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Abstract 22 

Change in urban land use and impervious surface cover are valuable sources of information for 23 

determining the environmental impacts of urban development. However, our understanding of 24 

these impacts is limited due to the general lack of historical data beyond the last few decades. 25 

This study presents two methodologies for mapping and revealing long-term change in urban 26 

land use and imperviousness from topographic maps. Method 1 involves the generation of maps 27 

of fractional impervious surface for direct computation of catchment-level imperviousness. 28 

Method 2 generates maps of urban land use for subsequent computation of estimates of 29 

catchment imperviousness based on an urban extent index. Both methods are applied to estimate 30 

change in catchment imperviousness in a town in the South of England, at decadal intervals for 31 

the period 1960–2010. The performance of each method is assessed using contemporary 32 

reference data obtained from aerial photographs, with the results indicating that both methods are 33 

capable of provide good estimates of catchment imperviousness. Both methods reveal that peri-34 

urban developments within the study area were demonstrated to have undergone a significant 35 

expansion of impervious cover over the period 1960–2010, which is likely to have resulted in 36 

changes to the hydrological response of the previously rural areas. Overall, results of this study 37 

suggest that topographic maps provide a useful source for determining long-term change in 38 

imperviousness in the absence of suitable data, such as remotely sensed imagery. Potential 39 

applications of the two methods presented here include hydrological modelling, environmental 40 

investigations and urban planning.  41 

 42 

 43 

 44 
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1. Introduction 45 

Accurate estimates of impervious surface coverage (commonly known as 46 

imperviousness) within watersheds (catchments) are required for hydrological modelling and 47 

urban land use planning because increased imperviousness results in decreases in infiltration and 48 

soil storage capacities (Kidd & Lowing, 1979). Furthermore, replacement of natural drainage 49 

with artificial conveyance pathways can also reduce catchment response times (Packman, 1980). 50 

These impacts can subsequently combine to increase the frequency and magnitude of flood 51 

events through increased and more rapid runoff (Huang et al., 2008; Villarini et al., 2009), and 52 

lead to disruption of natural groundwater recharge (Shuster et al., 2005; Im et al., 2012). 53 

Moreover, the hydrological alterations caused by increasing imperviousness typically give rise to 54 

environmental issues, such as degraded water quality, decreased biodiversity in water bodies, 55 

and increased stream-bank erosion (Schueler, 1994; Arnold & Gibbons, 1996; Hurd & Civco, 56 

2004; Amirsalari et al., 2013). Such impacts can be especially pronounced in peri-urban 57 

developments; areas surrounding existing towns, which convert previously permeable rural land 58 

into highly impermeable and artificially drained catchments (Tavares et al., 2012).  59 

Understanding and modelling the long-term hydrological impacts of increased urban 60 

development requires concurrent information on the change in impervious surface coverage. 61 

Maps of impervious surfaces can be produced from either field surveys, manually digitising from 62 

hard-copy topographic maps, or the use of remote sensing (RS) data. Whereas field surveys and 63 

manual digitisation can be time-consuming and laborious, the large continuous areal coverage 64 

provided by RS datasets can be exploited using image processing algorithms to rapidly map 65 

impervious surfaces for only a fraction of the time and cost. Accordingly, RS is becoming 66 

increasingly recognised as a valuable tool for mapping imperviousness. 67 
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A comprehensive, authoritative review of the different methodologies employed to map 68 

impervious cover from RS data is provided by Weng (2012). To summarise, RS-based 69 

approaches to mapping imperviousness generally fall into three broad categories: per-pixel, 70 

object-based and sub-pixel. Per-pixel approaches commonly involve producing a binary map by 71 

determining whether individual image pixels correspond to either pervious or impervious 72 

surfaces, typically through aggregating the classes of an initial land cover classification (Yuan & 73 

Bauer, 2006; Im et al., 2012; Amirsalari et al., 2013). In contrast, object-based approaches 74 

involved the classification of groups of contiguous image pixels (i.e., objects or regions) by also 75 

considering various shape, contextual and neighbourhood information (Benz et al., 2004; Weng, 76 

2012). Classifying an image based on objects helps to overcome the “speckled” effect often 77 

encountered with per-pixel classification in urban areas (Van de Voorde et al., 2003), thus 78 

enabling improved mapping results (Yuan & Bauer, 2006; Zhou & Wang, 2008). A major 79 

limitation of per-pixel approaches is that they assume each pixel comprises a single land use or 80 

land cover type. However, pixels containing a mixture of land use or cover types are common in 81 

low-to-moderate resolution imagery acquired over complex heterogeneous landscapes such as 82 

urban areas (Weng, 2012). Sub-pixel approaches can be used to overcome this to derive accurate 83 

estimates of imperviousness because they decompose the pixel spectra into their constituent 84 

parts, therefore providing fractional measures of impervious surface area. Popular approaches in 85 

this category include unmixing the pixel spectra to determine the fractional abundance of each 86 

constituent end-member surface type (Wu & Murray, 2003; Lu et al., 2006), or modelling 87 

fractional imperviousness through statistical regression and scaling of spectral vegetation indices 88 

(Carlson & Arthur, 2000; Gillies et al., 2003; Bauer et al., 2004; Van de Voorde et al., 2011).  89 
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With the earliest source of RS data comprising panchromatic aerial photograph lacking in 90 

sufficient spectral information, the mapping of imperviousness using RS is restricted to the last 91 

few decades since the emergence of spectral satellite imagery (e.g., Landsat). Consequently, few 92 

studies have assessed long-term land cover change using RS data (e.g., Gerard et al., 2010; 93 

Tavares et al., 2012), and even fewer have mapped long-term changes in impervious cover 94 

(Weng, 2012). Therefore, our understanding of the hydrological impact and non-stationary 95 

flooding trends in relation to impervious surface change is somewhat limited (Ogden et al., 2011; 96 

Vogel et al., 2011; Dams et al., 2013). 97 

Linking imperviousness to alternative sources of digital geo-information could provide a 98 

means of mapping long-term changes in impervious cover. However, such datasets are not 99 

usually available at the national scale or comparable over long periods of time. National land 100 

cover mapping products such as the UK Land Cover Map (LCM) 1990, 2000 and 2007 (Centre 101 

for Ecology and Hydrology) cover only a short time period and are inconsistent due to the 102 

different processing algorithms applied to derive each product from the RS data (Morton et al., 103 

2011). While methods such as land use trajectory analysis (Verbeiren et al. 2013) could be 104 

applied to help improve the consistency of the time-series somewhat, there will still likely be a 105 

residual error arising from the use of contrasting algorithms for generating each data product. 106 

Physical settlement boundaries and land use change statistics may be a useful alternative source 107 

of information (e.g., Bibby, 2009) but can only be loosely regarded as proxies for 108 

imperviousness. In most cases, the only consistent and long-term sources are topographic maps 109 

produced by national agencies. Within the UK topographic maps have been produced by the 110 

Ordnance Survey — the national mapping agency for Great Britain — since the mid-19th 111 

Century. Despite representing a potentially valuable source for deriving long-term change in land 112 
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use or land cover, studies assessing the use of such information are scarce (e.g. Hooftman & 113 

Bullock, 2012). 114 

The aim of this study is to utilise historical topographic maps for semi-automated 115 

mapping of urban land use change and change in impervious cover. Two novel methods are 116 

presented that utilise topographic maps to: i) derive maps of fractional impervious surface for 117 

direct computation of catchment-level imperviousness; ii) derive maps of urban land use for 118 

subsequent computation of estimates of catchment-level imperviousness based on an urban 119 

extent index. Impervious surface cover estimates computed using these two methods are 120 

validated using reference data generated through a RS-based image classification of high-121 

resolution aerial photographs. The methods presented herein are employed in an attempt to 122 

determine their suitability for indicating change in urban land use and imperviousness — here 123 

throughout a 50-year period from 1960–2010 in a number of hydrological catchments 124 

surrounding a UK town that exemplifies rapid peri-urban development. 125 

 126 

2. Study area 127 

The study area (Fig. 1) encompasses two adjacent small urban stream catchments located 128 

to the north of Swindon in the south of England; comprising the Haydon Wick brook and 129 

Rodbourne stream, both tributaries of the River Thames (Fig. 1 inset). Swindon was designated 130 

as an Expanded Town under the Town Development Act in 1952 which encouraged town 131 

development in county districts to relieve over-population elsewhere. The Rodbourne stream 132 

catchment has been highly urbanised since the 1950s and comprises a large area of commerce 133 

and industry on the northern edge of Swindon town, along with highly urbanised housing 134 

developments. The Haydon Wick brook catchment is located further to the north of Swindon and 135 
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has undergone widespread development since the 1990s, prior to which it was a predominantly 136 

agricultural landscape. Within the Haydon Wick catchment a number of distinct catchments (1-137 

5) have been selected (Fig. 1) that capture and reflect the diversity and age of different 138 

developments within the area. The Rodbourne catchment, in which development has 139 

incrementally expanded since the 1950s, remains one single catchment unit (6) for this study. 140 

The focus of this study is to test two methodologies for mapping changes in urban land use and 141 

associated imperviousness in each of these six catchments during the period 1960 to 2010. 142 

INSERT FIG.1 HERE 143 

 144 

3. Material and methods     145 

The ability to utilise traditional topographic maps for long-term, historical mapping of urban 146 

extent and estimation of catchment imperviousness is assessed using a three-pronged approach 147 

(Fig. 2). The approach involves first estimating contemporary catchment fractional impervious 148 

surface area directly from aerial photographs for use as reference data. These reference data are 149 

then used to validate the two methods presented in this paper for mapping historical change in 150 

impervious cover topographic maps. Following validation, a comparison of the two methods is 151 

undertaken to assess their relative performance revealing long-term change in catchment 152 

impervious cover between 1960 and 2010. More detailed information regarding the 153 

methodological approach is provided in the following sub-sections.  154 

INSERT FIG. 2 HERE 155 

3.1 Deriving catchment imperviousness from aerial photographs 156 
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Reference data for quantifying the catchment fractional impervious cover were obtained 157 

from aerial photographs for three decadal time-slices within the 50-year period of interest — 158 

namely 1991, 1999 and 2010 (herein referred to as 1990, 2000 and 2010, respectively). The 159 

reference data were generated by first classifying 0.5 m true-colour aerial photographs into 160 

pervious land cover classes: grass, trees, bare soil and water; and impervious land cover classes: 161 

roads/pavements, commercial buildings and residential buildings. It was anticipated that land 162 

cover classes such as bare soil and roofing tiles could be particularly difficult to discriminate 163 

using the limited spectral information contained in only the red, green, blue bands of the aerial 164 

photographs. Therefore, textural information was also incorporated in the form of the Grey-Level 165 

Co-occurrence Matrix (GLCM) parameters of entropy, dissimilarity, second moment and 166 

homogeneity (Haralik et al. 1973; Herold et al., 2003). These parameters were derived from the 167 

green band in the ENVI 4.8 software package (Research Systems, Inc.) for a 3 × 3 pixel (i.e. 1.5 168 

m × 1.5 m) window and a co-occurrence window shift of 4 pixels (i.e., 2 m) in both the x- and y-169 

direction. This combination of window size and shift was chosen as it maximised visual 170 

discrimination of the different land cover classes.  171 

Classification of the three time-slices employed a neural network (NN) classification 172 

algorithm in conjunction with the seven associated spectral and textural bands. A NN classifier 173 

was chosen because they are capable of producing better classification results for complex 174 

heterogeneous urban areas than their conventional counterparts (e.g., Maximum Likelihood), 175 

since they are non-parametric and more robust in handling noisy and non-normally distributed 176 

data (Foody, 2002; Lu & Weng, 2009). The NN used in this case was a Multi-Layered 177 

Perceptron NN with a back-propagation learning algorithm for supervised learning (Richards & 178 

Jia, 2006). Using a three-layered NN (i.e., input, output and one hidden layer), land cover 179 
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classifications were performed in ENVI 4.8 with the default training parameters confirmed 180 

through a set of trial-and-error experiments. Each classification was supervised with the aid of a 181 

set of training pixels that were carefully selected in the imagery to represent each of the defined 182 

land cover types (~6000 pixels for each class).  183 

Land cover classifications were converted to binary imperviousness maps by collapsing 184 

the classes into just two corresponding to pervious or impervious surfaces (Yuan & Bauer, 2006; 185 

Im et al., 2012; Amirsalari et al., 2013). The accuracies of the resulting binary imperviousness 186 

maps were determined by comparing the true class identities of a sample of validation pixels to 187 

the classes assigned through classification. Validation pixels were selected from regions of 188 

interest (ROIs) of known pervious or impervious surface class identities that were defined in 189 

each time-slice image based on extensive knowledge of the study area. Validation pixels were 190 

then selected from the ROIs using a random stratified sampling protocol to ensure each class was 191 

represented proportionately, and to avoid spatial autocorrelation within the validation dataset 192 

(Chini et al., 2008; Pacifici et al., 2009). The minimum validation sample size required to derive 193 

statistically valid accuracy estimates for the entirety of each binary map was determined from the 194 

normal approximation of the binomial distribution (Fitzpatrick-Lins, 1981). Consequently — 195 

based on an expected accuracy of 50% and a precision of ±0.5% at the 95% confidence level — 196 

approximately 19,000 validation pixels for each class were selected to determine the accuracy of 197 

each binary imperviousness map.  198 

Binary imperviousness map accuracies were assessed by way of the overall (OA), user‘s 199 

(UA) and producer‘s (PA) accuracies and the Kappa coefficient (K) derived from a confusion 200 

matrix (Congalton, 1991). The overall accuracy is the percentage of all validation pixels 201 

correctly classified, whereas the user‘s and producer‘s accuracies provide information regarding 202 
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the commission and omission errors associated with the individual classes, respectively. 203 

Following validation, the 0.5 m binary impervious maps were aggregated to 50 m grid cells to 204 

generate fractional impervious surface maps, with the value for each grid cell corresponding to 205 

the proportion of impervious pixels within it. The value of 50 m was selected as it was found to 206 

best represent homogeneous scale of urban land use classification (see 3.2.2). The 207 

imperviousness of each of the six catchments (%IMP) was then computed from these fractional 208 

impervious surface maps for use as reference data, using: 209 

( )

c

n

i
ii

A

AIMP
IMP

∑ ×
=

%
% ,     (1) 210 

where %IMPi is the fractional impervious cover for grid cell i, Ai is the area of the grid cell, n is 211 

the number of grid cells within the catchment, and Ac is the total catchment area.  212 

 213 

3.2 Deriving estimates of catchment imperviousness using topographic maps 214 

As outlined in Fig. 2, estimates of catchment fractional impervious surface cover were 215 

derived using two methods. In general, these consist of first generating binary imperviousness 216 

maps from the topographic maps and then computing catchment imperviousness from either 217 

fractional imperviousness maps or urban land use maps — as illustrated in Fig. 3 and described 218 

below. 219 

 220 

3.2.1 Data and pre-processing 221 

Digital historical topographic maps produced by the UK Ordnance Survey (OS) between 222 

1960 and 2010 were obtained in raster format as 25 km х 25 km tiles with a 1 m spatial 223 

resolution. For each decade (1960s to 2010s), the most contemporaneous map tiles produced for 224 
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that decadal time-slice were obtained and mosaicked to produce a seamless image for each 225 

decade (Table 1). The primary step for the two methods is to convert the historical topographic 226 

maps into simplified and physically representative binary maps of developed (i.e., impervious) 227 

and undeveloped (i.e., pervious) pixels. To do this, the original pixel values were reclassified so 228 

that a value of 1 was assigned to pixels corresponding to ‘white space’ on the map and a value of 229 

2 to all pixels corresponding to mapped features.  230 

INSERT FIG 3. HERE 231 

INSERT TABLE 1 HERE  232 

Due to slight variations in the cartographic style used from 1960 to 2010, a number of 233 

steps were required to further improve the consistency and compatibility of each map. The first 234 

stage involves developing ‘level-1’ binary maps, in which artefacts and key inconsistencies 235 

between maps from each decade are reduced. This was undertaken using the ‘Raster Cleanup’ 236 

tool in ArcMap (ArcGIS 10, ESRI) and included the following steps:  237 

• A rapid ‘clean-up’ of each raster map is undertaken to remove features, such as place 238 

names or symbols relating to wide-spread forest;  239 

• Reclassifying large concrete or tarmac areas represented by ‘white space’ to developed 240 

areas; 241 

• Infilling the roofs of large buildings on raster maps for 2000–2010 due to the low density 242 

of pixels used to represent such areas on these maps. 243 

A second pre-processing stage was subsequently applied for the purpose of infilling 244 

developed features such roads and buildings to generate a set of ‘level-2’ binary maps. This was 245 

undertaken in ArcMap by applying the ‘Boundary Clean’ tool to each raster and then converting 246 

them to polygon shapefiles. This conversion enables road segments and buildings to be readily 247 
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reattributed to alter them from polygons representing pervious (undeveloped) features to 248 

impervious (developed) features. Once all relevant polygons have been reassigned, the shapefiles 249 

were then converted back to raster format. 250 

 251 

3.2.2 Deriving catchment imperviousness from fractional impervious surface maps 252 

The first method (method 1) for deriving catchment imperviousness for the six 253 

catchments is relatively straightforward to implement, and is focussed on the generation of 254 

fractional impervious surface maps of the study area. To generate these maps, the ‘level-2’ 255 

binary maps derived from the topographic maps were aggregated to 50 m grid cells in a similar 256 

manner to that used to derive fractional impervious surface maps from the aerial photographs. In 257 

this case, the value for each 50 m grid cell is calculated as the proportion of 1 m impervious 258 

pixels contained within it. Although pre-processing steps were implemented to improve the 259 

compatibility and consistency of the topographic map time series (1960–2010), additional 260 

calibration was performed to account for any residual discrepancies between the fractional 261 

impervious surface maps. Adopting the approach outlined by Lu et al. (2011), pseudo-invariant 262 

pixels (i.e., those remained unchanged in terms of imperviousness throughout the time series) 263 

were selected for pair-wise image calibration via linear regression models. As a result, all 264 

fractional impervious surface maps were calibrated to the most recent map (i.e., 2010). Once 265 

calibrated, the imperviousness of each of the six catchments (OS%IMP) is computed from these 266 

calibrated fractional impervious surface maps using an adaptation of Eq. 1, and compared with 267 

the contemporaneous reference data derived from aerial photography (%IMP). 268 

 269 

 270 
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 271 

3.2.3 Deriving catchment impervious cover from urban land use maps 272 

The second method (method 2) for deriving catchment imperviousness for the six 273 

catchments is based on the generation of urban land use maps from the topographic maps. Maps 274 

of urban land use were generated by aggregating the topographic map-derived binary maps for 275 

each decade to larger grid cells, and then classifying the cells according to the LCM land 276 

use/land cover definitions; mixed development and green space designated as Suburban (e.g., 277 

houses with gardens), areas of near continuous development with little vegetation (e.g., industrial 278 

estates) designated continuous Urban (Fuller et al., 2002), and all other areas of green and 279 

general pervious surfaces referred to as Rural. Following a preliminary evaluation of a number of 280 

different grid cell sizes, a cell size of 50 m was identified as the optimum for generating realistic, 281 

homogeneous urban land use maps; smaller cell sizes produced maps with the aforementioned 282 

‘speckled’ effect that often affects per-pixel classification in urban areas. Additionally, it was 283 

found that application of this approach to the ‘level-2’ binary grids resulted in difficulty devising 284 

a standard classification which can be used to produce coherent land use maps across the time 285 

series. For this reason, the ‘level-1’ binary maps derived from the topographic maps were used to 286 

generate the land use maps. This was achieved using ArcMap through the following steps: 287 

• ‘Level-1’ binary maps were aggregated using the ‘Aggregate’ function to generate a 288 

grid that details the mean value of the pixels contained within each 50 m grid cell. 289 

These aggregated values provide an indication of the level of development; 50 m grid 290 

cells with a value close to 1 essentially correspond to ‘white space’ (i.e., a rural 291 

undeveloped area), whereas a value close to 2 corresponds to a high density of 292 

mapped features (i.e., a highly developed area).  293 
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• A threshold-based classification scheme was then applied to the grid in order to 294 

assign cells to either the Urban, Suburban or Rural land use class. It was found that 295 

cell values of 1–1.35 represented Rural land use, values of 1.35–1.65 corresponded to 296 

Suburban, and values above 1.65 represented Urban land use. These thresholds were 297 

validated to ensure at least 80% of 50 randomly selected grid cells were correctly 298 

classified in decadal map. The output is set of 50 m maps showing Rural, Suburban, 299 

and Urban land use (shown in Fig. 3).  300 

Potentially erroneous pixel classifications were removed through geo-spatial proximity 301 

analysis, and by applying an urban land use change trajectory demonstrated by Verbeiren et al. 302 

(2013) to ensure greater consistency throughout the time series. This is achieved by first 303 

combining the ArcGIS ‘Conditional’ tool in the ‘Raster Calculator’ with the ‘Focal Statistics’ 304 

tool to identify misclassified Urban and Suburban grid cells based on the classes of neighbouring 305 

cells — isolated Suburban or Urban cells were reclassified according to the dominant 306 

surrounding class. Following this, each cell was labelled as either 0 (Rural), 1 (Suburban) or 3 307 

(Urban) and all trajectories of land use change were recorded throughout the time series using 308 

codes (e.g., 00112, 01222, etc). These were then evaluated according to whether they reflect 309 

realistic changes observed in the catchment over the study period, and subsequently classified 310 

into 6 rationality classes: ‘urban growth’, ‘suburban growth’, ‘urban regeneration’, ‘urban 311 

stability’, ‘suburban stability’, and ‘inconsistent’. The ‘inconsistent’ class captures grid cells that 312 

do not follow realistic change trajectories — such as a Suburban area changing to Rural then 313 

Suburban and back to Rural. Inconsistent cells were corrected using the most likely trajectory for 314 

that cell over the 50 year period – based upon surrounding cells. The class ‘urban regeneration’ 315 

captures the possibility of Urban areas being demolished and replaced with green space or 316 
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subsequent re-development. The land use change trajectory rules were implemented using the 317 

‘Conditional’ tool in the ArcMap ‘Raster Calculator’. The outcome was as set of coherent urban 318 

land use maps revealing the long-term change in land use for the period 1960–2010. 319 

 For each land use map, the proportions of Urban and Suburban grid cells within each 320 

catchment were used to calculate a catchment index of urban extent. As well as measuring the 321 

urban extent within a hydrological catchment, the index of urban extent (URBEXT) proposed in 322 

the UK Flood Estimation Handbook (FEH) methodology (Institute of Hydrology, 1999) can also 323 

provide an estimate of the impervious surface cover. Accordingly, the index of urban extent and 324 

estimate of imperviousness for the six catchments (URBEXT) in each land use map is computed 325 

using:  326 

( )SuburbanUrbanURBEXT ×+= β ,             (2) 327 

where Urban and Suburban are the proportions of Urban and Suburban grid cells within each 328 

catchment, respectively, and β is the Suburban weighting factor. The suitability of URBEXT for 329 

estimating catchment imperviousness is assessed through comparison with the reference data 330 

derived from aerial photography (%IMP). For the purpose of this comparison, URBEXT — the 331 

weighted value of urban extent within a catchment — is considered to provide a direct estimate 332 

of the catchment percentage imperviousness. The Suburban weighting factor (β) is preset to a 333 

value of 0.5 to account for the general equal mixture of built-up land and permanent vegetation 334 

(Institute of Hydrology, 1999). Urban land use was assigned a weighting of 1 because such areas 335 

generally have negligible green (pervious) space. In an attempt to improve the accuracy of the 336 

catchment imperviousness estimates, an optimal value for β was sought by applying a linear 337 

regression model between reference imperviousness (%IMP) and URBEXT across the three 338 
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decadal time-slices. This provides a refined calibrated value of catchment impervious surface 339 

(URBEXTIMP). 340 

 341 

4. Results and discussion 342 

4.1 Imperviousness maps from aerial photography 343 

The accuracies of the RS-derived high-resolution (0.5 m) maps of binary imperviousness 344 

for 1990, 2000 and 2010 are shown in Fig. 4. High overall accuracies (> 86%) were achieved in 345 

all three cases and are also confirmed by the corresponding K values (0.74–0.83); interpreted as 346 

reflecting a “substantial” to “almost perfect” degree of accuracy (Landis & Koch, 1977). Further 347 

corroboration of the classification accuracy is provided by the high user’s (88–99%) and 348 

producer’s (77–89%) accuracies associated with both the pervious and impervious classes in all 349 

binary imperviousness maps; indicating low commission and omission errors, respectively. The 350 

result of this accuracy assessment indicate that the binary imperviousness maps are suitable for 351 

deriving reference data for validating the estimates of catchment imperviousness computed using 352 

the topographic map-based methods. 353 

INSERT FIG. 4 HERE 354 

 355 

4.2 Catchment imperviousness from fractional impervious surface maps 356 

Catchment imperviousness obtained from topographic map-derived fractional impervious 357 

surface maps (OS%IMP) — method 1 — was compared with the reference data (%IMP) derived 358 

from the aerial photographs (Fig. 5). A reasonable, but variable level of agreement between 359 

OS%IMP and %IMP is observed throughout the three decadal time-slices. Although the correlation 360 

for 1990 is greatest (R2 = 0.96), the catchment imperviousness measured using OS%IMP is 361 

consistently (with the exception of catchment 3) approximately 10% larger than the reference 362 
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data. The general overestimation of OS%IMP is most likely attributable to the larger size 363 

depictions of features such as roads on the 1990 topographic map, compared to equivalent 364 

features on the more recent maps. The correlation between OS%IMP and %IMP is somewhat 365 

lower for both 2000 and 2010 (R2 = 0.75 and 0.62, respectively), with the data appearing more 366 

widely distributed around the reference %IMP. This observed decrease in the level of agreement 367 

could be due a slight offset in the exact instant in time at which the aerial photographs and 368 

corresponding topographic maps capture. Alternatively, this could arise due to the slightly lower 369 

accuracies of the 2000 and 2010 aerial photography-derived binary imperviousness maps, in 370 

comparison to the 1990 map. Nevertheless, the results suggest that estimating catchment 371 

imperviousness using fractional impervious surface maps derived from topographic maps (i.e., 372 

method 1) is feasible. 373 

INSERT FIG. 5 HERE 374 
 375 

4.3 Mapping urban land use change using topographic maps 376 

Urban land use derived from the topographic maps using method 2 reveals the spatio-377 

temporal change in Urban, Suburban and Rural land use at a decadal intervals from the 1960s to 378 

2010s (Fig. 6). While the highly urban Rodbourne catchment (catchment 6) exhibits a gradual 379 

expansion and infilling of Urban and Suburban land use, the Haydon Wick catchments (1–5) 380 

exhibit a more dramatic and rapid changes in land use over the 50-year study period. The 381 

remarkable change from predominantly Rural (agricultural) land use in all Haydon Wick 382 

catchments (1–5) to predominantly Suburban land use is clearly illustrated in Fig. 7, as is the 383 

impact of one large commercial development in catchment 2 in the 2000’s. The relative change 384 

that occurred in catchment 6, which was already over 50% Suburban in 1960, is significantly less 385 
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than in the peri-urban area of the Haydon Wick catchments (Fig. 7). In all cases, the mapped 386 

spatio-temporal changes in Urban land use were found to be consistent with the physical changes 387 

observed in the original OS topographic maps. By the 2010s, the relative proportion of 388 

developed (i.e., Urban or Suburban) land across all catchments is high and the remaining Rural 389 

areas typically represent areas of green space designated for recreation and conservation, along 390 

with areas of significant flood risk. 391 

INSERT FIG. 6 HERE 392 

INSERT FIG. 7 HERE 393 

INSERT TABLE 2 HERE 394 

Catchment values of URBEXT computed using the land use maps (Table 2) also show 395 

distinct differences between the Haydon Wick catchments (1–5) and Rodbourne catchment (6). 396 

During the period 1960–2010, URBEXT values changed little across the Rodbourne catchment, 397 

with only a 14.2% increase as a result of small, steady incremental change during each decade. 398 

More significant change across the Haydon Wick catchments reflects successive waves of peri-399 

urban development during the study period, with an average overall increase in URBEXT of 400 

35.4% and significant variation between the catchments (17.5–41.3%). Again, the observed 401 

temporal changes in urban extent were found to be consistent with known physical changes that 402 

occurred within the period 1960–2010. Therefore, the results demonstrate that the employed 403 

method is an effective approach for readily mapping long-term basic land use change and 404 

associated catchment-level urban extent from historical topographic maps. A particular important 405 

stage in this methodology is the application of land use trajectory analysis (e.g., Verbeiren et al., 406 

2013), which was crucial in ensuring a reliable time series dataset from which only genuine land 407 

use change is revealed. 408 
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 409 

4.4 Catchment imperviousness from urban land use maps 410 

To investigate whether a simple index of urban extent (URBEXT) derived from 411 

topographic maps can provide representative estimates of catchment imperviousness, a 412 

comparison with reference imperviousness derived from aerial photography (%IMP) was 413 

undertaken (Fig. 8). Overall, a high correlation between URBEXT and %IMP is observed across 414 

most catchments during the three decades (R2 = 0.80–0.96), and also when all data is considered 415 

collectively (R2 = 0.86). Nevertheless, some notable deviations were observed for specific 416 

catchments and time-slices. For example, values of %IMP for catchment 3 were shown to be 417 

much higher than URBEXT in all cases due to significant underestimation of Urban areas of 418 

gravel and tarmac because of their depiction on topographic maps. Also, for 1990, URBEXT 419 

values are clustered around %IMP, while URBEXT consistently underestimates catchment 420 

imperviousness for both 2000 and 2010. The general underestimation of catchment 421 

imperviousness is likely to relate to the use of the ‘level-1’ binary grids, in which buildings and 422 

roads are not infilled. Nonetheless, it is apparent that land use maps generated from topographic 423 

maps can be used in conjunction with the urban index, URBEXT, (i.e., method 2) to generate 424 

feasible estimates of catchment imperviousness. 425 

INSERT FIG. 8 HERE 426 

A linear regression model between URBEXT and %IMP across the three decadal time-427 

slices returned an optimised Suburban weighting factor (β = 0.53). Calibrated values of urban 428 

extent (URBEXTIMP) for each catchment were computed for 1990, 2000 and 2010 by using this 429 

optimised value for β in Eq. 2. Following a comparison, the overall correlation between 430 

URBEXTIMP and %IMP (R2 = 0.84) was actual found to be marginally lower than for URBEXT 431 

(R2 = 0.86), indicating that the original preset β (0.5) was more appropriate in this particular case. 432 
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However, in regions where Suburban land use does not comprise equal mixtures of built-up land 433 

and vegetation, the optimal weighting can be determined using the same approach as that used 434 

here. Given its slightly better performance with respect to %IMP, estimates of catchment 435 

imperviousness computed using URBEXT are used for subsequent analysis. 436 

 437 

4.5 Historical change in imperviousness 438 

The two methods employed for computing catchment imperviousness from topographic 439 

maps in this study both provide a means of revealing long-term change in imperviousness. As 440 

illustrated by Fig. 9, the overall trend in imperviousness change for 1960–2010 is consistent 441 

between the two methods. With the exception of catchment 6, which was already highly 442 

developed prior to 1960, all catchments experience a somewhat rapid increase in imperviousness 443 

during a specific period between 1960 and 2010. For example, catchment 1 sees its biggest 444 

increase in imperviousness during 1980–1990, while catchment 3 experiences a rapid rise during 445 

1990–2000. The timings of these rapid increases in imperviousness coincide with known 446 

episodes of peri-urban expansion within the study area, and reflect the pattern of continuous 447 

growth and expansion where when one development finishes just shortly before another one 448 

commences. The less dramatic change observed for catchment 5 can be explained by the fact that 449 

it already contained suburban housing stock in 1960 and that it also contains a large nature 450 

reserve which is protected from development. 451 

INSERT FIG. 9 HERE 452 

In addition to displaying similar trends, the two methods provide very similar estimates 453 

of the total absolute change in catchment imperviousness between 1960 and 2010. The mean 454 

difference in the total absolute change estimates between the two methods, for all catchments, is 455 

2.9%, with individual catchment estimates varying between a maximum difference of 7.1% and a 456 
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minimum of 0.4%. The maximum difference is associated with catchment 6, which is arguably 457 

the most complex in terms of land use change during 1960–2010 because of gradual expansion 458 

of the industrial area in the south-eastern section of the catchment, and regeneration of the 459 

railway network to suburban housing in the south-west. As illustrated by Fig. 9, the more rural 460 

northern catchments (i.e., 1–4) experienced the most significant total absolute change in 461 

catchment impervious across the entire study period, with increases of between 36% and 42%. 462 

These estimates clearly reflect the rapid expansion of suburban land use into these previously 463 

rural areas as revealed in Fig. 6. 464 

Although Fig. 9 illustrates that the methods reveal similar trends and estimates of change 465 

in imperviousness across the six catchments for 1960–2010, there are differences in the 466 

individual catchment imperviousness estimates. Specifically, all estimates computed using 467 

method 1 (OS%IMP) exceed those produced using method 2 (URBEXT), with a mean absolute 468 

difference of 7.8% (Table 3). With respect to the time intervals, the largest differences between 469 

the methods occurs for the years 1990 and 2000, where OS%IMP estimates are respectively 8.3% 470 

and 9.4% greater than the equivalent URBEXT estimates. With respect to catchments, the largest 471 

differences between methods are observed for catchments 5 and 6, for which OS%IMP estimates 472 

are respectively 9.0% and 9.5% greater than URBEXT estimates. The overall trend of method 1 473 

producing higher estimates than method 2 is explained by a combination of the contrasting 474 

representation of features such as roads and buildings in the different binary maps (i.e., the level 475 

of infilling) incorporated in the two methods, and the somewhat simplistic discrete weighting  476 

system employed in method 2. In particular, the infilling of features such as roads in the level 1 477 

binary maps used in method 1 can lead to overestimation of impervious cover as the symbology 478 

used represent roads does not always reflect the true physical dimensions, and can lead to infill 479 
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of isolated areas that are not physically developed. Despite the fundamental differences in the 480 

two methods, both have been demonstrated to be feasible approaches for computing catchment 481 

imperviousness and its historical change from topographic maps.  482 

INSERT TABLE 3 HERE 483 

 484 

4.6 Considerations in using topographic maps for estimating imperviousness 485 

This paper demonstrates, through two methods, that topographic maps can be used to 486 

compute estimates of catchment imperviousness. When contemplating the use, or evaluating the 487 

performance, of OS%IMP and URBEXT — or any other topographic map-based method — there 488 

are a several aspects that require some consideration:  489 

I. Aerial photographs and topographic maps do not necessarily represent the exact same 490 

instant in time, since whereas aerial photographs provide a snapshot for a specific 491 

date, topographic maps incorporate updates within a given time period (see Table 1).  492 

II. Failure to remove place names and symbols (e.g., to represent forests) from the 493 

topographic maps will translate to the subsequently derived binary maps and lead to a 494 

degree of overestimation of imperviousness – users should ensure some consistent 495 

criteria are outlined for any manual interventions. 496 

III. Topographic maps do not readily discriminate areas of inland bare ground and 497 

concrete/tarmac features, which will subsequently lead to their misrepresentation on 498 

derived binary impervious surface maps and result in a degree of underestimation of 499 

imperviousness. However, infilling of features such as roads can lead to 500 

overestimation of impervious cover if the symbology used does not directly reflect 501 

true physical dimensions. 502 
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IV. Small-scale features (e.g., minor roads) and minor changes within existing 503 

development boundaries (e.g., infilling or ‘urban creep’) shown on aerial photography 504 

are not always captured using the discrete land use classification and scale employed 505 

in method 2. 506 

V. Calibration of the fractional impervious surface maps (as in method 1) and 507 

implementation of land use trajectory analysis (method 2) are crucial steps in 508 

producing a coherent time series dataset for revealing reliable long-term change in 509 

imperviousness.  510 

With both methods capable of providing good estimates of catchment imperviousness, 511 

the most appropriate method is largely dependent on the purpose of the study and the format of 512 

the topographic maps. In general, method 1 can be more readily implemented and provides maps 513 

of fractional impervious surfaces, thus describing imperviousness on a continuous scale (Fig. 514 

10). On the other hand, despite method 2 providing only a discrete description of imperviousness 515 

(see Fig. 10), it does provide maps of general land use that are informative when interpreting 516 

changes in imperviousness over time. Although method 1 can be readily applied to any study 517 

area, as demonstrated here, method 2 can be calibrated to determine the optimal weighting factor 518 

associated with Suburban land use (β). Additionally, if the available topographic maps depict 519 

roads and building as infilled features (akin to the ‘level-2’ binary maps) then method 1 would be 520 

more suitable. However, if — as in the case of the OS topographic maps used here — such 521 

features are not infilled, then method 2 can be applied without the need of additional pre-522 

processing steps to produce ‘level-2’ binary maps.  523 

INSERT FIG. 10 HERE 524 

 525 
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6. Conclusions 526 

This paper demonstrates that it is possible to derive robust long-term estimates of 527 

catchment imperviousness from topographic maps using two different contrasting methods. The 528 

first method (method 1) generates fractional impervious surface maps from the topographic maps 529 

and uses these to estimate catchment imperviousness. The second method (method 2) generates 530 

generalised land-use maps from the topographic maps and then computes catchment 531 

imperviousness from these using an index of urban extent. Although some degree of manual 532 

intervention is required for both methods, the processing stages employed are largely semi-533 

automatic and require significantly less time than manual delineation of impervious surfaces. 534 

Such manual intervention will rely on some degree of user subjectivity – related to the format of 535 

the topographic maps – that could alter the binary maps and derived impervious cover products. 536 

Such interventions are required to produce more consistent mapping products for derivation of 537 

binary maps, and it is recommended that users employ transparency in the reporting of such 538 

interventions. Through comparison with reference data obtained using aerial photographs, it is 539 

demonstrated that both methods are capable of providing accurate estimates of catchment 540 

imperviousness and its change over time. With both methods capable of providing good 541 

estimates of catchment imperviousness, the most appropriate method beyond this study will be 542 

largely dependent on the purpose of the study and the format of the topographic maps. 543 

This study demonstrates that both methods show the peri-urban Haydon Wick catchment 544 

has undergone a significant change from predominantly rural to highly urban and is now 545 

dominated by suburban areas of housing development. Findings from hydrological studies (e.g. 546 

Braud et al., 2012; Dams et al., 2012) would suggest that this will have led to a faster catchment 547 

response and greater magnitude of flow during storm events – making the area more prone to 548 
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flooding. Local reports of more frequent flooding would are consistent with this hypothesis but 549 

hydrological modelling of the change in storm runoff response would be necessary to validate 550 

this assumption. 551 

Several issues that may affect derived estimates of catchment imperviousness using 552 

topographic maps are highlighted for consideration in future applications of this methodology. 553 

For example, catchments containing large areas of concrete, gravel and tarmac (e.g., car parks) 554 

might not be recognisable as developed surfaces on topographic maps. Conversely, although 555 

such surfaces are typically characterised as impervious, they are not always physically 556 

impervious per se. For example, gravel cover is not inherently impervious and more modern car 557 

parks and roads can employ Sustainable Urban Drainage Systems (SUDS) design principles to 558 

enable infiltration of water to the media below. Furthermore, the presence and spatial distribution 559 

of both traditional drainage systems and SUDS contribute to the effective impervious area (EIA) 560 

— the connectivity to impervious areas — and are shown to be a strong determinant of storm 561 

runoff response (Han & Burian, 2009). This highlights the limitation of using simple impervious 562 

area estimates in hydrological studies. Also, depending on the maps scale, plot-scale (changes 563 

such as housing extensions driving urban creep; Perry & Nawaz, 2008) may not be captured on 564 

topographic maps. 565 

Further research is required to progress to a more realistic scheme which accounts for 566 

varying degrees of imperviousness within individual land use or land cover classes. This would 567 

require better characterisation of urban typologies and land cover classes in terms of their natural 568 

permeability, association with drainage systems, and additional factors which affect the 569 

catchment runoff response. Such information would have to be obtained from auxiliary datasets 570 

as this is not readily available on historical topographic maps. Imperviousness maps 571 
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incorporating information on connectivity and features that influence hydrological response to 572 

storm events would be particularly useful in quantifying the impact of historical urbanisation on 573 

flooding. 574 
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Figure captions  699 

Fig. 1. Map of the study area showing catchment boundaries and location of the study area 700 

within the Thames Basin (inset). RGB Aerial Photography – ©GeoPerspectives. 701 

Fig. 2. Overview of methodological approach used to assess the utility of traditional topographic 702 

maps for long-term, historical mapping of urban extent and estimation of catchment 703 

imperviousness. 704 
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Fig. 3. Illustration of the approach applied in both method 1 and 2 to map impervious cover.  705 

cover (c) Crown copyright and Landmark Information Group. 706 

Fig. 4. Classification accuracies of the binary imperviousness maps derived from aerial 707 

photographs for 1990, 2000 and 2010. OA — Overall accuracy; K — Kappa coefficient.  708 

Fig. 5. Comparison of catchment imperviousness estimated from aerial photography (%IMP) and 709 

topographic map-derived fractional impervious surface cover (OS%IMP) within the six 710 

catchments, for years 1990, 2000 and 2010. 711 

Fig. 6. Spatio-temporal change in urban land use across the study area 712 

Fig. 7. Decadal change in urban land cover types across the study area catchments. 713 

Fig. 8. Comparison of catchment imperviousness estimated from aerial photography (%IMP) and 714 

topographic map-derived index of urban extent (URBEXT) within the six catchments, for years 715 

1990, 2000 and 2010.Fig. 9. Change in impervious cover determined using two methods across 716 

the six study catchments (1960–2010). 717 

Fig. 10. A comparison of impervious surface maps obtained using the two methods.  718 






















	postprint cover - Elsevier miller
	Article (refereed) - postprint

	N505474
	final_manuscript_JAGD1300348R1
	Fig1
	fig2
	Fig3
	Fig4
	fig5
	Fig6
	Fig7
	fig8
	fig9
	fig10


