip (Halipteris willemoesi (Cnidaria: Octocorallia: Pennatulacea)) in British

947	Columbia, Canada: preliminary observations. Aquatic Conservation: Marine and Freshwater
948	Ecosystems 15, 523-533.
949	
950	UNGA (2006). Resolution 61/105 Sustainable fisheries, including through the 1995
951	Agreement for the Implementation of the Provisions of the United Nations Convention on the
952	Law of the Sea of 10 December 1982 relating to the Conservation and Management of
953	Straddling Fish Stocks and Highly Migratory Fish Stocks, and related instruments. UNGA
954	A/RES/61/105.
955	
956	Veale, L.O., Hill, A.S., Hawkins, S.J., Brand, A.R., 2000. Effects of long-term physical
957	disturbance by commercial scallop fishing on sub-tidal epifaunal assemblages and habitats.
958	Mar. Biol. 137, 325-337.
959	Vetter, E.W., 1994. Hotspots of benthic production. Nature 372, 47.
960	
961	Vetter, E.W., Dayton, P.K., 1998. Macrofaunal communities within and adjacent to a
962	detritus-rich submarine canyon system. Deep-Sea Res. II, Top. Stud. Oceanogr. 45, 25-54
963	
964	Vetter, E.W., Dayton, P.K., 1999. Organic enrichment by macrophyte detritus, and
965	abundance patterns of megafaunal populations in submarine canyons. Mar. Ecol. Prog. Ser.
966	186, 137-148.
967	
968	Vetter, E.W., Smith, C.R., De Leo, F. C., 2010. Hawaiian hotspots: enhanced megafaunal
969	abundance and diversity in submarine canyons on the oceanic islands of Hawaii. Mar. Ecol.
970	31, 183-199.
971	

972	Wienberg, C., Beuck, L., Heidkamp, S., Hebbeln, D., Freiwald, A., Pfannkuche, O., Monteys,
973	X., 2008. Franken Mound: facies and biocoenoses on a newly-discovered "carbonate mound"
974	on the western Rockall Bank, NE Atlantic. Facies 54, 1-24.
975	
976	Wilson, J.B., 1979. Patch development of the deep-water coral Lophelia pertusa (L.) on
977	Rockall Bank. J. Mar. Biol. Assoc. UK 59, 165-177.
978	Wilson, W.H., 1991. Competition and predation in marine soft sediment communities.
979	Annual Review of Ecol. and Systematics 21, 221–241.
980	
981	Wilson, M.F J., O'Connell, B., Brown, C., Guinan, J.C. and Grehan, A.J., 2007. Multiscale
982	terrain analysis of multibeam bathymetry data for habitat mapping on the Continental Slope.
983	Marine Geodesy 30(1), 3-35.
984	
985	Zibrowius, H., 1980. Les Scléractiniaires de la Méditerranée et de l'Atlantique nord-orienta.
986	Mémoires de l'Institut Océanographique, Monaco 11, 1-284.
987 988	Figure legends
989	Figure 1: The study area on the Celtic Margin encompassing Dangaard and Explorer canyons
990	and the eastern flank of a third canyon in Irish waters. Bathymetric contours are provided by
991	GEBCO, the 200 m depth contour (dashed line) marks the approximate position of the
992	continental shelf break. The UK median line corresponds to the UK continental shelf limit.
993	
994	Figure 2: Plan (a) and 3D view (b) of multibeam bathymetry acquired over the survey area,
995	meso-scale geomorphology (sensu Greene et al. 1999) is labelled. Fig. 2b is visualised in

997

998	Figure 3: Multibeam bathymetry data and video transects acquired over the SW Approaches
999	survey area. Black dots represent video transects and are labelled with transect names.
1000	
1001	Figure 4: Dendrogram of hierarchical cluster analysis of species data, clusters identified using
1002	the SIMPROF routine ($p < 0.01$). Dendrogram (a) shows those clusters identified as outliers
1003	at a 1% Bray Curtis similarity level and (b) remaining clusters for rejection/acceptance
1004	process. SIMPROF clusters have been collapsed for illustrative purposes.
1005	
1006	Figure 5: Example images of biotopes showing fauna characteristic of each assemblage.
1007	Codes given to biotopes correspond to SIMPROF clusters in brackets: Bat.Hyd (r), Amp.Cer
1008	(al), Kop.Cer (y), Unk.Cer (ac), Lop.Cri (not defined from cluster analysis), Lop.Hal (aj),
1009	Lop.Mad (ah), Cer (x), Oph (am), Ser.Bra (ao), Mun.Lep (aq), Oph.Mun (ap). Lop.Cri was
1010	not identified from the cluster analysis, but described from the video.
1011	
1011 1012	Figure 6: nMDS ordination plot of pairwise ANOSIM test for depicting difference in
	Figure 6: nMDS ordination plot of pairwise ANOSIM test for depicting difference in environmental variables between biotopes. Cluster letters correspond to biotope codes: r
1012	
1012 1013	environmental variables between biotopes. Cluster letters correspond to biotope codes: r
1012 1013 1014	environmental variables between biotopes. Cluster letters correspond to biotope codes: r (Bat.Hyd), al (Amp.Cer), y (Kop.Cer), ac (Unk.Cer), aj (Lop.Hal), ah (Lop.Mad), x (Cer), am
1012 1013 1014 1015	environmental variables between biotopes. Cluster letters correspond to biotope codes: r (Bat.Hyd), al (Amp.Cer), y (Kop.Cer), ac (Unk.Cer), aj (Lop.Hal), ah (Lop.Mad), x (Cer), am
1012 1013 1014 1015 1016	environmental variables between biotopes. Cluster letters correspond to biotope codes: r (Bat.Hyd), al (Amp.Cer), y (Kop.Cer), ac (Unk.Cer), aj (Lop.Hal), ah (Lop.Mad), x (Cer), am (Oph), ao (Ser.Bra), aq (Mun.Lep), ap (Oph.Mun).
1012 1013 1014 1015 1016 1017	environmental variables between biotopes. Cluster letters correspond to biotope codes: r (Bat.Hyd), al (Amp.Cer), y (Kop.Cer), ac (Unk.Cer), aj (Lop.Hal), ah (Lop.Mad), x (Cer), am (Oph), ao (Ser.Bra), aq (Mun.Lep), ap (Oph.Mun). Figure A1: Mapped distribution of defined biotopes in the SW Approaches. Figures a-f
1012 1013 1014 1015 1016 1017 1018	environmental variables between biotopes. Cluster letters correspond to biotope codes: r (Bat.Hyd), al (Amp.Cer), y (Kop.Cer), ac (Unk.Cer), aj (Lop.Hal), ah (Lop.Mad), x (Cer), am (Oph), ao (Ser.Bra), aq (Mun.Lep), ap (Oph.Mun). Figure A1: Mapped distribution of defined biotopes in the SW Approaches. Figures a-f represent the biotope mapped along the transects: (a) Amp.Cer, (b) Bat.Hyd, (c) Cer, (d)
1012 1013 1014 1015 1016 1017 1018 1019	environmental variables between biotopes. Cluster letters correspond to biotope codes: r (Bat.Hyd), al (Amp.Cer), y (Kop.Cer), ac (Unk.Cer), aj (Lop.Hal), ah (Lop.Mad), x (Cer), am (Oph), ao (Ser.Bra), aq (Mun.Lep), ap (Oph.Mun). Figure A1: Mapped distribution of defined biotopes in the SW Approaches. Figures a-f represent the biotope mapped along the transects: (a) Amp.Cer, (b) Bat.Hyd, (c) Cer, (d)
1012 1013 1014 1015 1016 1017 1018 1019	environmental variables between biotopes. Cluster letters correspond to biotope codes: r (Bat.Hyd), al (Amp.Cer), y (Kop.Cer), ac (Unk.Cer), aj (Lop.Hal), ah (Lop.Mad), x (Cer), am (Oph), ao (Ser.Bra), aq (Mun.Lep), ap (Oph.Mun). Figure A1: Mapped distribution of defined biotopes in the SW Approaches. Figures a-f represent the biotope mapped along the transects: (a) Amp.Cer, (b) Bat.Hyd, (c) Cer, (d) Kop.Cer, (e) Lop.Cri, (f) Lop.Hal.

1024	
1025	Greyscale legends
1026	Figure 3: Multibeam bathymetry data and video transects acquired over the SW Approaches
1027	survey area. White dots represent video transects and are labelled with transect names.
1028	
1029	Table legends
1030	Table 1: Summary of mapped biotope data, abiotic data extracted from video metadata,
1031	geomorphology and substratum extracted from ArcGIS 9.3 layers.* refers to the biotope
1032	described from the video footage.
1033	
1034	Table A1: Transects undertaken in the SW Approaches canyons: transect code, site (canyon),
1035	start and end of transect, length, number of statistical images analysed per transect, average
1036	depth and temperature (standard deviation) per transect, topographical feature sampled by
1037	transect and generalised seabed substrate within transects.
1038	
1039	Table A2: Clusters identified from multivariate hierarchical analysis with associated
1040	environmental parameters, and SIMPER results identifying the taxa that characterise the
1041	clusters.
1042	clusters.
1043	
1044	
1045	
1046	
1047	
1048	
1049	

Appendix A1: SIMPER results for the SW Approaches
Full lists of species present in each assemblage described in Sect. 4. Characterising species,
as identified by the SIMPER routine, are indicated in bold. #### denotes where the number is
infinitive or cannot calculated, as in the case of Sim/SD, where the SD is zero and cannot be
divided.
Group a All the similarities are zero
Group b
Less than 2 samples in group
Group c
Average similarity: 42.26
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%
Sabellidae sp. 1 0.46 42.26 ####### 100.00 100.00
Cusum d
Group d Less than 2 samples in group
Less than 2 samples in group
Group e
Less than 2 samples in group
2 samples in group
Group f
Average similarity: 100.00
Species Av.Abund Av.Sim Sim/SD Contrib% Cum.%
Benthogone sp. 0.16 100.00 ####### 100.00 100.00
Group g
Less than 2 samples in group
Group h
Less than 2 samples in group
Group i
Less than 2 samples in group
2000 than 2 outhproo in group
Group j
Less than 2 samples in group

1104							
1105	Group k						
1106	Average similarity: 25.93						
1107							
1108	Species	Av.Abund	Av.Sim	Sim/SD Contrib	6	Cum.%	
1109	Protoptilum sp.	0.22 16.67		0.58	64.27	64.27	
1110	Pseudarchaster sp.	0.17	9.27	0.58		35.73	100.00
1111	•						
1112							
1113	Group l						
1114	Average similarity: 68.45						
1115							
1116	Species	Av.Abund	Av.Sim	Sim/SD Contrib	6	Cum.%	
1117	Edwardsiidae sp. 1	0.27	68.45	4.76		100.00	100.00
1118							
1119							
1120	Group m						
1121	Average similarity: 44.15						
1122							S
1123	Species	Av.Abund	Av.Sim	Sim/SD Contrib	6	Cum.%	
1124	Halcampoididae sp. 3	0.32 24.63		0.58	55.78		55.78
1125	Unknown sp. 13	0.22 19.53		0.58	44.22		100.00
1126					63		
1127							
1128	Group n						
1129	Average similarity: 49.42						
1130							
1131	Species	Av.Abund	Av.Sim	Sim/SD Contrib		Cum.%	
1132	Unknown sp. 15	0.19 49.42		###### 100.00	100.00		
1133							
1134							
1135	Group o						
1136	Average similarity: 50.48						
1137							
1138	Species		Av.Sim	Sim/SD Contrib		Cum.%	
1139	Sagartiidae sp. 3	0.29 48.48		1.78	96.05		96.05
1140	Kophobelemnon stelliferum	0.06	1.70	0.22		3.38	
1141	99.42						
1142	Calveriosoma fenestratum	0.02 0.29		0.09	0.58		100.00
1143							
1144							
1145	Group p						
1146	Average similarity: 18.04						
1147							
			. ~.	a. /a. a	,	~ ~	
1148	Species		Av.Sim	Sim/SD Contrib		Cum.%	
1148 1149	Actiniaria sp. 14	0.05 10.48		0.39	√₀ 58.07		58.07
1148 1149 1150	Actiniaria sp. 14 Cerianthidae sp. 3		Av.Sim 6.14			Cum.% 34.04	58.07
1148 1149 1150 1151	Actiniaria sp. 14 Cerianthidae sp. 3 92.11	0.05 10.48 0.10		0.39	58.07		
1148 1149 1150 1151 1152	Actiniaria sp. 14 Cerianthidae sp. 3	0.05 10.48		0.39			58.07 100.00
1148 1149 1150 1151 1152 1153	Actiniaria sp. 14 Cerianthidae sp. 3 92.11	0.05 10.48 0.10		0.39	58.07		
1148 1149 1150 1151 1152 1153 1154	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1	0.05 10.48 0.10		0.39	58.07		
1148 1149 1150 1151 1152 1153 1154 1155	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1	0.05 10.48 0.10		0.39	58.07		
1148 1149 1150 1151 1152 1153 1154 1155 1156	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1	0.05 10.48 0.10		0.39	58.07		
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1 Group q Average similarity: 10.73	0.05 10.48 0.10 0.07 1.42	6.14	0.39 0.44 0.26	58.07 7.89	34.04	
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1 Group q Average similarity: 10.73 Species	0.05 10.48 0.10 0.07 1.42 Av.Abund	6.14 Av.Sim	0.39 0.44 0.26 Sim/SD Contrib	58.07 7.89	34.04 Cum.%	
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1 Group q Average similarity: 10.73 Species Caryophyllia sp. 2	0.05 10.48 0.10 0.07 1.42	6.14 Av.Sim	0.39 0.44 0.26	58.07 7.89	34.04	
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1 Group q Average similarity: 10.73 Species Caryophyllia sp. 2 37.27	0.05 10.48 0.10 0.07 1.42 Av.Abund 0.11	6.14 Av.Sim	0.39 0.44 0.26 Sim/SD Contribe 0.32	58.07 7.89	34.04 Cum.%	100.00
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1 Group q Average similarity: 10.73 Species Caryophyllia sp. 2 37.27 Porifera encrusting sp. 1	0.05 10.48 0.10 0.07 1.42 Av.Abund 0.11 0.09 3.60	6.14 Av.Sim 4.00	0.39 0.44 0.26 Sim/SD Contribe 0.32	58.07 7.89	34.04 Cum.% 37.27	
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1 Group q Average similarity: 10.73 Species Caryophyllia sp. 2 37.27 Porifera encrusting sp. 1 Hydrozoa (flat branched)	0.05 10.48 0.10 0.07 1.42 Av.Abund 0.11	6.14 Av.Sim 4.00	0.39 0.44 0.26 Sim/SD Contribe 0.32	58.07 7.89	34.04 Cum.%	100.00
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1 Group q Average similarity: 10.73 Species Caryophyllia sp. 2 37.27 Porifera encrusting sp. 1 Hydrozoa (flat branched) 90.75	0.05 10.48 0.10 0.07 1.42 Av.Abund 0.11 0.09 3.60 0.15	6.14 Av.Sim 4.00	0.39 0.44 0.26 Sim/SD Contriber 0.32 0.31 0.24	58.07 7.89 33.50	34.04 Cum.% 37.27	100.00 70.7 7
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162	Actiniaria sp. 14 Cerianthidae sp. 3 92.11 Crinoidea sp. 1 Group q Average similarity: 10.73 Species Caryophyllia sp. 2 37.27 Porifera encrusting sp. 1 Hydrozoa (flat branched)	0.05 10.48 0.10 0.07 1.42 Av.Abund 0.11 0.09 3.60	6.14 Av.Sim 4.00	0.39 0.44 0.26 Sim/SD Contribe 0.32	58.07 7.89	34.04 Cum.% 37.27	100.00

1166	Cerithioidea sp.	0.05	0.30		0.13		2.77		100.00
1167									
1168 1169	Group r								
1170	Average similarity: 25.07								
1171	Average similarity. 25.07								
1172	Species	Av.Abun	d	Av.Sim	Sim/SD	Contrib%		Cum.%	
1173	cf. Bathylasma sp.	11/11/00/11		16.33	51111 SE	0.58		65.13	65.13
1174	Hydrozoa (bushy)		0.14			0.57		34.87	100.00
1175	nyurozou (ousny)		0.11	0.7.		0.07		<i>5</i> 1.67	100.00
1176									
1177	Group s								
1178	Average similarity: 14.78								
1179									
1180	Species	Av.Abun	d	Av.Sim	Sim/SD	Contrib%		Cum.%	
1181	Terebellidae sp. 1		0.26	14.94		0.79		60.27	
1182	60.27								
1183	Actiniaria sp. 17	0.15			0.39		36.16	*	96.43
1184	Serpulidae sp. 1		0.47		0.17		1.91		98.34
1185	Bonellia viridis	0.06	0.41		0.17		1.66		100.00
1186									
1187	Group t								
1188	Average similarity: 38.99								
1189	G .	A A1		۸ ۵۰	a. lab	C (10)		C 0/	
1190	Species	Av.Abun			Sim/SD			Cum.%	
1191 1192	Amphipoda sp. 1		0.25	38.99		#######	100.00	100.00	
1192									
1193	Croup u								
1194	Group u Average similarity: 20.08								
1196	Average similarity, 20.06								
1197	Species	Av.Abun	d .	Av Sim	Sim/SD	Contrib%		Cum.%	
1198	Colus sp. 2	71V.710um		20.08	Siiii/SD	1.28		100.00	100.00
1199	Coms sp. 2		0.55	20.00		1.20		100.00	100.00
1200				·					
1201	Group v								
1202	Average similarity: 49.37								
1203									
1200		XV							
1204		Av.Abun	d	Av.Sim	Sim/SD	Contrib%		Cum.%	
	Species Pachycerianthus multiplicatus		d 42.08	Av.Sim	Sim/SD 3.23	Contrib%	85.22	Cum.% 85.22	
1204	Species		42.08	Av.Sim 7.30		Contrib% 0.58		85.22	100.00
1204 1205	Species Pachycerianthus multiplicatus		42.08					85.22	100.00
1204 1205 1206 1207 1208	Species Pachycerianthus multiplicatus		42.08					85.22	100.00
1204 1205 1206 1207 1208 1209	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w		42.08					85.22	100.00
1204 1205 1206 1207 1208 1209 1210	Species Pachycerianthus multiplicatus Cerianthidae sp. 1		42.08					85.22	100.00
1204 1205 1206 1207 1208 1209 1210 1211	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w		42.08					85.22	100.00
1204 1205 1206 1207 1208 1209 1210 1211 1212	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group		42.08					85.22	100.00
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x		42.08					85.22	100.00
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group		42.08					85.22	100.00
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39	0.38	42.08 0.11	7.30	3.23	0.58	85.22	85.22 14.78	100.00
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species		42.08 0.11	7.30 Av.Sim		0.58 Contrib%	85.22	85.22 14.78	100.00
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1	0.38	42.08 0.11	7.30	3.23	0.58	85.22	85.22 14.78	100.00
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1 99.47	0.38	42.08 0.11	7.30 Av.Sim	3.23 Sim/SD	0.58 Contrib%	85.22	85.22 14.78	
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1 99.47 Sagartiidae sp. 3	0.38	42.08 0.11 d 0.31 0.06	7.30 Av.Sim 54.10	3.23	0.58 Contrib% 2.63	85.22	85.22 14.78 Cum.% 99.47	100.00 99.57
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1 99.47 Sagartiidae sp. 3 Echinus spp.	0.38	42.08 0.11	7.30 Av.Sim	3.23 Sim/SD	0.58 Contrib%	85.22	85.22 14.78	
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1 99.47 Sagartiidae sp. 3 Echinus spp. 99.67	0.38	42.08 0.11 d 0.31 0.06 0.01	Av.Sim 54.10	3.23 Sim/SD	0.58 Contrib% 2.63	85.22	85.22 14.78 Cum.% 99.47	
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1 99.47 Sagartiidae sp. 3 Echinus spp. 99.67 Munida sarsi	0.38	42.08 0.11 d 0.31 0.06	7.30 Av.Sim 54.10	3.23 Sim/SD	0.58 Contrib% 2.63	85.22	85.22 14.78 Cum.% 99.47	
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1 99.47 Sagartiidae sp. 3 Echinus spp. 99.67 Munida sarsi 99.76	0.38	d 0.31 0.06 0.01 0.01	Av.Sim 54.10 0.05 0.05	3.23 Sim/SD	Contrib% 2.63 0.05 0.05	85.22	85.22 14.78 Cum.% 99.47 0.10 0.09	
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1 99.47 Sagartiidae sp. 3 Echinus spp. 99.67 Munida sarsi 99.76 Cerianthidae sp. 3	0.38	42.08 0.11 d 0.31 0.06 0.01	Av.Sim 54.10	3.23 Sim/SD	0.58 Contrib% 2.63	85.22	85.22 14.78 Cum.% 99.47	
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223	Species Pachycerianthus multiplicatus Cerianthidae sp. 1 Group w Less than 2 samples in group Group x Average similarity: 54.39 Species Cerianthidae sp. 1 99.47 Sagartiidae sp. 3 Echinus spp. 99.67 Munida sarsi 99.76	0.38	d 0.31 0.06 0.01 0.01	Av.Sim 54.10 0.05 0.05	3.23 Sim/SD	Contrib% 2.63 0.05 0.05	85.22	85.22 14.78 Cum.% 99.47 0.10 0.09	

1227	Ophiothrix fragilis		0.01	0.02		0.03		0.04	
1228	99.89		0.01	0.02		0.02		0.02	
1229 1230	Pseudarchaster sp. 99.92		0.01	0.02		0.03		0.03	
1231	Caryophyllia sp. 2		0.01	0.02		0.03		0.03	
1232	99.95		0.01	0.02		0.05		0.05	
1233	Kophobelemnon stelliferum		0.00	0.02		0.03		0.03	
1234	99.98								
1235	Halcampoididae sp. 1	0.01	0.01		0.03		0.02	1	00.00
1236									
1237 1238	Cwann								
1238	Group y Average similarity: 49.80								
1240	Average similarity: 43.00								
1241	Species	Av.Abur	ıd	Av.Sim	Sim/SD	Contrib%	ó	Cum.%	
1242	Kophobelemnon stelliferum	0.34	42.07		2.54		84.46		84.46
1243	Cerianthidae sp. 1		0.14	7.03		0.55		14.12	
1244	98.59							-	
1245	Ophiuroidea sp.1	0.04	0.41		0.11		0.82		99.41
1246	Halcampoididae sp.3		0.02	0.13		0.06	.	0.27	
1247	99.68	0.02	0.06		0.06		0.12		00.01
1248	Pentametrocrinus atlanticus	0.02	0.06		0.06		0.13		99.81
1249 1250	Crinoidea sp. 2	0.03 0.01	0.04 0.04		0.04 0.04		0.08 0.07	•	99.89 99.96
1251	<i>Ophiactis balli Acanella</i> sp.	0.01	0.04	0.02	0.04	0.04	0.07	0.04	99.90
1251	100.00		0.01	0.02		0.04		0.04	
1253	100.00								
1254									
1255	Group z				4 7				
1256	Average similarity: 41.11								
1257	Ç								
1258	Species	Av.Abur		Av.Sim	Sim/SD	Contrib%	ó	Cum.%	
1258 1259	Ophiactis balli		38.06		Sim/SD 2.29		92.59		92.59
1258 1259 1260	<i>Ophiactis balli</i> Cerianthidae sp. 1		38.06	Av.Sim		Contrib% 0.27		Cum.% 4.42	92.59
1258 1259 1260 1261	<i>Ophiactis balli</i> Cerianthidae sp. 1 97.01		38.06 0.07	1.82		0.27		4.42	92.59
1258 1259 1260 1261 1262	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi		38.06	1.82					92.59
1258 1259 1260 1261 1262 1263	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47	0.71	38.06 0.07 0.08	1.82	2.29	0.27	92.59	4.42	
1258 1259 1260 1261 1262 1263 1264	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1		38.06 0.07 0.08 0.20	1.82 0.60		0.27		4.42 1.46	92.59 98.96
1258 1259 1260 1261 1262 1263 1264 1265	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi	0.71	38.06 0.07 0.08	1.82 0.60	2.29	0.27	92.59	4.42	
1258 1259 1260 1261 1262 1263 1264 1265 1266	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28	0.71	38.06 0.07 0.08 0.20 0.02	1.82 0.60	2.290.11	0.27	92.59 0.49	4.42 1.46	98.96
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1	0.71	38.06 0.07 0.08 0.20 0.02 0.12	1.82 0.60	2.290.110.11	0.27	92.59 0.49 0.29	4.42 1.46	98.96 99.57
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06	1.82 0.60	0.11 0.11 0.06	0.27	0.49 0.29 0.16	4.42 1.46	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26	0.71	38.06 0.07 0.08 0.20 0.02 0.12	1.82 0.60 0.13	2.290.110.11	0.27	92.59 0.49 0.29	4.42 1.46	98.96 99.57
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.32	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp.	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.32	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy)	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa Less than 2 samples in group	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa Less than 2 samples in group	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa Less than 2 samples in group	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13	0.11 0.11 0.06	0.27 0.20 0.06	0.49 0.29 0.16	4.421.460.320.07	98.96 99.57 99.72
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa Less than 2 samples in group Group ab Average similarity: 31.57	0.05 0.05 0.03	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13 0.03 0.02	0.11 0.11 0.06 0.06	0.27 0.20 0.06 0.06	0.49 0.29 0.16 0.15	4.421.460.320.070.06	98.96 99.57 99.72 99.87
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa Less than 2 samples in group Group ab Average similarity: 31.57 Species	0.05 0.05 0.03 0.02	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13 0.03 0.02	0.11 0.11 0.06	0.27 0.20 0.06 0.06	0.49 0.29 0.16 0.15	4.42 1.46 0.32 0.07 0.06	98.96 99.57 99.72 99.87
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa Less than 2 samples in group Group ab Average similarity: 31.57	0.05 0.05 0.03 0.02	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01 0.02	1.82 0.60 0.13 0.03 0.02	0.11 0.11 0.06 0.06	0.27 0.20 0.06 0.06	0.49 0.29 0.16 0.15	4.42 1.46 0.32 0.07 0.06	98.96 99.57 99.72 99.87
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa Less than 2 samples in group Group ab Average similarity: 31.57 Species	0.05 0.05 0.03 0.02	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13 0.03 0.02	0.11 0.11 0.06 0.06	0.27 0.20 0.06 0.06	0.49 0.29 0.16 0.15	4.42 1.46 0.32 0.07 0.06	98.96 99.57 99.72 99.87
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285	Ophiactis balli Cerianthidae sp. 1 97.01 Munida sarsi 98.47 Serpulidae sp. 1 Actinauge richardi 99.28 Halcampoididae sp. 1 Zoanthidea sp. 1 Unknown sp. 26 Echinus spp. 99.94 Hydrozoa (bushy) 100.00 Group aa Less than 2 samples in group Group ab Average similarity: 31.57 Species	0.05 0.05 0.03 0.02	38.06 0.07 0.08 0.20 0.02 0.12 0.06 0.06 0.01	1.82 0.60 0.13 0.03 0.02	0.11 0.11 0.06 0.06	0.27 0.20 0.06 0.06	0.49 0.29 0.16 0.15	4.42 1.46 0.32 0.07 0.06	98.96 99.57 99.72 99.87

1290	Species	Av.Abur		Av.Sim		Contrib%		Cum.%	
1291	Unknown sp. 26	1.03	36.24	<i>(</i> = 0	2.41	0.02	76.36	1401	76.36
1292 1293	Cerianthidae sp. 1 90.67		0.26	6.79		0.93		14.31	
1294	Ophiactis balli	0.32	2.32		0.36		4.88		95.55
1295	Lophelia pertusa (dead structure)		0.74		0.20		1.57		97.11
1296	Halcampoididae sp. 1		0.58		0.23		1.21		98.33
1297	Amphiuridae sp. 1		0.05	0.26		0.14		0.55	
1298	98.88								
1299	Ophiuroidea sp. 1	0.06	0.19		0.13		0.41		99.29
1300	Munida sarsi		0.03	0.12		0.11		0.26	
1301 1302	99.55 Lophelia pertusa	0.04	0.07		0.09		0.15		99.69
1303	Terebellidae sp. 1	0.04	0.04		0.03		0.13		99.78
1304	Psolus squamatus	0.02	0.03		0.08		0.06		99.84
1305	Echinus spp.			0.02		0.07		0.05	
1306	99.89							*	
1307	Sagartiidae sp. 3	0.01			0.03		0.02		99.91
1308	Brachiopoda sp. 1		0.01	0.01		0.03	*	0.02	
1309	99.92	0.01	0.01		0.02		0.01		00.04
1310 1311	Bathynectes sp. Ascidiacea sp. 2	0.01 0.01	0.01 0.01		0.03 0.03		0.01 0.01		99.94 99.95
1311	Bolocera tuediae	0.01	0.01		0.03		0.01		99.95
1313	Crinoidea sp. 1	0.00	0.01		0.03		0.01		99.97
1314	Galatheidae sp. 1	0.01	0.01		0.03		0.01		99.98
1315	Pandalus borealis		0.02	0.00		0.03		0.01	
1316	99.99								
1317	Actiniaria sp. 9	0.01	0.00		0.03		0.01		100.00
1318									
1319	Cuoun ad			-01					
1320 1321	Group ad Average similarity: 59.02								
1322	Average similarity. 37.02								
1323	~ .		d	Av.Sim	Cim/CT		,	~ .,	
	Species	Av.Abur	u	$\Delta v.Siiii$	SIIII/SL	Contrib%	,	Cum.%	
1324	Species Lophelia pertusa (dead structure)	Av.Abur 0.41		Av.Siiii	3.76	Contrib%	98.89	Cum.% 98.89	
1324 1325			58.36	0.66		0.26		98.89	100.00
1324 1325 1326	Lophelia pertusa (dead structure)		58.36					98.89	100.00
1324 1325 1326 1327	Lophelia pertusa (dead structure) Munida sarsi		58.36					98.89	100.00
1324 1325 1326 1327 1328	Lophelia pertusa (dead structure) Munida sarsi Group ae		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329	Lophelia pertusa (dead structure) Munida sarsi Group ae Less than 2 samples in group		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330	Lophelia pertusa (dead structure) Munida sarsi Group ae Less than 2 samples in group		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331	Lophelia pertusa (dead structure) Munida sarsi Group ae Less than 2 samples in group		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330	Lophelia pertusa (dead structure) Munida sarsi Group ae Less than 2 samples in group		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334	Lophelia pertusa (dead structure) Munida sarsi Group ae Less than 2 samples in group		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335	Lophelia pertusa (dead structure) Munida sarsi Group ae Less than 2 samples in group Group af		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336	Croup ae Less than 2 samples in group Group af Less than 2 samples in group		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338	Croup ae Less than 2 samples in group Group af Less than 2 samples in group		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag Less than 2 samples in group		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag		58.36					98.89	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343	Croup ae Less than 2 samples in group Group ag Less than 2 samples in group Group ag Less than 2 samples in group Group ag Less than 2 samples in group	0.41	58.36 0.04	0.66	3.76	0.26	98.89	98.89 1.11	100.00
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag Less than 2 samples in group Group ag Less than 2 samples in group	Av.Abur	58.36 0.04	0.66 Av.Sim	3.76	0.26 O Contrib%	98.89	98.89 1.11	
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag Less than 2 samples in group Group ag Less than 2 samples in group Group ah Average similarity: 66.25 Species Lophelia pertusa (dead structure)	0.41 Av.Abur 0.78	58.36 0.04	Av.Sim 21.36	3.76	0.26 0 Contrib% 5.39	98.89	98.89 1.11 Cum.% 32.24	32.24
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag Less than 2 samples in group Group ag Less than 2 samples in group Group ah Average similarity: 66.25 Species Lophelia pertusa (dead structure) Lophelia pertusa	Av.Abur	58.36 0.04	Av.Sim 21.36 14.17	3.76 Sim/SE	0.26 O Contrib%	98.89	98.89 1.11	32.24 53.63
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1340 1341 1342 1343 1344 1345 1346 1347	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag Less than 2 samples in group Group ah Average similarity: 66.25 Species Lophelia pertusa (dead structure) Lophelia pertusa Madrepora oculata	0.41 Av.Abur 0.78	58.36 0.04	Av.Sim 21.36 14.17	3.76	0.26 0 Contrib% 5.39	98.89	98.89 1.11 Cum.% 32.24	32.24
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1340 1341 1342 1343 1344 1345 1346 1347 1348	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag Less than 2 samples in group Group ah Average similarity: 66.25 Species Lophelia pertusa (dead structure) Lophelia pertusa Madrepora oculata 71.14	0.41 Av.Abur 0.78 0.55	58.36 0.04	Av.Sim 21.36 14.17	3.76 Sim/SE	0.26 0 Contrib% 5.39 3.49	98.89	98.89 1.11 Cum.% 32.24 21.39	32.24 53.63
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1340 1341 1342 1343 1344 1345 1346 1347	Croup ae Less than 2 samples in group Group af Less than 2 samples in group Group ag Less than 2 samples in group Group ah Average similarity: 66.25 Species Lophelia pertusa (dead structure) Lophelia pertusa Madrepora oculata	0.41 Av.Abur 0.78	58.36 0.04	Av.Sim 21.36 14.17	3.76 Sim/SE	0.26 0 Contrib% 5.39	98.89	98.89 1.11 Cum.% 32.24	32.24 53.63

1351 1352	Actiniaria sp. 13 85.54	0.28	4.06		0.99		6.12		
1353 1354	Pandalus borealis 89.75	(0.15	2.79	1	1.20		4.21	
1355 1356	Cerianthidae sp. 1 93.54	(0.14	2.51	1	1.09		3.79	
1357 1358	Halcampoididae sp. 1 96.79	0.18	2.16		0.70		3.25		
1359 1360	Cidaris cidaris 99.01	0.10	1.47		0.68		2.22		
1361 1362	Bathynectes sp. 99.50	0.04	0.32		0.33		0.49		
1363 1364	Hydrozoa (bushy) 99.81	(0.05	0.21	(0.21		0.31	
1365 1366	Koehlermetra porrecta 99.87	0.04	0.04		0.07		0.06		
1367 1368	Hydrozoa (flat branched) 99.92	0.02	0.03		0.08		0.05		
1369 1370	Porania pulvillus 99.96	0.01	0.03		0.08		0.04	>	
1371 1372	Gastropoda sp. 1 99.97	0.01	0.01		0.05		0.01		
1373 1374	Munida sarsi 99.98		0.01	0.01	0	0.05		0.01	
1375	Brisingella coronata /	0.03	0.01		0.05		0.01		
1376 1377	99.99 Brisinga endecacnemos								
1378 1379 1380	Henricia sanguinolenta 100.00	0.01	0.01		0.05		0.01		
1381 1382	Group ai								
1383									
	Average similarity: 61.28								
1384 1385	Species	Av.Abund	Av.Sim				Cum.%		
1384 1385 1386	Species Unknown sp. 26	2.70 34.6	4	3.31		56.53	56.53		
1384 1385 1386 1387	Species Unknown sp. 26 Lophelia pertusa (dead structure)	2.70 34.64 0.81 11.7	4 0				56.53 75.61		
1384 1385 1386	Species Unknown sp. 26	2.70 34.64 0.81 11.7	4	3.31			56.53		
1384 1385 1386 1387 1388 1389 1390	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa	2.70 34.6 0.81 11.7 0 0.42 2.49	4 0 0.45 6.09	3.31 8.18		19.09 4.07	56.53 75.61	89.61	
1384 1385 1386 1387 1388 1389 1390 1391	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13	2.70 34.6 0.81 11.70 0.42 2.49 0.46 2.40	4 0 0.45 6.09	3.31 8.18	3.62	19.09	56.53 75.61 9.93	89.61 93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1	2.70 34.6 0.81 11.70 0.42 2.49 0.46 2.40	4 0 0.45 6.09	3.31 8.18		19.09 4.07	56.53 75.61		
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77	2.70 34.6 0.81 11.7 0 0.42 2.49 0.46 2.40	4 0 0.45 6.09 0.28 1.98	3.31 8.18 0.58 0.58	3.62	4.07 3.92	56.53 75.61 9.93	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1	2.70 34.6 0.81 11.70 0.42 2.49 0.46 2.40	4 0 0.45 6.09 0.28 1.98	3.31 8.18	3.62	19.09 4.07	56.53 75.61 9.93		
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77	2.70 34.6 0.81 11.7 0 0.42 2.49 0.46 2.40	4 0 0.45 6.09 0.28 1.98	3.31 8.18 0.58 0.58	3.62	4.07 3.92	56.53 75.61 9.93	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1	2.70 34.6 0.81 11.7 0 0.42 2.49 0.46 2.40	4 0 0.45 6.09 0.28 1.98	3.31 8.18 0.58 0.58	3.62	4.07 3.92	56.53 75.61 9.93	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1	2.70 34.6 0.81 11.7 0 0.42 2.49 0.46 2.40	4 0 0.45 6.09 0.28 1.98	3.31 8.18 0.58 0.58	3.62	4.07 3.92	56.53 75.61 9.93	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1	2.70 34.6 0.81 11.7 0 0.42 2.49 0.46 2.40	4 0 0.45 6.09 0.28 1.98	3.31 8.18 0.58 0.58	3.62	4.07 3.92	56.53 75.61 9.93	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund	4 0 0 0.45 6.09	3.31 8.18 0.58 0.58 0.58	3.62 0.58	4.07 3.92 3.23	56.53 75.61 9.93 3.23	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure)	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5	4 0 0 0.45 6.09 0 0.28 1.98 3 Av.Sim	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35	3.62 0.58	4.07 3.92 3.23	56.53 75.61 9.93 3.23 Cum.% 56.65	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1	2.70 34.6 0.81 11.70 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73	4 0 0 0.45 6.09 0 0.28 1.98 3 Av.Sim	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35 1.27	3.62 0.58 Contrib%	19.09 4.07 3.92 3.23 56.65 16.16	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1 Lophelia pertusa	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73 0.21 6.92	4 0 0 0.45 6.09 0.28 1.98 3 Av.Sim	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35	3.62 0.58 Contrib%	4.07 3.92 3.23	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80 85.63	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1 Lophelia pertusa Cerianthidae sp. 1	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73 0.21 6.92	Av.Sim 9 3.24 6.16	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35 1.27	3.62 0.58 Contrib%	19.09 4.07 3.92 3.23 56.65 16.16	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80 85.63 11.40	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1 Lophelia pertusa Cerianthidae sp. 1 Madrepora oculata	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73 0.21 6.92	4 0 0 0.45 6.09 0.28 1.98 3 Av.Sim	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35 1.27	3.62 0.58 Contrib%	19.09 4.07 3.92 3.23 56.65 16.16	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80 85.63	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1 Lophelia pertusa Cerianthidae sp. 1	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73 0.21 6.92	Av.Sim 9 3.24 6.16	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35 1.27	3.62 0.58 Contrib%	19.09 4.07 3.92 3.23 56.65 16.16	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80 85.63 11.40	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1 Lophelia pertusa Cerianthidae sp. 1 Madrepora oculata	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73 0.21 6.92	Av.Sim 9 3.24 6.16	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35 1.27	3.62 0.58 Contrib%	19.09 4.07 3.92 3.23 56.65 16.16	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80 85.63 11.40	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1 Lophelia pertusa Cerianthidae sp. 1 Madrepora oculata 100.00	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73 0.21 6.92	Av.Sim 9 3.24 6.16	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35 1.27	3.62 0.58 Contrib%	19.09 4.07 3.92 3.23 56.65 16.16	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80 85.63 11.40	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1 Lophelia pertusa Cerianthidae sp. 1 Madrepora oculata 100.00 Group ak	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73 0.21 6.92	Av.Sim 9 3.24 6.16	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35 1.27	3.62 0.58 Contrib%	19.09 4.07 3.92 3.23 56.65 16.16	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80 85.63 11.40	93.53	
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408	Species Unknown sp. 26 Lophelia pertusa (dead structure) Madrepora oculata 85.55 Lophelia pertusa Actiniaria sp. 13 Edwardsiidae sp. 1 96.77 Halcampoididae sp. 1 Group aj Average similarity: 54.00 Species Lophelia pertusa (dead structure) Halcampoididae sp. 1 Lophelia pertusa Cerianthidae sp. 1 Madrepora oculata 100.00	2.70 34.6 0.81 11.7 0.42 2.49 0.46 2.40 0.32 1.98 Av.Abund 0.55 30.5 0.20 8.73 0.21 6.92	Av.Sim 9 3.24 6.16	3.31 8.18 0.58 0.58 0.58 Sim/SD 0 3.35 1.27	3.62 0.58 Contrib%	19.09 4.07 3.92 3.23 56.65 16.16	56.53 75.61 9.93 3.23 Cum.% 56.65 72.80 85.63 11.40	93.53	

1413	Halcampoididae sp. 5	0.30	66.33		4.38		100.00	100.00	
1414 1415	Croup al								
1415	Group al Average similarity: 53.22								
1417	Average similarity. 33.22								
1418	Species	Av.Abur	nd	Av Sim	Sim/SD	Contrib	½	Cum.%	
1419	Amphiuridae sp. 1	11111001	0.62	40.91	Simpob	2.56	•	57 . 53	
1420	57.53		0.02	10.71		2.00		07100	
1421	Cerianthidae sp. 1		0.46	20.85		1.18		41.59	
1422	99.12								
1423	Munida sarsi		0.05	0.34		0.13		0.64	
1424	99.76								
1425	Ophiuroidea sp. 5	0.02	0.05		0.05		0.08		99.84
1426	Terebellidae sp. 1	0.01	0.03		0.03		0.05		99.89
1427	Kophobelemnon stelliferum	0.01	0.02		0.02		0.03		99.93
1428	Brachiopoda sp. 1		0.01	0.01		0.02		0.02	
1429	99.95								
1430	Pachycerianthus multiplicatus	0.01	0.01		0.02		0.02	*	99.97
1431	Edwardsiidae sp. 1		0.01	0.01		0.03		0.02	
1432	99.99								
1433	Caryophyllia sp. 3		0.01	0.00		0.02		0.01	
1434	100.00								
1435									
1436									
1437	Group am								
1438	Average similarity: 47.39								
1439									
1440	Species	Av.Abur			Sim/SD	Contrib ^o	%	Cum.%	
1441	Ophiuroidea sp. 1		1.12	46.57		2.13		98.27	
1442	98.27				X_{A}				
1443	Amphiuridae sp. 1		0.07	0.48		0.14		1.01	
1444	99.28			AI					
1445	Munida sarsi		0.02	0.07		0.05		0.15	
1446	99.43								
1447	Ophiactis balli	0.03	0.07		0.06		0.14		99.56
1448	Cerianthidae sp. 1		0.02	0.05		0.06		0.10	
1449	99.67								
1450	Caryophyllia sp. 1		0.03	0.03		0.04		0.07	
1451	99.74								
1452	Serpulidae sp. 1	0.02	0.03		0.04		0.06		99.80
1453	Porifera encrusting sp. 1	0.01	0.01		0.02		0.02		99.82
1454	Ophiuroidea sp. 5	0.02	0.01		0.03		0.02		99.84
1455	Kophobelemnon stelliferum		0.01	0.01		0.03		0.02	
1456	99.86								
1457	Actinauge richardi		0.01	0.01		0.02		0.02	
1458	99.88								
1459	Caryophyllia smithii		0.01	0.01		0.02		0.02	
1460	99.90								
1461	Leptometra celtica		0.01	0.01		0.02		0.01	
1462	99.91								
1463	Crinoidea sp. 5	0.01	0.01		0.02		0.01		99.92
1464	Polychaeta sp. 7	0.00	0.00		0.01		0.01		99.93
1465	Actiniaria sp. 17	0.01	0.00		0.01		0.01		99.94
1466	Terebellidae sp. 1	0.01	0.00	0.5-	0.01		0.01		99.94
1467	Majidae sp. 1		0.00	0.00		0.01		0.01	
1468	99.95		_						
1469	Ophiothrix fragilis		0.01	0.00		0.01		0.01	
1470	99.96	_							
1471	Sagartiidae sp. 3	0.00	0.00	0.05	0.01	0.01	0.01		99.96
1472	Cerianthidae sp. 3		0.01	0.00		0.01		0.01	
1473	99.97								

1474	Ophiactis abyssicola		0.01	0.00		0.01		0.01	
1475	99.97	0.01	0.00		0.01		0.00		00.00
1476 1477	Polychaeta sp. 5 Astropecten irregularis	0.01 0.00	$0.00 \\ 0.00$		0.01 0.01		$0.00 \\ 0.00$		99.98 99.98
1477	Virgularia mirabilis	0.00	0.00	0.00	0.01	0.01	0.00	0.00	99.90
1478	99.98		0.00	0.00		0.01		0.00	
1480	Paguridae spp.	0.00	0.00		0.01		0.00		99.99
1481	Unknown sp. 15	0.00	0.00		0.01		0.00		99.99
1482	Brachiopoda sp. 1	0.00	0.00	0.00	0.01	0.01	0.00	0.00	77.77
1483	99.99		0.00	0.00		0.01		0.00	
1484	Caryophyllia sp. 2		0.00	0.00		0.01		0.00	
1485	99.99		0.00	0.00		0.01		0.00	
1486	Pandalus borealis		0.00	0.00		0.01		0.00	
1487	99.99								
1488	Polychaeta sp. 1	0.01	0.00		0.01		0.00		99.99
1489	Pentametrocrinus atlanticus	0.00	0.00		0.01		0.00		99.99
1490	Unknown sp. 13	0.00	0.00		0.01		0.00		99.99
1491	Tubularia sp. 2	0.00	0.00		0.01		0.00	- 6	100.00
1492	1								
1493									
1494	Group an								
1495	Average similarity: 49.67							77	
1496									
1497	Species	Av.Abur		Av.Sim		O Contrib ^o		Cum.%	
1498	Crinoidea sp. 5		45.53		2.16		91.66		91.66
1499	Stichopathes cf. gravieri	0.12	4.14		0.44		8.34		100.00
1500	_								
1501	Group ao								
1502	Average similarity: 27.51								
1503	G .				G: /GT			G 0/	
1504 1505	Species Serpulidae sp. 1	Av.Abur 0.39	20.63	Av.Sim	0.99	O Contrib ^o	% 74.99	Cum.%	74.99
רטכן	Serbilloae SD. 1	U. 19	20.0.3						
		0.00		4.52	0.99	0.26	14.33	16.42	17.//
1506	Brachiopoda sp. 1	0.09	0.11	4.52	0.99	0.26	14.55	16.42	74.22
1506 1507	Brachiopoda sp. 1 91.40	0.03	0.11		0.99		14.33		74.55
1506 1507 1508	Brachiopoda sp. 1 91.40 <i>Munida sarsi</i>	ULD 9		4.52 1.57	0.99	0.26 0.23	14.33	16.42 5.69	14.55
1506 1507 1508 1509	Brachiopoda sp. 1 91.40 <i>Munida sarsi</i> 97.10		0.11 0.12	1.57	0.99	0.23	14.33	5.69	(4.5)
1506 1507 1508 1509 1510	Brachiopoda sp. 1 91.40 <i>Munida sarsi</i>	×C	0.11		0.33		14.33		14.22
1506 1507 1508 1509	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii	0.03	0.11 0.12	1.57	0.06	0.23	0.36	5.69	99.73
1506 1507 1508 1509 1510 1511	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38	*6	0.11 0.12 0.05	1.57		0.23		5.69	
1506 1507 1508 1509 1510 1511 1512 1513 1514	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1	*6	0.11 0.12 0.05 0.10	1.57 0.63		0.23 0.14		5.69 2.28	
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi	*6	0.11 0.12 0.05 0.10	1.57 0.63		0.23 0.14		5.69 2.28	
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00	*6	0.11 0.12 0.05 0.10	1.57 0.63		0.23 0.14		5.69 2.28	
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap	*6	0.11 0.12 0.05 0.10	1.57 0.63		0.23 0.14		5.69 2.28	
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00	*6	0.11 0.12 0.05 0.10	1.57 0.63		0.23 0.14		5.69 2.28	
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38	0.03	0.11 0.12 0.05 0.10 0.01	1.57 0.63 0.07	0.06	0.230.140.06	0.36	5.69 2.28 0.27	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species	*6	0.11 0.12 0.05 0.10 0.01	1.57 0.63 0.07	0.06	0.23 0.14 0.06	0.36	5.69 2.28 0.27	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5	0.03	0.11 0.12 0.05 0.10 0.01	1.57 0.63 0.07	0.06	0.230.140.06	0.36	5.69 2.28 0.27	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53	0.03	0.11 0.12 0.05 0.10 0.01	1.57 0.63 0.07 Av.Sim 37.87	0.06	0.23 0.14 0.06 Contrib ^o 2.36	0.36	5.69 2.28 0.27 Cum.% 61.53	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi	0.03	0.11 0.12 0.05 0.10 0.01	1.57 0.63 0.07	0.06	0.23 0.14 0.06	0.36	5.69 2.28 0.27	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89	0.03	0.11 0.12 0.05 0.10 0.01	1.57 0.63 0.07 Av.Sim 37.87 12.22	0.06	0.23 0.14 0.06 0.06 0.06 1.33	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica	0.03	0.11 0.12 0.05 0.10 0.01	1.57 0.63 0.07 Av.Sim 37.87	0.06	0.23 0.14 0.06 Contrib ⁰ 2.36	0.36	5.69 2.28 0.27 Cum.% 61.53	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica 97.74	0.03	0.11 0.12 0.05 0.10 0.01 and 1.13 0.75	1.57 0.63 0.07 Av.Sim 37.87 12.22 0.35	0.06	0.23 0.14 0.06 0.06 0.06 1.33 0.17	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36 0.86	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica 97.74 Amphiuridae sp. 1	0.03	0.11 0.12 0.05 0.10 0.01	1.57 0.63 0.07 Av.Sim 37.87 12.22	0.06	0.23 0.14 0.06 0.06 0.06 1.33	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica 97.74 Amphiuridae sp. 1 98.36	0.03	0.11 0.12 0.05 0.10 0.01 and 1.13 0.75 0.06 0.07	1.57 0.63 0.07 Av.Sim 37.87 12.22 0.35 0.25	0.06	0.23 0.14 0.06 0.06 0.06 1.33 0.17 0.12	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36 0.86 0.62	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica 97.74 Amphiuridae sp. 1 98.36 Hydrozoa (bushy)	0.03	0.11 0.12 0.05 0.10 0.01 and 1.13 0.75	1.57 0.63 0.07 Av.Sim 37.87 12.22 0.35	0.06	0.23 0.14 0.06 0.06 0.06 1.33 0.17	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36 0.86	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica 97.74 Amphiuridae sp. 1 98.36 Hydrozoa (bushy) 98.97	0.03 Av.Abur	0.11 0.12 0.05 0.10 0.01 and 1.13 0.75 0.06 0.07 0.05	1.57 0.63 0.07 Av.Sim 37.87 12.22 0.35 0.25	0.06 Sim/SI	0.23 0.14 0.06 0.06 0.06 1.33 0.17 0.12	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36 0.86 0.62	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica 97.74 Amphiuridae sp. 1 98.36 Hydrozoa (bushy) 98.97 Serpulidae sp. 2	0.03 Av.Abur	0.11 0.12 0.05 0.10 0.01 1.13 0.75 0.06 0.07 0.05 0.14	1.57 0.63 0.07 Av.Sim 37.87 12.22 0.35 0.25	0.06 Sim/SI 0.07	0.23 0.14 0.06 0.06 0.06 1.33 0.17 0.12	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36 0.86 0.62	99.73 99.31
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica 97.74 Amphiuridae sp. 1 98.36 Hydrozoa (bushy) 98.97 Serpulidae sp. 2 Paguridae spp.	0.03 Av.Abur	0.11 0.12 0.05 0.10 0.01 0.01 0.01 0.05 0.06 0.07 0.05 0.14 0.10	1.57 0.63 0.07 Av.Sim 37.87 12.22 0.35 0.25	0.06 Sim/SI	0.23 0.14 0.06 0.06 0.06 1.33 0.17 0.12 0.12	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36 0.86 0.62 0.61	99.73
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531	Brachiopoda sp. 1 91.40 Munida sarsi 97.10 Caryophyllia smithii 99.38 Ophiuroidea sp. 1 Actinauge richardi 100.00 Group ap Average similarity: 41.38 Species Ophiuroidea sp. 5 61.53 Munida sarsi 96.89 Leptometra celtica 97.74 Amphiuridae sp. 1 98.36 Hydrozoa (bushy) 98.97 Serpulidae sp. 2	0.03 Av.Abur	0.11 0.12 0.05 0.10 0.01 1.13 0.75 0.06 0.07 0.05 0.14	1.57 0.63 0.07 Av.Sim 37.87 12.22 0.35 0.25	0.06 Sim/SI 0.07	0.23 0.14 0.06 0.06 0.06 1.33 0.17 0.12	0.36	5.69 2.28 0.27 Cum.% 61.53 35.36 0.86 0.62	99.73 99.31

1535 1536	Echinus spp. 99.87		0.03	0.06		0.07		0.15	
1537	Cerianthidae sp. 1		0.03	0.05		0.07		0.13	
1538	100.00								
1539									
1540									
1541	Group aq								
1542 1543	Average similarity: 33.11								
1544	Species	Av.Abun	ıd	Av.Sim	Sim/SD	Contrib%		Cum.%	
1545	Munida sarsi		0.31	28.05		1.21		84.74	84.74
1546	Leptometra celtica		0.16	3.18		0.30		9.60	
1547	94.33								
1548	Crinoidea sp. 5	0.07	0.89		0.18		2.70		97.03
1549	Cerianthidae sp. 1		0.03	0.42		0.14		1.25	
1550	98.29								
1551	Caryophyllia smithii		0.03	0.20		0.08		0.61	
1552	98.90							*	
1553	Ophiuroidea sp. 1	0.03	0.13		0.08		0.38		99.28
1554	Ophiactis balli	0.03	0.11		0.07		0.33		99.61
1555	Caryophyllia sp. 2		0.02	0.05		0.04		0.15	
1556	99.76								
1557	Echinus spp.		0.01	0.03		0.03		0.08	
1558	99.84								
1559	Porifera encrusting sp. 31	0.01	0.02		0.03	.60	0.07		99.90
1560	Porifera encrusting sp. 3	0.01	0.01	0.01	0.03	2.02	0.04	0.02	99.94
1561	Actinauge richardi		0.01	0.01		0.03		0.03	
1562	99.98	0.01	0.01		0.02		0.02		100.00
1563	Ophiuroidea sp. 5	0.01	0.01		0.03		0.02		100.00
1564									

Appendix A2: Biotope descriptions for non-listed habitats defined from the SW

Approaches

cf. Bathylasma sp. and hydroid assemblage on bedrock

The biotope Bat.Hyd, identified as cluster r, was characterised by barnacles (cf. *Bathylasma* sp.) and Hydrozoa (bushy) associated with steep bedrock outcrop towards the base of Explorer canyon at a depth of 902-912 m and a temperature of 8.99-9°C. Bat.Hyd assemblage was only observed for a short period during a single camera-transect.

Bathylasma is a widespread bathyal species in the NE Atlantic (Gage 1986). A number of assemblages have been described from the region; Pfannkuche et al. (2004) describe a *Bathylasma* cf. *hirsutum* assemblage associated with drop stones between 636-650 m water depth on a prominent escarpment feature in the Belgica mound province; however, Gage

(1986) describes a Bathylasma hirsutum assemblage with the brachiopod Dallina septigera
and Macandrevia cranium from rocky, high current areas on the Wyville-Thomson Ridge
and the summit of the Anton Dohrn Seamount in a water depth band ranging from 200-700 m
He also noted the remains of plates of Bathylasma hirsutum covering the substratum of the
floor of a gorge between the Wyville-Thomson Ridge and Ymir ridge and suggested this
species may cover the walls of this gorge. Howell et al. (2010b) describe an assemblage
characterised by large barnacles (noted as possibly Bathylasma hirsutum) and brachiopods
(noted as possibly Dallina septigera) on the summit of the Anton Dohrn Seamount at approx.
600 m water depth.

Amphiuridae ophiuroids and cerianthid anemones on bioturbated mud/sand

The biotope Amp.Cer, identified as cluster al, was characterised by occasional cerianthid anemones and amphiuridae sp.1 ophiuroids on bioturbated mud and sand and was observed throughout the canyons over a wide depth range of 184-943 m and temperature of 9.59-11.69°C associated with the canyon head, flanks and was also observed on from one transect on the continental shelf. Note, this assemblage has not been previously described from the deep sea.

Annelids, hydroids and cerianthids on bedrock ledges

The biotope Unk.Cer, identified as cluster ac, was characterised by cerianthid anemones, annelid worms and hydroid species associated with bedrock ledges. Ophiuroid species and the squat lobster *Munida sarsi* were also commonly observed. The biotope was observed from both Dangaard and Explorer canyons from the canyon head and incised channels (canyon floor) associated with bedrock ledges over a depth range of 238-1070 m and a

1605	temperature of 8.36-11.51°C. This kind of biotope has not been previously described in the
1606	deep sea.
1607	
1608	Cerianthids on sediment draped bedrock
1609	The biotope Cer, identified as cluster x, was characterised by cerianthid anemones associated
1610	with areas of bedrock covered with a sand veneer - thus preventing the attachment of fauna
1611	and acting as a soft sediment habitat. The assemblage was observed on wide range of
1612	geomorphological features including canyon head, flank, amphitheatre rims and incised
1613	channels. It was observed from the three canyons over a water depth and temperature range
1614	of 360-1064 m and 8.98-11.3°C, respectively. This assemblage has not been previously
1615	described from the deep sea. This assemblage has a similar distribution to the 'Cerianthid
1616	anemones on bioturbated mud/sand' biotope.
1617	
1618	Burrowing (Amphiura sp.) and surface dwelling ophiuroids on mud/sand
1619	The biotope Oph, identified as cluster am, was characterised by surface dwelling ophiuroids
1620	associated with soft sediment (mud-sand). Burrowing ophiuroids (Amphiura sp.) were also
1621	identified as being characteristic of this biotope from video observations. The assemblage
1622	
	was found on the flanks, incised channels and amphitheatre rims; and occurred in the three
1623	was found on the flanks, incised channels and amphitheatre rims; and occurred in the three canyons at water depths of 184-1094 m and temperatures of 7.67-11.69°C. This assemblage
1623	canyons at water depths of 184-1094 m and temperatures of 7.67-11.69°C. This assemblage
1623 1624	canyons at water depths of 184-1094 m and temperatures of 7.67-11.69°C. This assemblage
1623 1624 1625	canyons at water depths of 184-1094 m and temperatures of 7.67-11.69°C. This assemblage has not been previously described from the deep sea.
1623 1624 1625 1626	canyons at water depths of 184-1094 m and temperatures of 7.67-11.69°C. This assemblage has not been previously described from the deep sea. Serpulids and brachiopods on mixed substratum

1630	surrounding soft sediment. The assemblage was observed only on the smooth flank of
1631	Dangaard canyon between 691-764 m and over a temperature range of 10.1-10.5°C.
1632	
1633	The Ser.Bra assemblage is similar to that described by Howell et al. (2010b) as 'brachiopods
1634	on mixed substrate' which was widely observed between 266-803 m water depth on a number
1635	of features in UK waters. Narayanaswamy et al. (2006) also reported a similar assemblage
1636	from Anton Dohrn Seamount, where abundant brachiopods were associated with coarse
1637	sediment on the seamount summit.
1638	
1639	Munida sarsi and Leptometra celtica on mixed substratum
1640	The biotope Mun.Lep, identified as cluster aq, was associated with mixed and biogenic gravel
1641	(shell hash) substratum on the canyon head and interfluves features from all three canyons. It
1642	occurred over a wide depth and temperature range (183-792 m; 9.79-11.79°C) and was
1643	characterised by the crinoid Leptometra celtica, the squat lobster Munida sarsi. This
1644	assemblage occurred on the interfluves between the mini-mounds features and was also
1645	associated with tributary gullies.
1646	
1647	Leptometra celtica were more abundant at the canyon heads and on the edge of the flanks,
1648	which suggests they are positioning themselves within optimal conditions for feeding. The
1649	occurrence of Leptometra celtica has been reported by a number of authors; Lavaleye et al.
1650	(2002) reported abundant crinoids at 190 m from the NW Iberian Margin and 200 m from the
1651	Goban Spur, and Flach et al. (1998) found the crinoid to be the dominant fauna at a station at
1652	208 m water depth from the continental Shelf (Goban Spur).
1653	
1654	
1655	

Assemblage code	Cluster	Assemblage name	Depth (m)	Temperature (°C)	Topographical Feature	Substratum	Canyon
Bat.Hyd	r	cf. Bathylasma sp. and hydroid	902- 912 m	8.99-9°C	Incised channel	Bedrock	Explorer
Kop.Cer	у	Kophobelemnon stelliferum and	463- 1059	8.87- 10.85°C	Flank and incised channel	Mud and muddy sand	Explorer, Irish
Cer	х	Cerianthids on sediment draped	360- 1064	8.98-11.3°C	Canyon head, amphitheatre rims,	Bedrock with sand veneer	Explorer, Irish
Unk.Cer	ac	Annelids, hydroids and cerianthids on	238- 1070	8.36- 11.51°C	Canyon head and incised	Bedrock and bedrock with	Explorer and
Lop.Mad	ah	Lophelia pertusa reef	795- 940 m	9.41-9.92°C	Flute feature	Coral framework	Explorer
Lop.Hal	aj	Predominantly dead low-lying	697-927 m	8.97-9.77°C	Flank and flute feature (end of	Coral rubble, bedrock and	Explorer and
Amp.Cer	al	Amphiuridae ophiuroids and	184- 943 m	9.59- 11.69°C	Flank, canyon head and	Mud and sand	Explorer, Irish
Oph	am	Burrowing (Amphiura sp.) and	184- 1094	7.67- 11.69°C	Flank, tributary gullies,	Mud and sand	Explorer, Irish
Ser.Bra	ao	Serpulids and brachiopods on	691- 764 m	10.1-10.5°C	Flank	Mixed	Dangaard
Oph.Mun	ap	Ophiuroids and Munida sarsi	303- 1017	7.98-11.5°C	Incised channels and	Biogenic gravel (coral	Explorer and
Mun.Lep	aq	Munida sarsi and Leptometra celtica	183- 792 m	9.79- 11.79°C	Interfluves and canyon head	Mixed, biogenic	Explorer, Irish
Lop.Cri	*	L. pertusa and crinoids on	253- 1022	7.93- 11.42°C	Incised channels, tributary gullies,	Bedrock	Explorer, Irish

16561657

Table 1: Summary of mapped biotope data, abiotic data extracted from video metadata, geomorphology and substratum extracted from ArcGIS 9.3 layers.* refers to the biotope described from the video footage.

16591660

1658

Т	C	Ct	D. 1	Т	4 - С	A	A	т	C 1'
Transe	Canyon	Start	End	Transe	# of	Avera	Average	Topographi	Generalise
ct		position	position	ct	images	ge	temperat	cal unit	d seabed
				length	analys	depth	ure (°C)		substrate
				(m)	ed	(m)	(SD)		
						(SD)			
C 1 1	Irish	48.4962	48.4838	1382.6	62	847.3	9.47	Flank	Mud-rich
		92	6			(77.4)	(0.23)		sediments
		_	-			, ,			
		9.87283	9.87206						
		8	1						
C 1 2	Irish	48.5600	48.5629	407.6	13	294.2	11.36	Flank	Sandy
		68	48			(4.9)	(0.002)		gravel
		_	_			()	(0.002)		Similar
		9.83423	9.83081						
		6	7.03001						
C 1 2	Tuinta		19.5602	200	12	270.5	11.20	Elaula	Sand-rich
C_1_3	Irish	48.5694	48.5693	300	12	379.5	11.29	Flank	
		07	43			(26.35	(0.008)		sediments
		-	-)			with
		9.84193	9.84604						bedrock
		5	6						cropping
									out where

									slope angle greatest (amphithea tre rim)
C_1_4	Irish	48.5606 29 - 9.85788 1	48.5628 05 - 9.86140 9	341.7	19	520.2 (103.6	10.54 (0.07)	Flank	Bedrock cropping out where slope steepest. Gravel-rich sediments immediatel y down slope of the outcrop becoming mud dominated as water depths increase
C_2_1	Dangea rd	48.4200 6 - 9.57345	48.4161 2 - 9.57048	488.8	25	298.3 (26.4)	11.46 (0.12)	Flank	Sand dominated sediments with increasing proportion of gravel in vicinity of slump headwall
C_2_2	Dangea rd	48.4036 6 - 9.54235	48.4019 2 - 9.54559	308.1	18	652.7 (0.69)	10.34 (0.008)	Canyon head	Sand
C_2_3	Dangea rd	48.3925 7 9.57007	48.3893 6 -9.5751	513.6	31	776.1 (13.3)	9.85 (0.09)	Canyon head	Sand-rich sediments and gravelly sand. Bedrock cropping out where slope steepest
C_2_4	Dangea rd	48.3835 8 - 9.67091	48.3809 7 - 9.66819	344.5	16	402.1 (3.63)	11.02 (0.03)	Flank	Gravelly sand
C_2_5	Dangea rd	48.3724 5 - 9.68566	48.3680 2 - 9.68436	498.7	20	591.06 (26.42)	10.46 (0.2)	Flank	Mud-rich sediments
C_2_6	Dangea rd	9.68366 48.3587 98 - 9.72382 5	9.68436 48.3545 8 - 9.72160 1	476.6	7	803.1 (21.12)	9.28 (1.89)	Flank	Mud-rich sediments
C_2_7	Explore r	48.3782 - 9.77602	48.3794	468.7	17	756.3 (22.2)	9.79 (0.09)	Flank	Sand

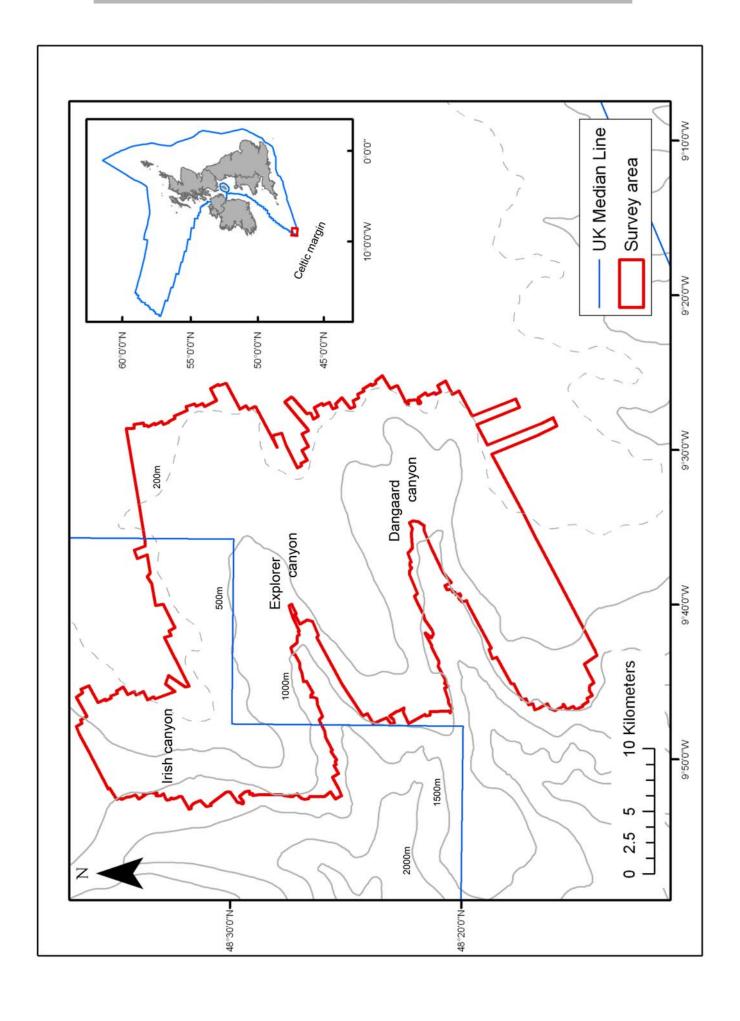
			9.78212						
C_2_8	Explore	48.4401	48.4446	496.7	18	917.6	9.26	Flank	Sandy
	r	2	-			(6.6)	(0.13)		gravel
		- 9.68199	9.68242						becoming sand
		9.08199							dominated
									as water
									depths
									increase.
									Bedrock
									cropping
									out where slope
									steepest
C_2_9	Explore	48.4716	48.4733	288.4	9	644.8	10.36	Flank	Sand
	r	52	03			(129.2	(0.43)		
		-	-			9)		A .	
		9.62183 2	9.62519 2						
C_2_1	Explore	48.4829	48.4839	317.5	14	463.1	10.78	Flank	Sand
0	r	03	72			(149.8	(0.45)		
		9.57426	9.57834)			
		9	4						
C_2_1	Explore	48.4989	48.4942	633.5	27	895.8	9.05	Flank	Bedrock
1	r	26	22			(4.6)	(0.03)		cropping
		0.61212	9.60822						out where
		9.61313	9.00822 7						slope steepest.
		2	,						Sand and
									gravelly
									sand
									observed
									on the gully
									bottom
C_2_1 2	Explore	48.5134	48.5159	472.5	24	274.7	11.26	Canyon	Sand-rich
2	r	42	62			(21.2)	(0.02)	head	sediments
			0.40020						with
		9.50443 4	9.49920						increasing
		4	2						proportion of gravel
									upslope of
									gully wall
									where
									bedrock
									observed
									cropping out where
									slope
									steepest
C_2_1 3	Explore	48.5229	48.5193	405.3	19	463.4	10.95	Canyon	Sand-rich
3	r	86	47			(76.5)	(0.18)	head	sediments.
		9.59088	9.59129						Bedrock cropping
		5	5						out where
									slope
				_					steepest
C_2_1	Explore	48.4777	48.4720	669.1	39	839.2	9.83	Flank	Majority of
4	r	97 -	27			(27.69	(0.04)		substrate obscured
	<u> </u>			<u> </u>	<u> </u>	<u> </u>			ooscured

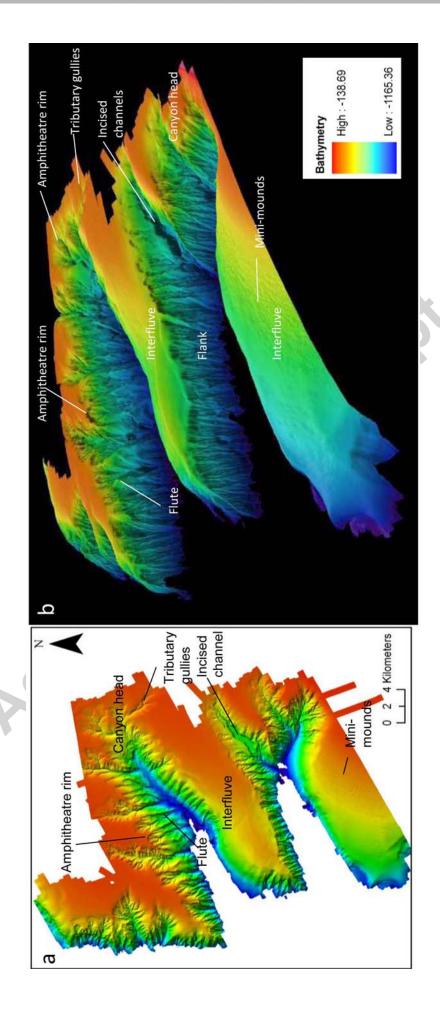
		9.65665	9.65408						1
		9.03003	9.03408						by encrusting
		O							fauna.
									Bedrock
									occasionall
									y observed
C_2_1	Explore	48.4680	48.4672	512.9	15	533.7	10.61	Flank	Sand-rich
5	r	16	49			(46.5)	(0.16)		sediments
		-	-						becoming
		9.73698	9.73012						mud-rich
		1	9						as water
									depths
G 2 1		40.42.40	40.4222	160.6		025.0	0.4 (0.01)	F1 1	increase
C_2_1	Explore	48.4249	48.4222	462.6	14	827.9	9.4 (0.21)	Flank	Mud-rich
6	r	31	78			(42.57			sediments
		- 9.87074	9.87560)			
		9.87074 1	7					A	
C_2_1	Explore	48.4523	48.4490	373.1	15	463.2	10.81	Flank	Mud-rich
7	r	97	09	373.1	15	(203.4	(0.82)	I AULIA	sediments
]	-	-	-)	()		
		9.80016	9.80020			,	·		
			5						
C_2_1	Explore	48.4641	48.4600	491.7	18	751.3	9.75	Flank	Mud-rich
8	r	9	47			(32.02	(0.002)		sediments.
		-	-)			Bedrock
		9.71451	9.71696						cropping
		5	3						out in
									slump
C 2 1	Evelore	48.4961	48.4914	519.6	16	684.2	10.16	Flank	headwall Mud-rich
C_2_1 9	Explore r	12	18	319.0	10	(16.7)	(0.01)	FIAIIK	sediments
	1	-	-			(10.7)	(0.01)		scannents
		9.64301	9.64367						
		7	1						
C_2_2	Explore	48.4633	48.4667	439.2	12	884.8	9.56	Canyon	Bedrock
0	r	47	64			(38.4)	(0.04)	floor	cropping
		-	- 1						out at sea
		9.64709	9.65027						bed.
~	_	7	2						~ .
	Dangea	48.4254		286.6	14	257.9	11.52	Interfluve	Sand
1	rd	03	73			(54.3)	(0.14)		
		9.60910	9.61222						
		3	7						
C_2_2	Dangea	48.3976	48.3952	297.9	16	334.8	11.17	Interfluve	Gravelly
$\begin{bmatrix} C_{-2} \\ 2 \end{bmatrix}$	rd	24	15	271.7		(4.27)	(0.03)	1110111410	sand
1 -	•		-			,	(3.00)		201104
1		9.64959	9.64783						
		4	6	<u> </u>					
C_2_2	Dangea	48.3466	48.3417	599.7	26	769.8	9.71	Flank	Mud-rich
3	rd	38	37			(16.9)	(0.07)		sediments.
1			-						Bedrock
		9.77915	9.78388						cropping
		6	2						out and
									increasing
									gravel content
1									where
1									slope
1									steepest
<u> </u>	<u> </u>		I .	1	I	İ	I .	I	висерем

C_2_2	Dangea	48.3765	48.3736	321.9	11	746.2	9.61	Flank	Mud-rich
4	rd	16	96			(33.1)	(0.13)		sediments
		9.63943 4	9.64058 4						
C_2_2	Dangea	48.3773	48.3746	353.7	10	750.4	9.8 (0.03)	Flank	Mud-rich
5	rd	62	78			(16.9)			sediments
		9.60101	9.59805 4						
C_2_2	Dangea	48.4386	48.4342	471.4	24	318.8	11.5	Canyon	Sand-rich
6	rd	55 -	66 -			(8.1)	(0.07)	head	sediments with
		9.48383	9.48568						bedrock
		1	7						cropping out where
									slope angle
									greatest in
									slump headwall
C_2_2	Explore	48.5756	48.5739	313.1	15	187.8	11.68	Continental	Sand
7	r	01	85			(3.1)	(0.001)	shelf	
		9.48318	9.48671						
~		6	1				(5)	~	a !!
C_2_2 8	Explore r	48.5545 15	48.5528 49	551.1	27	260.7 (17.9)	11.4 (0.002)	Canyon head	Gravelly sand.Bedro
	1	-	-			(17,3)	(0.002)	noud	ck
		9.53741	9.53035 2						cropping
		3	2						out where slope
									steepest in
C 3 1	Dangea	48.3082	48.3102	492.9	20	208.9	11.48	Interfluve	gully wall Gravelly
C_3_1	rd	71	45	102.0	20	(2.3)	(1.91)	memuve	sand with
		0.55212	0.55457						smaller
		9.55212 5	9.55457 7						sections of sandy
									gravel
C_3_2 b	Dangea rd	48.3073 34	48.3112 51	485.2	27	306.7 (0.75)	11.49 (0.001)	Interfluve	Gravelly sand.
	TG.	37	-			(0.73)	(0.001)		Sand. Sandy
		9.60480	9.60196						gravel over
		9	7						mini- mounds
C_3_3	Dangea	48.4012	48.3977	474.3	18	240.2	11.5	Canyon	Gravelly
	rd	67	04			(26.1)	(0.02)	head	sand with bedrock
		9.45504	9.45152						cropping
		1							out where
									slope angle greatest in
									slump
C 3 1	Dangee	48.3605	48.3612	236.9	9	240	11.37	Canyon	headwall
C_3_4	Dangea rd	53	48.3612	230.9	9	(1.14)	(0.01)	head	Sandy gravel and
		-	-						gravelly
		9.48004 1	9.48306 2						sand with bedrock
		1	<u> </u>						cropping
									out where

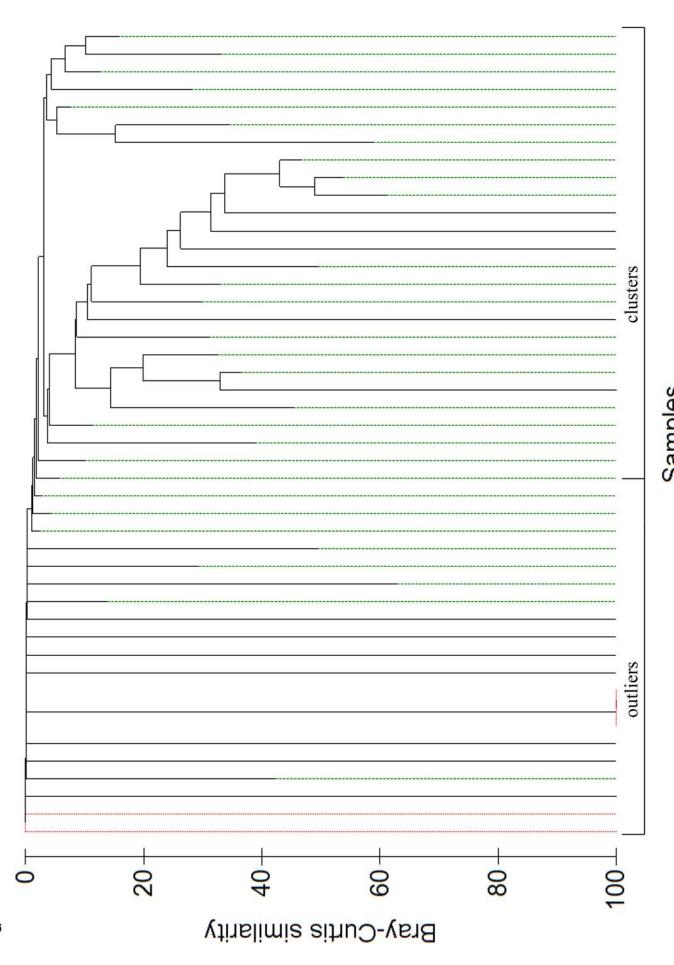
C_3_5									slope angle
C 3 5									greatest
C 3 5									(amphithea
C = 3 = 5	<u> </u>								tre rim)
C_3_3	Dangea	48.3620	48.3597	251.4	13	389.8	11.01	Canyon	Sand with
	rd	28	28			(13.9)	(0.29)	head	bedrock
		- 0.407.40	- 40050						cropping
		9.49748	9.49850						out where
		1	5						slope angle
0.2.6	D	40.2612	49.2620	1707	22	076.2	7.017	C	greatest.
C_3_6	Dangea	48.3612	48.3620	178.7	23	976.3 (10.6)	7.917 (0.14)	Canyon floor	Bedrock
	rd	2	2			(10.0)	(0.14)	11001	cropping out at sea
		9.55597	9.55843						bed with
		1	4						veneer of
		1							sand- and
									gravel-rich
									sediments
									in places
C_3_7	Dangea	48.2918	48.2968	564.1	27	352.8	11.19	Interfluve	Gravelly
	rd	5	5			(0.82)	(0.02)		sand.
		-	-			, ,	. ,		Sandy
		9.64142	9.64276						gravel over
									mini-
									mounds
C_3_8	Dangea	48.3317	48.3352	498.4	23	536.1	10.91	Flank	Sand
	rd	3	3			(55.6)	(0.12)		
		-	-9.6355						
G 2 0		9.63122	40.21.62	7061					
	Dangea						10.16	T21 1	α 1
C_3_9		48.3119	48.3163	506.1	17	722.6	10.16	Flank	Sand
C_3_9	rd	3	-	506.1	17	722.6 (38.1)	10.16 (0.11)	Flank	Sand
C_3_9	rd	3 -	48.3163 - 9.70437	506.1	17			Flank	Sand
		3 - 9.70631	9.70437			(38.1)	(0.11)		
C_3_1	Dangea	3 - 9.70631 48.3014	9.70437 48.3058	511.7	26	799.4	(0.11)	Flank Flank	Sand Sand
		3 - 9.70631	9.70437			(38.1)	(0.11)		
C_3_1	Dangea	9.70631 48.3014 7	9.70437 48.3058 3			799.4	(0.11)		
C_3_1 0	Dangea rd	3 - 9.70631 48.3014 7 - 9.73274	9.70437 48.3058 3 - 9.73504	511.7	26	799.4 (52.4)	(0.11) 10.11 (0.15)	Flank	Sand
C_3_1 0	Dangea rd Dangea	3 - 9.70631 48.3014 7 - 9.73274 48.2805	9.70437 48.3058 3			799.4 (52.4)	(0.11) 10.11 (0.15) 10.27		Sand Gravelly
C_3_1 0	Dangea rd	3 - 9.70631 48.3014 7 - 9.73274	9.70437 48.3058 3 9.73504 48.2812	511.7	26	799.4 (52.4) 724 (22.12	(0.11) 10.11 (0.15)	Flank	Sand
C_3_1 0	Dangea rd Dangea	9.70631 48.3014 7 - 9.73274 48.2805 4	9.70437 48.3058 3 - 9.73504	511.7	26	799.4 (52.4)	(0.11) 10.11 (0.15) 10.27	Flank	Sand Gravelly
C_3_1 0	Dangea rd Dangea rd	3 - 9.70631 48.3014 7 - 9.73274 48.2805 4 - 9.74772	9.70437 48.3058 3 9.73504 48.2812 9.75445	511.7	26	799.4 (52.4) 724 (22.12	(0.11) 10.11 (0.15) 10.27 (0.17)	Flank Flank	Sand Gravelly sand
C_3_1 0	Dangea rd Dangea	9.70631 48.3014 7 - 9.73274 48.2805 4	9.70437 48.3058 3 9.73504 48.2812	511.7	26	799.4 (52.4) 724 (22.12	(0.11) 10.11 (0.15) 10.27 (0.17) 9.71	Flank	Sand Gravelly sand Bedrock
C_3_1 0 C_3_1 1	Dangea rd Dangea rd Dangea	3 - 9.70631 48.3014 7 - 9.73274 48.2805 4 - 9.74772 48.3471	9.70437 48.3058 3 9.73504 48.2812 9.75445 48.3520	511.7	26	799.4 (52.4) 724 (22.12)	(0.11) 10.11 (0.15) 10.27 (0.17)	Flank Flank Canyon	Sand Gravelly sand
C_3_1 0 C_3_1 1	Dangea rd Dangea rd Dangea	3 - 9.70631 48.3014 7 - 9.73274 48.2805 4 - 9.74772 48.3471	9.70437 48.3058 3 9.73504 48.2812 9.75445 48.3520	511.7	26	799.4 (52.4) 724 (22.12)	(0.11) 10.11 (0.15) 10.27 (0.17) 9.71	Flank Flank Canyon	Sand Gravelly sand Bedrock cropping
C_3_1 0 C_3_1 1	Dangea rd Dangea rd Dangea	3 -9.70631 48.3014 7 -9.73274 48.2805 4 -9.74772 48.3471 94 -	9.70437 48.3058 3 9.73504 48.2812 9.75445 48.3520 59	511.7	26	799.4 (52.4) 724 (22.12)	(0.11) 10.11 (0.15) 10.27 (0.17) 9.71	Flank Flank Canyon	Sand Gravelly sand Bedrock cropping out at sea
C_3_1 0 C_3_1 1	Dangea rd Dangea rd Dangea	3 - 9.70631 48.3014 7 - 9.73274 48.2805 4 - 9.74772 48.3471 94 - 9.53403	9.70437 48.3058 3 9.73504 48.2812 9.75445 48.3520 59 - 9.53400	511.7	26	799.4 (52.4) 724 (22.12)	(0.11) 10.11 (0.15) 10.27 (0.17) 9.71	Flank Flank Canyon	Sand Gravelly sand Bedrock cropping out at sea bed with
C_3_1 0 C_3_1 1	Dangea rd Dangea rd Dangea	3 - 9.70631 48.3014 7 - 9.73274 48.2805 4 - 9.74772 48.3471 94 - 9.53403	9.70437 48.3058 3 9.73504 48.2812 9.75445 48.3520 59 - 9.53400	511.7	26	799.4 (52.4) 724 (22.12)	(0.11) 10.11 (0.15) 10.27 (0.17) 9.71	Flank Flank Canyon	Sand Gravelly sand Bedrock cropping out at sea bed with veneer of
C_3_9	rd		48.3163	506.1	17			Flank	Sand

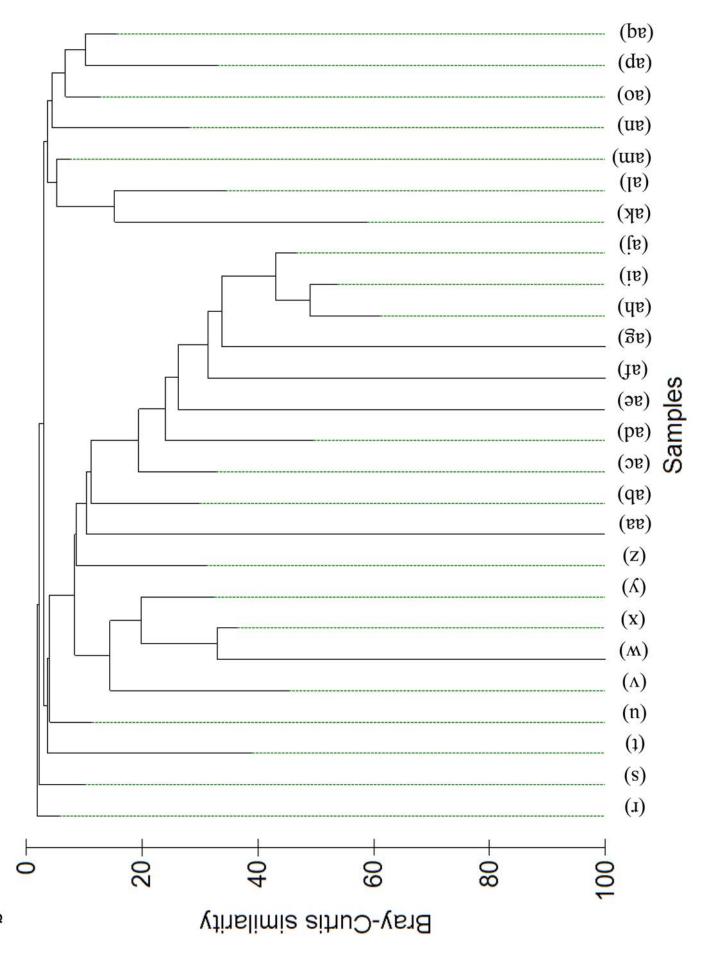
Table A1: Transects undertaken in the SW Approaches canyons: transect code, site (canyon), start and end of transect, length, number of statistical images analysed per transect, average depth and temperature (standard deviation) per transect, topographical feature sampled by transect and generalised seabed substrate within transects.


Cluste r	No. image s	Useful mappin g unit	SIMPE R similarit	Temp range (°C)	Averag e Temp (SD)	Dept h range	Averag e Depth (SD)	Characterisin g species
a	2	N	0	9.6- 11.3	10.487 (1.21)	316- 840	578 (370.5)	
b	1	N		11.54	11.546	256	256	
c	2	N	42.26	10.4- 11.7	11.118 (0.90)	210- 695	452.5 (342.9)	Sabellidae sp. 1
d	1	N		9.252	9.252	850	850	
e	1	N		11.49	11.496	309	309	
f	3	N	100	9.0- 10.4	9.951 (0.80)	508- 866	694.3 (151.3)	Benthogone sp.
g	1	N		11.49	11.497	311	311	
h	1	N		11.54	11.542	256	256	
i	1	N		10.00	10.007	788	788	
j	1	N		9.91	9.91	762	762	
k	3	N	25.93	9.7- 10.4	9.970 (0.38)	602- 755	695.6 (82.1)	Protoptilum sp., Pseudarchaster
l	4	N	68.45	11.22	11.388 (0.23)	212- 401	342.5 (88.6)	Edwardsiidae sp. 1
m	3	N	44.15	8.8- 9.1	9.02 (0.12)	885- 1006	947.3 (60.5)	Halcampoididae sp. 3, Unknown
n	2	N	49.42	11.54	11.549	321- 323	322 (1.4)	Ünknown sp. 15
	500	019	9					


6 N 6 N 1 N 7 Y N 2 N 8 N	18.04 10.73 25.07 14.78 38.99 20.08	9.3- 10.2 8.9- 11.1 7.7- 11.6 8.9- 11.6 10.3- 11.4 9.2-9.7	9.732 (0.24) 10.499 (0.83) 10.465 (1.24) 10.062 (1.32) 11.11 (0.47) 9.745 (0.03) 9.379 (0.94)	714- 928 331- 1059 185- 1009 190- 909 238- 800 729- 782 741-	800.6 (51.7) 596.5 (249.7) 543 (305.4) 625.7 (341.4) 407 (222.8) 755.5 (37.4)	Actiniaria sp. 14, Cerianthidae sp. 3 Caryophyllia sp. 2, Porifera encrusting sp. 1, Understand (Set benefit of the Set
1 N Y N N N N N N N N N N N N N N N N N N	10.73 25.07 14.78 38.99 20.08	8.9- 11.1 7.7- 11.6 8.9- 11.6 10.3- 11.4 9.2-9.7	10.499 (0.83) 10.465 (1.24) 10.062 (1.32) 11.11 (0.47) 9.745 (0.03) 9.379	331- 1059 185- 1009 190- 909 238- 800 729- 782	596.5 (249.7) 543 (305.4) 625.7 (341.4) 407 (222.8) 755.5 (37.4)	Cerianthidae sp. 3 Caryophyllia sp. 2, Porifera encrusting sp. 1, II. decrea (flat beneated) cf. Bathylasma sp., Hydrozoa (bushy) Terebellidae sp. 1, Actiniaria sp. 17
Y Y N N N N N N	25.07 14.78 38.99 20.08	7.7- 11.6 8.9- 11.6 10.3- 11.4 9.2-9.7	10.465 (1.24) 10.062 (1.32) 11.11 (0.47) 9.745 (0.03) 9.379	185- 1009 190- 909 238- 800 729- 782	543 (305.4) 625.7 (341.4) 407 (222.8) 755.5 (37.4)	Caryophyllia sp. 2, Porifera encrusting sp. 1, Understand (Flat hamphed) cf. Bathylasma sp., Hydrozoa (bushy) Terebellidae sp. 1, Actiniaria sp. 17
Y Y N N N N N N	25.07 14.78 38.99 20.08	11.6 8.9- 11.6 10.3- 11.4 9.2-9.7	(1.24) 10.062 (1.32) 11.11 (0.47) 9.745 (0.03) 9.379	1009 190- 909 238- 800 729- 782	(305.4) 625.7 (341.4) 407 (222.8) 755.5 (37.4)	Porifera encrusting sp. 1, Undraga (flat branched) cf. <i>Bathylasma</i> sp., Hydrozoa (bushy) Terebellidae sp. 1, Actiniaria sp. 17
N N N N	14.78 38.99 20.08	8.9- 11.6 10.3- 11.4 9.2-9.7 8.1- 10.1	10.062 (1.32) 11.11 (0.47) 9.745 (0.03) 9.379	190- 909 238- 800 729- 782	625.7 (341.4) 407 (222.8) 755.5 (37.4)	cf. Bathylasma sp., Hydrozoa (bushy) Terebellidae sp. 1, Actiniaria sp. 17
N N N N	14.78 38.99 20.08	11.6 10.3- 11.4 9.2-9.7 8.1- 10.1	(1.32) 11.11 (0.47) 9.745 (0.03) 9.379	909 238- 800 729- 782	(341.4) 407 (222.8) 755.5 (37.4)	Hydrozoa (bushy) Terebellidae sp. 1, Actiniaria sp. 17
2 N 4 N 5 N	38.99 20.08	10.3- 11.4 9.2-9.7 8.1- 10.1	11.11 (0.47) 9.745 (0.03) 9.379	238- 800 729- 782	407 (222.8) 755.5 (37.4)	Terebellidae sp. 1, Actiniaria sp. 17
N N N	38.99 20.08	11.4 9.2-9.7 8.1- 10.1	(0.47) 9.745 (0.03) 9.379	800 729- 782	(222.8) 755.5 (37.4)	Actiniaria sp. 17
N N	20.08	9.2-9.7 8.1- 10.1	9.745 (0.03) 9.379	729- 782	755.5 (37.4)	•
N N	20.08	8.1- 10.1	(0.03) 9.379	782	(37.4)	Ampinpoda sp. 1
, N		10.1	9.379			
, N		10.1		7 7 1	852.5	Colus sp. 2
	49.37			1015	(122.6)	Corns sp. 2
		10.5-	11.026	378-	452.6	Pachycerianthus
		11.3	(0.43)	601	(128.4)	multiplicatus, Cerianthida
N	ſ	11.174	11.174	333	333	1
9 Y	54.39	9.0-	9.922	308-	738.6	Cerianthidae sp. 1
		11.5	(0.59)	954	(164.7)	
9 Y	49.80	9.1-	9.544	609-	836.7	Kophobelemnon stelliferur
					, ,	Cerianthidae sp. 1
3 N	41.11					Ophiactis balli
	r				` ′	
N	31.57	8.0-9.8				Sabellidae sp. 2
		A- 4				V. 1
6 Y	47.47					Unknown sp. 26, Cerianthidae sp. 1
	3 N N N	N 41.11 N N 31.57	Y 49.80 9.1- 10.3 N 41.11 8.0- 11.5 N 9.599 N 31.57 8.0-9.8	Y 49.80 9.1- 9.544 10.3 (0.29) B N 41.11 8.0- 10.31 11.5 (1.20) N 9.599 9.599 N 31.57 8.0-9.8 9.207 (1.01) S Y 47.47 7.7- 9.294	Y 49.80 9.1- 9.544 609- 10.3 (0.29) 953 B N 41.11 8.0- 10.31 295- 11.5 (1.20) 1054 N 9.599 9.599 938 N 31.57 8.0-9.8 9.207 781- (1.01) 1012 G Y 47.47 7.7- 9.294 316-	Y 49.80 9.1- 9.544 609- 836.7 10.3 (0.29) 953 (89.3) N 41.11 8.0- 10.31 295- 615.6 11.5 (1.20) 1054 (288.2) N 9.599 9.599 938 938 N 31.57 8.0-9.8 9.207 781- 869 (1.01) 1012 (124.9) Y 47.47 7.7- 9.294 316- 829.7

ad	6	N	59.02	9.0-11.7	9.517	184-	778.8	Lophelia pertusa (dead structure)
					(1.06)	942	(294.2)	
ae	1	N		9.763	9.763	699	699	
af	1	N		9.878	9.878	798	798	
ag	1	N		9.011	9.011	874	874	
ah	30	Y	66.25	9.5-9.9	9.780 (0.09)	797- 938	860.9 (43.7)	Lophelia pertusa (dead structure), Lophelia pertusa, Madrepora oculata, Unknown
ai	3	N	61.28	9.5-9.7	9.646 (0.08)	914- 936	922.3 (11.9)	Unknown sp. 26, Lophelia pertusa (dead structure),
aj	7	Y	54.00	9.0-9.8	9.377 (0.39)	816- 942	894.6 (55.6)	Lophelia pertusa (dead structure), Halcampoididae sp.
ak	3	N	66.33	9.7-11.3	10.523 (1.09)	417- 782	640.3 (195.7)	Halcampoididae sp. 5
al	71	Y	53.22	7.6-11.5	10.163 (0.98)	254- 1008	654.3 (218.9)	Amphiuridae sp. 1, Cerianthidae sp. 1
am	276	Y	47.39	8.9-11.8	10.803 (0.64)	205- 1021	477.3 (195.37)	Ophiuroidea sp. 1
an	6	N	49.67	10.5- 11.4	10.988 (0.38)	257- 600	433.1 (159.6)	Crinoidea sp. 5, <i>Stichopathes</i> cf. gravieri
ao	24	Y	27.51	9.4-11.8	10.943 (0.68)	189- 803	464.1 (214.9)	Serpulidae sp. 1, Brachiopoda sp. 1, <i>Munida sarsi</i>
ap	20	Y	41.38	9.6-11.6	10.926 (0.73)	252- 791	423.9 (212.9)	Ophiuroidea sp. 5, Munida sarsi
aq	51	Y	31.11	9.0-11.7	11.303 (0.40)	192- 825	326.4 (124.0)	Munida sarsi, Leptometra celtica


Table A2: Clusters identified from multivariate hierarchical analysis with associated environmental parameters, and SIMPER results identifying the taxa that characterise the clusters.


VCCGK

