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Abstract. The oceanic biological carbon pump is an important factor in the global carbon cycle. Organic
carbon is exported from the surface ocean mainly in the form of settling particles derived from plankton
production in the upper layers of the ocean. The large variability in current estimates of the global strength of
the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains poorly
constrained. We present a database of 723 estimates of organic carbon export from the surface ocean derived
from the234Th technique. The dataset is archived on the data repository PANGEA® (www.pangea.de) under
doi:10.1594/PANGAEA.809717. Data were collected from tables in papers published between 1985 and early
2013. We also present sampling dates, publication dates and sampling areas. Most of the open ocean provinces
are represented by multiple measurements. However, the western Pacific, the Atlantic Arctic, South Pacific
and the southern Indian Ocean are not well represented. There is a variety of integration depths ranging from
surface to 300 m. Globally the fluxes ranged from 0 to 1500 mg C m−2 d−1.

1 Introduction

The concept of the biological carbon pump, dating from the
late 1970s (Eppley and Peterson, 1979), quantifies the im-
portance of oceanic primary production in the global car-
bon cycle. The biological carbon pump can be divided into
three stages: the production of organic matter (and biomin-
erals) in surface waters, the sinking of these particles into
the deep ocean, and the subsequent decomposition of the set-
tling (or settled) particles in the water column or the seabed.
In this way the coupling of production and export processes
allows the ocean to store CO2 away from the atmosphere
and contributes to the buffering of the global climate system.
Without the oceanic biological carbon pump, atmospheric
CO2 concentrations would be almost twice their current lev-
els (Sarmiento and Toggweiler, 1984). Recent studies have
highlighted the challenge of quantifying the magnitude of
the biological carbon pump with estimates ranging from 5
to 20 GtC yr−1 (Henson et al., 2011).

There are several ways by which downward export fluxes
can be estimated. We can divide the techniques into two

groups: (1) indirect estimates based on nutrient uptake
(Sanders et al., 2005; Henson et al., 2006; Pondaven et
al., 2000), oxygen utilization (Jenkins, 1982), radioisotopes
(Buesseler et al., 1998; Cochran and Masque, 2003; Rutgers
Van Der Loeff et al., 1997b; Le Moigne et al., 2012, 2013)
or by synthesising numerous biological rate processes (Boyd
and Newton, 1999), and (2) direct measurements from sedi-
ments traps (Lampitt et al., 2008).

Here we focus on the234Th technique, which has the ad-
vantage that its fundamental operation allows a downward
flux rate to be determined from a single water column pro-
file of thorium coupled to an estimate of the POC/234Th
ratio in sinking matter (POC is particulate organic carbon;
Buesseler et al., 1992). This is highly advantageous in that
it removes the complications associated with sediment trap
deployments and provides an integrated estimate of export
(over a timescale of weeks) rather than a snapshot of export
rates (Lampitt et al., 2008).

Although several comprehensive worldwide datasets of
POC flux from sediment traps have been published (e.g.
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Honjo et al., 2008), to date only one thorium derived ex-
port dataset has been published (Henson et al., 2011). As part
of the SeasFX project (Seasonal Variability in the Efficiency
of Upper Carbon Export,http://www.seasfx.info, funded by
the UK National Environment Research Council), we com-
piled a global database of234Th-derived POC export from the
surface ocean (0–300 m). It comprises 723 data points from
1985 to 2013 covering most oceanic provinces. The dataset is
archived on the data repository PANGEA® (www.pangea.de)
under doi:10.1594/PANGAEA.809717.

2 Data

2.1 The crux of the 234Th technique

The radioactive short-lived thorium-234 (234Th, t1/2 = 24.1 d)
has been used as a tracer of several transport processes and
particle cycling in aquatic systems by different techniques
(Van der Loeff et al., 2006). The most widespread application
of the 234Th approach is to estimate how much POC is ex-
ported into the deep ocean (Waples et al., 2006).234Th is the
daughter isotope of naturally occurring Uranium-238 (238U,
t1/2 = 4.47×109 yr) that is conservative in seawater and pro-
portional to salinity in well-oxygenated environments (Ku et
al., 1977; Chen et al., 1986). Unlike238U, 234Th is insoluble
in seawater and is particle reactive in the water column (i.e.
234Th adheres to particles as they form). As particles with
234Th sink through the water column, a radioactive disequi-
librium is formed between238U and234Th that can be used
to quantify the rate of particle export from the surface ocean.

Export rates of234Th from the surface ocean can be cal-
culated using a one-box model (Coale and Bruland, 1987;
Buesseler et al., 1992, 1998; Cochran et al., 2000; Cochran
and Masque, 2003; Savoye et al., 2006; Benitez-Nelson et
al., 2001a; Verdeny et al., 2008). Assuming steady state (SS)
conditions, ∂A2

∂t = 0 where the total234Th activity does not
change with time, and no supply of234Th from physical pro-
cesses (e.g. advection), the234Th flux (dpm m−2 d−1), P, is
calculated through the water column as

P= γ
z=h∑
z=0

(A2−A1) ·dz. (1)

A1 is the total parent activity concentration (dpm m−3) for
238U; A2 is the total234Th activity concentration (dpm m−3);
λ is the decay constant of the daughter (d−1); h is the sam-
ple depth; andP is the loss of the daughter due to sinking
particles (dpm m−2 d−1). In 234Th studies generally advection
effects are neglected, as shown in Morris et al. (2007), with
the exception of upwelling regions or areas of strong advec-
tion (Murray et al., 1992; Buesseler et al., 1998). Using the
SS model from a single profile of234Th activity needs to be
justified as we assume that the initial activity does not change
with time (Savoye et al., 2006). If several profiles of234Th ac-
tivities are measured at the same site over a certain period of
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234

Th fluxes versus latitude. 237 

238 

Figure 1. Integration depth of the234Th fluxes versus latitude.

time (weeks or months), a non-steady-state (NSS) model has
to be applied. The NSS model may also be used during tem-
porally variable periods with high particle flux events, such
as the onset of a bloom (Buesseler et al., 1998). The NSS
model factors in the term∂A2

∂t that is set to zero in the SS
model (Eq. 2 below).

P= λ
z=h∑
z=0

[(A2−A1)] −
∂A2

∂t
dz (2)

We report234Th fluxes from both SS and NSS models in our
database. Reported234Th fluxes were integrated from depths
ranging from the surface down to 300 m (Fig. 1 and Table 1).
The vast majority of fluxes are integrated to between 100
and 150 m. A few studies report234Th integrated over greater
depths, but not more than 300 m depth (Table 1). In the final
stage of the thorium methodology, the estimated234Th flux
is converted to POC export by applying the ratio of POC to
particulate234Th activity.

2.2 Determination of POC : 234Th ratio of sinking
particles

The accuracy of the Th method relies critically on estimating
the POC/234Th ratio of material sinking from the upper ocean
(Buesseler et al., 2006). This estimate is most frequently
achieved by assuming that sinking carbon is contained within
large particles, often greater than 50µm in size (or 53µm,
depending on the mesh supplier), whereas organic carbon
within small particles is suspended in the water column, and
is therefore assumed to be insufficiently large and/or dense
to sink (Bishop et al., 1977; Fowler and Knauer, 1986). Size
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Table 1. Sampling year, area, number of samples (N), model used (see text, Sect. 2.1), C : Th size fraction (“Part.” refers to the entire
particulate fraction) and reference of studies used in the database. “Traps” is indicated when C : Th ratio were measured in sediment traps
and “Equ.” refers to equilibrium depth.

Date Area N Model Integration C : Th ratio size Reference/investigator
depth (m) fraction (µm)

1987 Equatorial Pacific 4 SS 80 Traps Murray et al. (1989)
1992 Equatorial Pacific 65 100 >53 Buesseler et al. (1995)
1992 Equatorial Pacific 24 SS 100 >53 Murray et al. (1996)
1992 Southern Ocean 1 SS 100 Part. Shimmield and Ritchie (1995)
1992 Equatorial Pacific 2 SS 120 >53 Bacon et al. (1996)
1992 Southern Ocean 10 NSS 100 Part. Rutgers van der Loeff et al. (1997a)
1992 Equatorial Pacific 16 SS 100 >53 Buesseler (1998)
1993–1994 Middle Atlantic Bight 7 SS 200 Traps Santschi et al. (1999)
1995 Arabian Sea 56 NSS 100 >53 Buesseler et al. (1998)
1996 Equatorial Atlantic 12 NSS 100 >53 Charette and Moran (1999)
1996 Subartic Pacific 3 SS 110–210 >53 Charette et al. (1999)
1996 Southern Ocean 6 NSS 100 Part. Friedrich and van der Loeff (2002)
1997 Gulf of Maine 7 SS 150 >53 Charette et al. (2001)
1997 Southern Ocean 25 NSS/SS 100 >70 Cochran et al. (2000)
1997 China Sea 1 SS 100 Part. Cai et al. (2001)
1997–1998 Southern Ocean 41 NSS/SS 100 >70 Buesseler et al. (2001)
1997–1998 Southern Ocean 28 NSS 100 >70 Buesseler et al. (2003)
1998–1999 Arctic 15 SS 100 >70 Amiel et al. (2002)
1999 North Pacific 4 SS 100 Part. Chen et al. (2003)
1999 Southern Ocean 8 SS 100 >60 Coppola et al. (2005)
1999 Labrador Sea 3 SS 100 >53 Moran et al. (2003)
2003 North Pacific 22 SS 100 Part. Kawakami et al. (2007)
2003–2005 Arctic 8 SS 60–120 >53 Lalande et al. (2008)
2003 Antarctic 6 NSS/SS 100 >70 Rodriguez y Baena et al. (2008)
2004 Arctic 8 SS 100 >53 Lalande et al. (2007)
2004 Atlantic gyres 10 SS Equ. depth >53 Thomalla et al. (2008)
2004 China Sea 36 SS 100 >1 Cai et al. (2008)
2004 Mediteranean Sea 4 SS 200 >70 Stewart et al. (2007)
2004–2005 Southern Ocean 20 SS Equ. depth >53 Morris et al. (2007)
2004–2005 Atlantic 64 SS 150 >53 Buesseler et al. (2008a)
2004–2005 Pacific 45 SS 150 >53 Buesseler et al. (2009)
2005 Southern Ocean 5 SS 100 <210 Savoye et al. (2008)
2007 Arctic 36 SS 100 Part. Cai et al. (2010)
2007 North Atlantic 10 SS Euphotic zone depth>53 Sanders et al. (2010)
2007 Southern Ocean 14 NSS/SS 60–120 >54 Jacquet et al. (2011)
2008 Southern Ocean 27 SS 100 >50 Rutgers van der Loeff et al. (2011)
2008 South-west Pacific 25 SS 100 Part. Zhou et al. (2012)
2008 Southern Ocean 11 SS 100 >53 Planchon et al. (2013)
2009 PAP site 10 SS 150 >53 Le Moigne et al. (2013)
2010 North Atlantic 20 SS 150 >53 Le Moigne et al. (2012)

fractions for the POC/234Th ratios used in the database are
given in Table 1.

There is a considerable body of literature on how and why
POC/234Th ratios vary with particle size and depth (see re-
view in Buesseler et al., 2006); however, there is little con-
sensus on the most appropriate ratio to use. Numerous pro-
cesses can impact POC/234Th ratios in the ocean including
particle surface-area-to-volume ratios (Santschi et al., 2006),
solution chemistry issues (Guo et al., 2002; Hung et al.,

2004), the chemical composition of particles and their affin-
ity for 234Th (Szlosek et al., 2009), POC assimilation by food
webs (Buesseler and Boyd, 2009), particle aggregation (Burd
et al., 2000) and fragmentation (Maiti et al., 2010) and Th de-
cay (Cai et al., 2006).

www.earth-syst-sci-data.net/5/295/2013/ Earth Syst. Sci. Data, 5, 295–304, 2013
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Fig. 2: Map showing the distribution of sampling stations. Longhurst oceanic (Longhurst, 242 

2006) provinces are represented in different colours. 243 
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Figure 2. Map showing the distribution of sampling stations.
Longhurst oceanic (Longhurst, 2006) provinces are represented in
different colours.
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Figure 3. Global distribution of 234Th export fluxes (in
dpm m−2 d−1). SS model (see text) derived fluxes are squares and
NSS model derived fluxes are circles.

3 Results and discussion

3.1 Data sources

The dataset is archived on the data repository PANGEA®

(www.pangea.de) under doi:10.1594/PANGAEA.809717.
Latitude, longitude, date, POC flux, primary production
(when available), integration depth and references are given
as metadata. All fluxes were converted to mgC m−2 d−1 if not
already reported in these units. Th-derived POC export has
been reported at 723 stations globally (Fig. 2). Some sta-
tions were part of transect cruises whereas others were part of
small-scale surveys or reoccupation at different seasons and
years. Sampling date, sampling area and reference investi-
gator are given in Table 1 in addition to the literature refer-
ence. The234Th fluxes derived from both SS and NSS model
are presented in Fig. 3. Because of the uncertainties associ-
ated with POC/ 234Th ratios, examining the Th fluxes prior
to conversion to POC fluxes provides a robust picture of the
variability in particle flux on the global scale. The lowest and
highest234Th flux are both measured in the Arctic Ocean.
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Fig. 4: Histogram of datapoints presented in table 1 and published since 1987. The star 254 

indicates the year 2004 when VERTIGO study was undertaken.  255 

256 

Figure 4. Histogram of datapoints presented in Table 1 and pub-
lished since 1987. The star indicates the year 2004 when the VER-
TIGO study was undertaken.

Also, it is worth mentioning that on small scales the234Th
flux can be quite variable, e.g. in the Iceland and Irminger
basins (Fig. 3). Generally, the patchiness of export, which
can affect the robustness of point observations, is greater in
region of high eddy kinetic energy (Resplandy et al., 2012).

Our database covers measurements published between
1985 and 2013. We do not include unpublished data here
and therefore assume that the originating authors and edi-
tors have undertaken steps necessary to control data quality.
Fig. 4 shows the number of thorium-derived export data per
year published from 1985 to 2013. In years 1992, 1998 and
2002, the number of234Th measurements increased. This is
likely due to significant improvements in the234Th method-
ology such as the introduction of the small volume technique
(Benitez-Nelson et al., 2001b), and it also highlights dedi-
cated carbon export programmes such as the VERTIGO voy-
ages in the Pacific Ocean (Buesseler et al., 2008b, 2009). It
is important to mention that our database only references pa-
pers where Th-derived export data are presented in tables,
rather than only graphically.

More POC fluxes are reported in the Northern Hemisphere
(∼60 % of the database) than in the Southern Hemisphere
(Fig. 5). In the Northern Hemisphere, each month of the year
has been sampled (Fig. 5). Springtime (May) and summer-
time have been most frequently sampled. In the Southern
Hemisphere, although stations are more evenly distributed in
time, no234Th-derived POC export numbers are reported for
winter months (July and August, Fig. 5).

3.2 Global POC export and ocean provinces

234Th-derived POC export estimates are reported in 32 out
of 56 Longhurst provinces (Longhurst, 2006) that are based
on the prevailing role of physical forcing as a regulator
of phytoplankton distribution, with measurements in most
of the large open ocean biomes (Fig. 2). Figure 6 shows
the mean234Th-derived POC export (mg m−2 d−1) in each
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Fig. 5: Number of samples collected in each month, separated into Northern and Southern 259 

hemisphere.  260 
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262 

Figure 5. Number of samples collected in each month, separated
into Northern Hemisphere and Southern Hemisphere.

Longhurst province that has been sampled at least once.
Only four provinces are represented with one measurement
(NASE, CCAL, CHIL and NECS; see Table 2 for details and
provinces names).

Our dataset exhibits similar global patterns of POC export
as those estimated with other methods (e.g. Laws et al., 2000;
Schlitzer, 2004), with highest daily POC export rate occur-
ring in the high-latitude North Atlantic, the Arctic and the
Southern Ocean. NASE and WTRA provinces located in the
subtropical and equatorial Atlantic (Fig. 6 and Table 2) are
exceptions to this trend with POC export of 450 (but note
that n= 1) and 250±200 mg m−2 d−1 reported in Thomalla
et al. (2008) and Charette and Moran (1999), respectively.
Some regions are relatively well sampled, such as the Arc-
tic Ocean (Longhurst’s BPLR), which is represented by 72
stations which display high spatial variability. For instance,
POC flux associated with Arctic shelf regions is large while
the POC flux in the central Arctic is very low (Cai et al.,
2010). This implies that the magnitude of export is not nec-
essarily a simple function of temperature in high-latitude re-
gions.

Some regions show unexpectedly high POC flux, such as
the NASE, where Thomalla et al. (2008) suggest that the oc-
currence of a short-lived bloom triggered by nutrient injec-
tion into the surface from a local upwelling event resulted
in very high POC flux (however, note thatn= 1 in this re-
gion). Alternatively, Charette and Moran (1999) propose that
scavenging of234Th by inorganic particles may have overes-
timated the POC flux in the WTRA region, as also observed
by Le Moigne et al. (2013); Brew et al. (2009).

A comparison of Th-derived export with direct measure-
ments of surface export (from free drifting sediment traps
to avoid any problem due to overcollection of horizontally
advected material) would be useful at this stage. However,

surface POC fluxes from direct measurements are scarce.
The few studies that have examined the discrepancy between
234Th-derived estimates and direct measurements of POC ex-
port (e.g. Le Moigne et al., 2013; Stewart et al., 2007) suggest
that 234Th-derived estimates in most cases overestimate the
direct POC flux. This may be due to a mismatch in timescales
over which different methods estimate export.234Th deficits
persist after an export event, whereas free-drifting sediment
traps capture only the instantaneous export flux.

3.3 Towards better understanding of the ocean’s
biological carbon pump

A portion of this database has already been used to extrapo-
late the local measurements to a global scale by correlation
with satellite sea surface temperature fields (Henson et al.,
2011). The resulting estimates of global integrated carbon
export were significantly lower than those derived from new
production measurements, at just∼ 5 GtC yr−1 compared to
12 Gt C yr−1 (Laws et al., 2000). However, the parameteri-
sation of the export ratio presented in Henson et al. (2011)
has relatively large uncertainty at cold sea surface tempera-
ture (SST) (see their Fig. 2). As the type of phytoplankton
present in the upper ocean may also influence the export ra-
tio (because large, dense phytoplankton cells sink rapidly and
export more efficiently than smaller plankton), the variabil-
ity in export ratio at low temperatures could be due to large
seasonal shifts in phytoplankton community structure at high
latitudes.

In high-latitude regions, simultaneous measurements of
upper ocean particulate organic carbon flux and phytoplank-
ton community structure could help to assess how seasonal
variability of the phytoplankton bloom alters the export ratio.
The knowledge gained from this approach could then be ap-
plied to our global dataset, combining satellite-derived data
on SST, bloom stage and phytoplankton community struc-
ture. Ultimately, a revised parameterisation of the export ra-
tio, including relevant seasonal information, could be used
to calculate a new global estimate of the magnitude of the
biological carbon pump.

3.4 Significant gaps in the global dataset

Globally the Th-derived POC fluxes ranged from 0 to
1500 mg of C m−2 d−1 (Fig. 7). In this database, some ar-
eas such as the equatorial Pacific, Arabian Sea, South China
Sea and the high-latitude North Atlantic are fairly well rep-
resented (Fig. 7). However, there are significant gaps that
could potentially bias estimates of the global carbon export.
Most notably,234Th-derived POC fluxes are not reported for
the Benguela system (BENG), the Mauritanian upwelling
(CNRY; ETRA), the entire western Pacific (consisting of nu-
merous Longhurst provinces), and the southern Indian Ocean
(ISSG).

www.earth-syst-sci-data.net/5/295/2013/ Earth Syst. Sci. Data, 5, 295–304, 2013
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Table 2. Mean POC flux (mg m−2 d−1) per Longhurst province (Longhurst, 2006).

Province Province name Mean POC flux Standard deviation Number of
number (mgC m−2 d−1) in POC flux stations

2 CHIL – Chile-Peru Current Coastal 176.00 0 1
5 SATL – South Atlantic Gyre 37.44 54.38 7

14 PEQD – Pacific Equatorial Divergence 46.20 40.43 71
15 MONS – Indian Monsoon Gyre 62.16 54.26 10
19 ARAB – NW Arabian Upwelling 85.18 82.45 48
20 WTRA – Western Tropical Atlantic 251.39 178.19 10
22 NECS – NE Atlantic Shelves 53.52 0 1
23 NASE – North Atlantic Subtropical Gyre (East) 488.40 0 1
24 PSAE – Pacific Subarctic Gyre (East) 49.00 32.39 6
26 INDE – East India Coastal 31.60 15.66 3
28 PNEC – North Pacific Equatorial Countercurrent 48.65 50.29 24
30 INDW – West India Coastal 33.60 52.43 18
32 NPTG – North Pacific Tropical Gyre 26.27 23.57 21
33 NATR – North Atlantic Tropical Gyre 91.20 128.98 2
34 MEDI – Mediterranean Sea, Black Sea 115.80 78.70 4
35 CCAL – California Upwellinf Coastal 14.76 0 1
36 NWCS – NW Atlantic Shelves 127.08 97.75 14
37 NASW – North Atlantic Subtropical Gyre (West) 25.90 19.41 65
39 NADR – North Atlantic Drift 87.56 51.22 11
41 ARCT – Atlantic Arctic 242.34 122.65 16
42 SARC – Atlantic Subarctic 214.67 127.06 14
44 SSTC – South Subtropical Convergence 114.34 136.16 7
45 SPSG – South Pacific Subtropical Gyre 28.79 13.73 10
47 BERS – North Pacific Epicontinental 146.00 24.04 3
50 ANTA – Antarctic 156.95 100.90 67
51 SANT – Subantarctic 126.54 116.71 107
53 APLR – Austral Polar 195.07 233.32 41
54 BPLR – Boreal Polar 171.05 298.48 72
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269 

Figure 6. Mean POC export (mg m−2 d−1) in Longhurst provinces
(provinces with only one measurement are marked with a star). Ar-
eas in white represent areas where no data have been collected.
Numbers on map indicate Longhurst province (cf. Table 2).

Some of these areas are deemed to be high production and
export regions due to the occurrence of upwelling. For ex-
ample, deep (∼ 2000 m) sediment trap measurements of POC
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Figure 7. Global distribution of POC export fluxes derived from
the234Th technique (in mg m−2 d−1).

export for the Mauritanian upwelling suggest that POC flux
can peak at 5 to 25 mg m−2 d−1 (Fischer et al., 2009), and
is therefore presumably higher in the upper water column.
Also, in the Benguela system POC export has been estimated
to be 550 mg m−2 d−1 on the basis of nutrient uptake (Wal-
dron et al., 1992). Provinces such as KURO and PSAW in

Earth Syst. Sci. Data, 5, 295–304, 2013 www.earth-syst-sci-data.net/5/295/2013/
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the north-west Pacific may also export a significant amount
of POC (∼ 120 mg m−2 d−1 averaged over one year based on
a modelling study (Schlitzer, 2004). Although these regions
represent a small percentage of the global surface area of the
ocean, the lack of data in these high export areas could poten-
tially result in estimates of global POC export that are biased
low.

We suggest that future studies should investigate234Th-
derived POC export flux in regions that are currently unsam-
pled or undersampled. However, in upwelling regions where
advective current velocities are high, the influence of advec-
tion and diffusion on the234Th model should be carefully
assessed and accounted for in the calculation of POC flux,
as done, for example, in Morris et al. (2007), Buesseler et
al. (1998), and Charette et al. (1999).

4 Conclusions

Here we provide a global database of 723 published esti-
mates of POC export derived from the234Th technique span-
ning 1985–2013. The observed pattern of POC fluxes re-
flects the expected dynamics of primary production and ex-
port. Some notable gaps in the dataset are the Benguela sys-
tem, the Mauritanian upwelling, the western Pacific, and the
southern Indian Ocean. This database could be used to pro-
vide revised and more robust estimates of the ocean’s biolog-
ical carbon pump.
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