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ABSTRACT: Zinc oxide nanoparticles (ZnONPs) are used in large quantities by the cosmetic, 

food and textile industries. Here we exposed Caenorhabditis elegans wild-type and a metal 

sensitive triple knockout mutant (mtl-1;mtl-2;pcs-1) to ZnONPs (0-50 mg/L) to study strain and 

exposure specific effects on transcription, reactive oxygen species generation, the biomolecular 

phenotype (measured by Raman microspectroscopy) and  key endpoints  of the nematode life 

cycle (growth, reproduction and lifespan). A significant dissolution effect was observed, where 

dissolved ZnO constituted over 50% of total Zn within a two day exposure to the test medium, 

suggesting that the nominal exposure to pure ZnONPs represents in vivo, at best, a mixture 

exposure of ionic zinc and nanoparticles. Nevertheless, the analyzes provided evidence that the 

metallothioneins (mtl-1 and mtl-2), the pytochelatin synthase (pcs-1) and an apoptotic marker 

(cep-1) were transcriptionally activated. In addition, the DCFH-DA assay provided in vitro 

evidence of the oxidative potential of ZnONPs in the metal exposure sensitive triple mutant. 

Raman spectroscopy highlighted that the biomolecular phenotype changes significantly in the 

metal sensitive knockout worm upon ZnONP exposure, suggesting that these metalloproteins are 

instrumental in the protection against cytotoxic damage. Finally, ZnONP exposure was shown to 

decrease growth and development, reproductive capacity and lifespan, effects which were 

amplified in the triple knockout. By combining diverse toxicological strategies, we identified that 

individuals (genotypes) housing mutations in key metalloproteins are more susceptible to 

ZnONP exposure, which underlines the importance of fully functional metalloproteins to 

minimize ZnONP induced toxicity. 

Keywords: C.elegans, zinc oxide nanoparticles, metallothionein, phytochelatin synthase, 

reactive oxygen species, Raman spectroscopy. 
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1. Introduction 

Over the past two decades the field of nanotechnology has expanded considerably, primarily due 

to the growing use of nano-sized particles in industry and research. Nanoparticles are 

characterized by a large surface area per unit mass, a quantum physical trait which has facilitated 

the manipulation of nanomaterials to exert new or enhanced optical, electronic and/or 

mechanical properties (Oberdörster et al., 2005). More specifically, some metal oxide 

nanomaterials, such as zinc oxide nanoparticles (ZnONPs), are antimicrobial and therefore 

widely used by the cosmetics and paint industries. In bio-medicine they are used to enhance cell 

imaging and drug delivery (Dufour et al., 2006; Stoimenov et al., 2002; Wang 2004), and in 

agriculture to control food borne pathogens (Tayel et al., 2011; Nohynek et al. 2010).  

Despite the potential commercial advantages, it has been recognized that exposure to ZnONPs 

may pose a risk to human health (Rohrs 1957; Schilling et al., 2010) and to the environment 

(Colvin 2003; Nowack et al., 2012). The harmful effects of ZnONPs are driven by their 

physicochemical properties (dissolution and formation rate, the morphology and chemical 

composition, surface reactivity, particle number) and the resulting physical damage caused by 

the aggregation and agglomeration of nanoparticles (Bai et al., 2010; Jiang et al., 2009; Zhang et 

al., 2010. 

The bio-kinetic behaviour and in vivo toxicity of ZnONP exposure has, to date, been investigated 

in several non-mammalian systems including in vitro cell-based assays (Sharma et al., 2012a,b; 

Ahamed et al., 2011; Wu et al., 2010), bacteria (Li et al., 2011; Reddy et al., 2007), algae 

(Franklin et al., 2007), plants (Lin and Xing, 2007), crustaceans (Poynton et al., 2011), fish (Bai 

et al., 2010), earthworms (Hooper et al., 2011) and nematodes (Khare et al., 2011; Ma et al., 

2009; Ma et al., 2011; Roh et al., 2009; Wu et al., 2013). The nematode Caenorhabditis elegans, 

a powerful model organism due to the availability of a completely sequenced genome (Hillier et 

al., 2005) and many molecular genetics tools has been used in ecotoxicological research to study 

the molecular to organismal level responses to ROS and heavy metal challenges (Roh et al., 

2006; Hughes and Sturzenbaum 2007; Swain et al., 2004, 2010; Zeitoun-Ghandour et al., 2010, 

2011); The roles of the metalloproteins metallothionein (MT) and phytochelatin (PC) are 

Furthermore, ZnONP mediated toxicity may result from the release of free ionic zinc 

(George et al. 2010; Li et al., 2012; Poynton et al., 2011; Wang et al., 2009), which induces 

cellular damage via the generation of free reactive oxygen species (ROS), which in turn can 

promote pro-inflammatory effects (Kao et al., 2012; Mocchegiani et al., 2011).   
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assumed to be multi-functional, including metal sequestration, transportation, detoxification, 

protection against antioxidants (Swain et al., 2004; Margoshes and Valee, 1957; Sato and 

Bremner, 1993; Cobbett, 2000; Vatamaniuk 2001, 2005; Freedman et al., 1993). When 

nematodes are exposed to excess metal ions, such as Cd2+ or Zn2+

This study utilized transgenic strains carrying either the Pmtl-2::GFP or Ppcs-1::GFP reporter 

constructs to monitor, in vivo, respective transcriptional changes in response to ZnONP 

exposure. Furthermore, wild-type and  metallothionein-phytochelatin synthase triple knockout 

(mtl-1(tm1770)V;mtl-2(gk125)V;pcs-1(tm1748)II) nematode strains were raised in the presence 

or absence of ZnONPs. Whilst the metallothionein single and double knockouts were previously 

shown to be relatively insensitive to metal challenge, the triple knockout was hypersensitive 

(Hughes et al., 2009), thus deemed to be a valuable target strain for this study. In detail, we 

examined the major life-cycle indices (growth, reproduction and survival), quantified the 

oxidative potential by measuring ROS production, and evaluated global phenotypic fingerprints 

by Raman microspectroscopy, as well as transcriptional changes of a selective suite of putative 

biomarkers of ZnONP exposure (predominantly antioxidants, including the catalases ctl-2 and 

ctl-3, the superoxide dismutases sod-1 and sod-3, the peroxiredoxin prdx-3, but also the metal 

exposure responsive metallothionein mtl-1, as well as cep-1 the ortholog of the human tumour 

suppressor P53 and the apoptotic marker dct-1, information about their respective biological 

roles and expression patterns can be obtained from www.wormbase.org). Taken together, this 

study aimed to explore the link between ZnONPs, metal ion release, and/or ROS activity, and to 

establish whether toxic effects are attenuated by metalloproteins. 

, the expression of MTs and 

PCs is induced, and thereby preventing metal accumulation and cytosolic damage (Ma et al., 

2009; Hughes and Sturzenbaum, 2007). In contrast, organisms with impaired metalloproteins 

suffer from metal-induced cellular stress, as well as an impaired developmental and reproductive 

capacity (Zeitoun-Ghandour et al., 2001; Hughes et al., 2009). Given this extensive knowledge 

base, C.elegans would seem well suited to study the toxicology of ZnONP exposure. 
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2. Materials and methods 

2.1. Preparation of ZnONPs 

Synthetic surfactant-free P99/30nm NanoSun ZnO nanoparticles (ZnONPs, purity 99.5%, 

specific surface area: 38 m2/g, density: 5,52 ±0.05 g/cm3, zeta potential in DI water: 20.7 ±2.0 

mV(Heggelund et al. 2013)) were obtained from Microniser Pty Ltd (Dandenong, Australia). 

NanoSun P99/30 ZnO, which is manufactured by milling, has no coatings or surface 

modifications and is close to spherical in shape. Physicochemically, the average primary particle 

size is 30 nm with a stated water solubility of 0.0016 g/l at 20oC and a melting point of 1,975°C. 

NanoSun zinc oxide has been reported to have its point of zero charge in deionised water of 6.3 

(Geert Cornelis pers. comm.). The particles were dispersed by probe sonication for 2 x 30 

seconds (at amplitude 15) in HPLC–grade water to a final concentration of 500 mg/L. All 

aliquots were stored at -20°C. Prior to use, all aliquots were rapidly defrosted and vortexed for 

10 minutes to maximize particle separation and ensure equal distribution.  

The particle physicochemical characterization in exposure media was carefully carried out prior 

to beginning any of toxicity studies. Samples of ZnO particles in HPLC-grade water, LB broth 

with(out) bacteria were deposited on a holey carbon coated Cu TEM grid and dried at room 

temperature for several hours before examination by transmission electron microscopy (TEM). 

Experiments were carried out on a JEOL 2010 analytical TEM with a LaB6 electron gun and an 

operational range between 80 and 200kV. The instrument has a resolution of 0.19nm, an electron 

probe size down to 0.5nm and a maximum specimen tilt of ±10 degrees along both axes, and is 

equipped with an Oxford Instruments LZ5 windowless energy dispersive X-ray spectrometer 

(EDS) controlled by INCA and a SemiStem controller for point analysis, mapping and line 

scanning. 

Particle size distributions in test media were evaluated using the Malvern instruments Zetasizer 

Nano ZS. Dynamic Light Scattering (DLS) allows the non-invasive measurement of particle 

sizes from the submicron region to the nanometre range. Analysis of intensity fluctuations of 

particles undergoing Brownian motion under laser illumination yields the velocity of the 

particles and hence the particle size, using the Stokes-Einstein relationship. The DLS data 
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provide information on the hydrodynamic radius of the ZnONPs that is complementary to the 

assessments of core particle size generated by the TEM analysis.  

 

2.2. Assessment of dissolution 

To characterize the fate of the ZnO nanoparticles in the test medium, assessments of total and 

dissolved Zn levels were measured in the ZnO spiked bacterial suspensions after 48 hours. The 

bacterial samples were inoculated and grown at 37 ̊C for 16 hours at 200 rpm in LB broth. 

Bacteria were diluted to an OD of 0.1 in the particle spiked at ZnO concentrations of 5, 10, 20 

and 50 mg/L. After 48 hours incubation, levels of total Zn and dissolved Zn were determined. 

Samples for total Zn analysis were immediately acidified with 5% volume of 69 % ultrapure 

nitric acid. Sample for dissolved Zn were first ultracentrifuged using 10 kDa ultrafitration tubes 

(Millipore) to remove particulate material from the sample, then acidified. Analysis was 

conducted using ICP-OES in an analysis that included appropriate blank and spiked reference 

samples for quality control assessment.  

 

2.3. Evaluation of bacterial growth inhibition 

The effect of ZnONP exposure on the bacterial strain used for nematode feeding was examined 

to exclude the presence of possible dietary restriction effects. Stock cultures of E. coli (OP50) 

were grown in LB medium for 16 hours at 37°C and shaking at 200 rpm. The following day, the 

culture was diluted to an optical density (OD600) of 0.1 and corresponding particle concentration 

was added (0-100 mg/L ZnONP). The cultures were incubated at 37°C, shaking at 200 rpm, and 

the change in bacterial OD monitored over a period of 24 hours. 

 

2.4. Exposure to C. elegans 

Bristol strain N2 (obtained from the Caenorhabditis Genetics Center stock collection at the 

University of Minnesota, St. Paul, MN, USA) was used as wild-type (WT) and the triple 

knockout zs2 (mtl-1(tm1770)V;mtl-2(gk125)V;pcs-1(tm1748)II), previously generated by 

Hughes et al., 2009 as the metal sensitive strain.  All nematode strains were grown under 

ambient artificial laboratory light (to minimize the occurrence of phototoxicity, as reported by 

Ma et al., 2011) in Petri dishes on nematode growth medium (NGM) and fed, ad libitum, 

Escherichia coli OP50 according to the standard protocol (Brenner 1974). Worms were exposed 
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to ZnONPs from age-synchronized L1 larval stage to L4 stage. Age-synchronized cultures were 

isolated from mature adults treated with 10% hypochlorite solution, followed by several rinses 

with M9 buffer (Hitchcock et al., 1998). The resultant eggs were allowed to hatch in M9 and 

arrest at L1, following an overnight rotation (19 rpm) at room temperature.  

 

2.5. Photomicroscopy  

The transgenic strain carrying the Ppcs-1::GFP was created using GateWay recombination and 

provided by Dr I. Hope (Leeds University, UK) and a high penetrance line containing the 

extrachromosomal Pmtl-2::GFP reporter construct was generated in our own laboratory. Strains 

were maintained at 20°C (from L1 larval stage to L4 stage) on plates seeded with bacteria dosed 

with 0 or 50 mg/L ZnONP. For imaging, L4 worms were picked into a droplet of M9 solution on 

a glass slide and sodium azide (2%) added to immobilize the worms. Images were captured on an 

inverted fluorescence microscope with DIC (Nomarski) optics (Nikon Eclipse TE2000-S), using 

a blue laser fluorescence (λex

 

=450-490nm). All images were captured at a 20X magnification 

and the fluorescence from the entire worm analyzed with the Image J software. 

2.6. Quantitative Real-Time PCR 

A minimum of 3,000 staged L1 nematodes (either wild-type or mutant strains) were exposed to 

concentration range of ZnONPs (0 - 50 mg/L) for 48 h (from L1 stage to L4 stage). Total RNA 

was extracted using Tri-reagent (Sigma-Aldrich, Poole, Dorset, UK) as recommended by the 

manufacturer, however including an additional initial vortexing step (3 mins) with equal amount 

of acid-washed glass beads (Sigma). The total concentration of RNA was quantified using a 

Nanodrop ND1000 spectrometer (Thermo Scientific) and the quality of the RNA was analysed 

by 1% agarose gel electrophoresis.  

cDNA was synthesised with 500 ng of RNA by means of an oligo-dT primer (5'-(T)20VN-3'). 

Quantitative PCR of mtl-1, ctl-2, ctl-3, sod-1, sod-3, prdx-3, cep-1 and dct-1 was carried out 

using the ABI Prism7000a platform (Applied BioSystems, Warrington, UK). All probes were 

sourced from the Universal ProbeLibrary (Roche Applied Science, UK) and primers designed 

via the Assay Design feature (https://www.roche-applied-

science.com/sis/rtpcr/upl/index.jsp?id=UP030000). For each PCR reaction a mastermix was 

prepared containing 12.5 µL ROX (Roche),  3 µL diluted cDNA (150 ng/µL), 0.25 µL of probe 
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(10 µM), 1 µL of  each primer (10 pM) and made up to final volume 25 µL. Using standard ABI 

Prism cycling conditions (2 mins at 50°C, followed by 10 mins at 95°C, and 40 cycles of 15 

seconds at 95°C and 1 min at 60°C), CT (threshold cycle) values were determined. Subsequent 

data analysis was performed using the ABI 7000 system software, and the ∆∆ CT

 

 method was 

used to calculate the fold change in gene expression. Gene expression was normalized to the 

house-keeping gene rla-1 (encoding for an acidic ribosomal subunit protein P1) previously 

shown to be invariant within a metal exposure setting (Swain et al., 2004; Swain et al., 2010). 

The qRT-PCR quantifications were performed on samples derived from two independent 

experiments (each sample consisting of a pool of 3,000 worms), and each sample was analysed 

in triplicate. 

2.7. DCFH-DA assay 

The level of total ROS generation was estimated using the 2’,7’- dichlorodihydrofluoroscein 

diacetate (DCFH-DA; Molecular Probes) dye. A minimum of 1,000 age-synchronized (L1) 

nematodes per condition were grown to L4 stage at 20°C, then washed off. The wash steps 

included 4 washes in M9 buffer and two in phosphate buffered saline (PBS). Finally, the 

supernatant was removed to a final volume of 500 µl. Worm numbers were approximated by 

counting 10 titres per sample. The worm pellets were frozen at -80°C for 8-24 hours, thawed on 

ice the following day, and homogenized by sonication (3×20 sec pulses, amplitude 15). To avoid 

the generation of excessive heat, samples were maintained on ice during the sonication step. 

Finally, DCFH-DA (50 μl of 100 µM in PBS) was added to 50 μl of worm homogenate, 

incubated (in the dark) at 37°C and analyzed for ROS production using a microplate reader at 

excitation 485 nm and emission 528 nm. Fluorescence readings were normalized to worm 

numbers. 

 

2.8. Raman Spectroscopy 

Raman microspectroscopy was used to identify differences in biomolecular composition. C. 

elegans were exposed to 0 and 50 mg/L ZnONP for 48 h (from L1 stage to L4 stage). At L4 

stage, worms were air dried in a droplet of ultrapure water (Sigma, UK) on a CaF2 microscope 

slide (Crystran Ltd, Poole, UK). Raman spectroscopy was carried out on a Horiba LabRAM 

HR800 Raman microspectrometer with 600 grooves/mm grating and a slit width of 100 µm 
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(Horiba Scientific, UK) equipped with an Olympus BX-41 microscope and an Andor 

electronically cooled CCD detector. Raman spectra were collected from two areas, namely the 

region immediately posterior to the pharynx (“head”) and region anterior of the anal valve 

(“tail”), respectively. Nematodes were initially focused using a 100x/0.9 numerical-aperture air 

objective (Olympus; Mplan) and a CCD camera. Laser illumination was provided by a 532-nm 

Nd:YAG laser, and the incident laser power typically adjusted to 5-8 mW. Spectra were 

collected from 25 worms per treatment, with an acquisition time of 30 seconds and two averaged 

accumulations at each point. From each individual worm, five spectra were taken within a 20 x 

20 µm area within the head and tail regions as described above.  

Cosmic spikes present in the spectra were automatically removed using LabSpec v5 software 

(Horiba Scientific, UK). Raw spectra were concatenated to between 400 cm-1 and 1,800 cm-1

 

 

wave numbers, and data were normalized (area under spectra to 100) using LabSpec v5. To 

visually explore the differences between conditions, the Raman spectra were analyzed using 

Principal Component Analysis (PCA) in the Vegan package in R (RCore Team, 2012; Oksanen, 

2012). Ellipses represent standard deviations of point scores for each group. To test for 

differences between control and treatment groups when considering the spectra collected from 

the head and tail regions separately, the Adonis function in the Vegan package was applied. This 

was used to partition dissimilarities for the sources of variation using Euclidian distances, and 

conduct a permutation test with 1000 iterations to inspect the significance of those partitions. 

2.9. Growth assessment 

 Growth experiments were initiated with synchronized L1 stage nematodes maintained on 

standard tissue culture plates (Greiner Bio-One Ltd., UK) containing 20 mL of NGM agar and 

inoculated with 200 µL of OP50 supplemented with the relevant concentration of ZnONPs. To 

ensure food supply was ad libitum, worms were transferred daily to freshly prepared plates. All 

plates were incubated at 20°C. Digital images were taken (20 individuals per treatment) with a 

microscope and camera (SMZ1500 with DS-2Mv, Nikon UK Ltd., Kingston upon Thames, UK). 

The images were taken at 24 hour intervals, and analyzed using Image ProExpress v5.1 (Image 

ProExpress, Media Cybernetics, Wokingham, UK). The software allows the outline of each 

nematode to be traced and thus the flat volumetric surface area of the nematode to be calculated. 

Each growth assay was replicated two times per test concentration. 
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2.10. Reproduction assay (brood size) 

Synchronized wild-type and mutant nematodes were transferred as L1s onto individual 24-well 

plates (Greiner Bio-One Ltd., UK). Each well contained 2 mL of NGM agar with 20 µL of 

bacterial lawn supplemented with the corresponding concentration of ZnONPs. Nematodes were 

transferred daily to new agar plates, until the completion of the egg laying period. Hatched 

progeny were allowed to grow to L1/L2 stage and counted manually. Reproduction was recorded 

for 36 individuals at each concentration. All plates were incubated at 20°C. 

 

2.11. Lifespan assay 

Approximately 400 nematodes per condition were monitored from L1 stage to death. Each day 

individual worms were transferred to a freshly prepared OP50 NGM plate and survival scored by 

a gentle stroke with a platinum wire. Statistical analysis was performed using the Log-rank 

(Mantel-Cox) Test for comparison of survival curves comparing to control at each ZnONP 

concentration with confidence levels indicated by p≤0.0001.  

 

2.12. Data analysis 

Statistical analysis was performed using the GraphPad Prism software package (GraphPad 

Software Inc., USA). Error bars represent mean ±SEM and significances calculated by means of 

a one-way ANOVA followed by Tukey post-hoc test. Where indicated, a 2-way ANOVA Test 

was applied with the Bonferroni correction for multiple sample comparisons. 

 

3. Results and Discussion 

Characterization of ZnONPs. Dynamic Light Scattering (DLS), a technique that measures 

particle dimensions in the biological test medium, was performed on ZnONP suspensions in LB 

broth (with and without E. coli). In LB broth, ZnONPs assembled into clusters of 1 micron 

diameter (Supplementary Fig. 1A). However, as the bacteria are of a similar size and appear as a 

broad peak when measured with DLS (Supplementary Fig. 1B), it was not possible to distinguish 

peaks from the ZnO particles and the bacteria (Supplementary Fig. 1C). These results suggest 

that ZnONPs exist mainly as stable agglomerate complexes in the test medium, independent of 

bacteria status. 
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The shape and size of ZnONPs suspended in stock solution was further examined by 

transmission electron microscopy (TEM). The majority of ZnO nanoparticles were acicular in 

shape and clustered typically in the 30 nm to several 100 nm range (Fig. 1A), which may be 

attributed to the reduced surface charge and thus weaker electrostatic repulsive forces (Nel et al., 

2009). Time-dependent changes in agglomerate levels were assessed by measuring particle size 

distribution in LB broth in the absence of bacteria at 0 hrs and 24hrs (Fig. 1B-C), and in presence 

of OP50 bacteria at 0 hrs and 24hrs (Fig. 1D-E).  Worthy of note is that exposure to direct 

sunlight (Ma, et al., 2011) and the size (Khare et al., 2011) can modulate the toxicity of particles, 

as can the potential dissolution of the metal-particle moiety. Whilst the first aspect 

(phototoxicity) can be controlled within a laboratory setting, the latter two (particle size and 

dissolution) can be measured. Indeed, the a analysis of the proportion of total Zn that remained in 

particulate form after 48 hours incubation in the bacterial culture medium (i.e. the fraction of 

ZnO that was removed by ultrafiltration) indicated that only a relatively small proportion of 

material remained as intact nanoparticle. Dissolved ZnO constituted over 50% of total Zn at all 

analyzed concentrations (Fig.1F), a figure that is significantly higher than the 7.1 % reported by 

Ma et al., 2011. This indicated that ZnO dissolution to ionic form may represent an important 

exposure mechanism and contribution to toxicity in the test system. Nevertheless, given that a 

substantial proportion of the ZnO nanoparticle remained intact and the concentration of ionic Zn 

is not considered to be toxic, per se, we hypothesize that the bioavailable fraction of ZnONPs 

will exert nanoparticle specific effects. 

Although the formation of particle clusters was observed as soon as the nanoparticles were added 

to the LB broth, the level of agglomeration did not increase over time. Based on the TEM 

images, ZnONP agglomerates did not seem to induce morphological changes or enter the 

bacteria. Clearly, high concentrations of ZnONPs may inflict changes to the metabolic system of 

E. coli, a notion that cannot be assessed by TEM (Roselli et al., 2003; Liu et al., 2009). However, 

continuous contact with ZnONPs caused the bacteria to secrete extracellular polymeric 

substances (EPS) which coated the nanoparticles within a 24 hour timeframe (Fig. 1E). Given 

that nematodes consume the bacteria, it is conceivable that the secreted EPS may modulate the 

bioavailability of ZnONPs, a notion that warrants further investigation. This may be achieved, 

for example, via the attachment of a fluorescent marker probe onto the ZnONP, and following its 

traces in the nematode body (analogous to the approach performed by Mohan et al., 2012). 
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In addition, by utilizing energy dispersive X-ray (EDX) analyzes and chemical mapping, it was 

possible to define the zinc gradient, namely the relationship between Zn concentration and 

distance to a nanoparticle (Fig. 1F-G). The Zn content, as measured by TEM-EDX, was 

approximately 50% at the ZnO particles. Moving 1µm and 3µm from the ZnO agglomerates 

reduced the Zn content to 6% and <3%, respectively. Given that background levels were 1-2% 

Zn, this indicates that only minor amounts of Zn dissolve from the ZnO agglomerates and diffuse 

into the media within 24 hours. However at this stage it is not possible to exclude the notion that 

Zn ion release within the cellular and sub-cellular environment may contribute, to some extent, 

to the toxicity of the nanoparticles tested. 

In addition, potential antibacterial effects of nanosized ZnO suspensions on bacteria were studied 

(Tayel et al., 2011 Zhang et al., 2010; Li et al., 2012; Reddy et al., 2007; Liu et al., 2009). Whilst 

chronic exposures up to 50 mg/L ZnONP did not affect the sigmoidal growth characteristics of 

E.coli OP50, strong antibacterial effects were observed  at 100 mg/L ZnONP, a finding that was 

statistically significant (p≤0.05) (Supplementary Fig. 2A), but not due to a time or concentration 

dependent change in pH (Supplementary Fig. 2B). For this reason, an upper limit of 50 mg/L 

ZnONP was chosen for animal experiments.  Given the microscopic size of C.elegans is was not 

possible to apply Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify changes 

in internal Zn load within an individual nematode, however Raman microscopy identified an 

intense signal  characteristic of the ZnONP shift only in nematodes exposed to 50 mg/L ZnONP 

(Supplementary Fig. 3). This provides strong, albeit circumstancial, evidence that ZnONPs are 

readily taken up by the nematode. The concentration range aligns well with the published 

literature (e.g. Ma et al., 2009, though significantly higher than the concentratiosn tested in Wu 

et al., 2013), and is considered to be environmentally relevant. For example the predicted soil of 

engineered ZnONPs  concentration of  predicted soil concentration of engineered  ZnONPs 

arising from use in consumer products has been estimated to be 3.2 mg/Kg soil (Tiede et al., 

2009). Likewise, the Environmental Agency UK Soil and Herbage Pollutant Survey (DEFRA, 

2007) states that the mean concentration of Zn (in the UK) is 81mg/kg and the median 65 mg/kg 

and significantly higher in soil surrounding industrial sites.Quantitative assessment of ZnONP-

responsive transcripts. The two C. elegans metallothioneins (MTs), mtl-1 and mtl-2 (encoding 

CeMT-1 and CeMT-2, respectively), are believed to be key players in the protection against 

metal and ROS induced toxicity (Swain et al., 2004; Zeitoun-Ghandour et al., 2011). In addition, 
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phytochelatin synthase, pcs-1, encodes a metal-dependent antioxidant enzyme (Vatamaniuk et 

al., 2001, 2005; Schwartz et al., 2010) which, along with glutathione (GSH), synthesizes 

phytochelatins (PCs).  

In order to determine whether these metalloproteins are transcriptionally activated by ZnONPs, 

transgenic worms bearing extra-chromosomal copies of the promoter fusion construct Pmtl-

2::GFP or Ppcs-1::GFP were exposed to 50 mg/L ZnONP. The induction of Pmtl-2::GFP was 

most profound in the intestinal region and was marked by a 5.3-fold increase in relative 

fluorescence (Fig. 2A-B). Ppcs-1::GFP was shown to be constitutively expressed in the posterior 

pharyngeal cells and the anal valve. Following the ZnONP challenge, Ppcs-1::GFP fluorescence 

increased by 2.8-fold, again mainly in the intestinal cells (Fig. 2A-B).  

The use of transgenic nematodes allow a rapid screening of transcriptional responses upon 

ZnONP exposure, and our observations that metallothionein expression is induced by ZnONPs 

are well aligned with the results published by Ma et al., (2009). A quantitative approach was 

chosen to assess the transcriptional responsiveness of target genes previously identified as 

possible biomarkers of NPs toxicity (Akhtar et al., 2012) or due to their established involvement 

in oxidative stress response pathways and anti-apoptotic activity (van Raamsdonk and Hekimi, 

2010; Huang et al., 2010). The following transcripts were examined: metallothionein (mtl-1), 

superoxide dismutases (sod-1, and sod-3), catalases (ctl-2, and ctl-3), and peroxidase (prdx-3). In 

addition, the expression level of two other transcripts was determined, namely cep-1 (an ortholog 

of the human tumour suppressor p53) and dct-1 (which resembles the mammalian 

BCL2/adenovirus E1B 19kDa protein-interacting protein 3, BNIP3). The latter two genes are 

linked to DNA damage and apoptosis. It should be noted that the qPCR amplifications of sod-2, 

mtl-2 and pcs-1 (the latter two aimed to validate the GFP stains described in Fig. 2) failed the 

stringent quality control criteria. This may have been due to the near zero expression levels 

observed of the transcripts in control, ZnONP-devoid, baseline conditions. Therefore, these 

transcripts were excluded from further analysis. The qRT-PCR results indicated that in wild-type 

nematodes the expression of four transcripts (mtl-1, sod-1, cep-1, and dct-1) was significantly 

induced by ZnONP exposure (Supplementary Figs. 4A and 5A).  

The mRNA expression levels of the transcripts were also quantified in the triple knockout mutant 

mtl-1;mtl-2;pcs-1(zs2) nematode (bar the mtl-1, which cannot be measured in the null 

background). As in wild-type, cep-1 was significantly upregulated upon ZnONP exposure, 
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however dct-1 was not. All other transcripts tested (ctl-2, ctl-3, sod-1, prdx-3) did not show a 

significant difference in expression values upon ZnONP exposure (Supplementary Fig. 4B and 

5B).  

Exposure of the cellular environment to ZnONPs can oxidize and reduce macromolecules 

(proteins, lipids, DNA), thereby causing oxidative damage to the cell (Sharma et al., 2012a,b; 

Sharma et al., 2009). In addition, due to their size, some ZnONPs may reach the nucleus and 

interact with DNA molecules (Sharma et al., 2012a,b; Martinez et al., 2003). Several genes are 

biomarkers of the DNA damage and apoptosis, such as p53 (Derry et al., 2001) and BNIP3 

(Yasuda et al., 1998; Pinkston-Gosse Kenyon, 2007), the orthologs of C. elegans cep-1 and dct-

1, respectively. The observed increase in transcript levels of cep-1 (in wild-type and the triple 

mutant) and dct-1 (in wild-type only) following a ZnONP challenge suggests that exposure and 

apoptosis are interlinked, and supports the notion that zinc oxide nanoparticles can induce 

apoptosis in human cancer cells through reactive oxygen species57

Free radical levels in C. elegans exposed to ZnONPs. The generation and accumulation of free 

radicals affects organismal development, brood size and longevity in C. elegans (Honda and 

Honda, 2002; Hughes and Stürzenbaum, 2007; Zeitoun-Ghandour et al., 2010). Given that the 

exposure to ZnONPs seemingly activate metalloproteins and are thought to be involved in ROS 

generation in nematodes (Ma et al., 2009), we used a cell permeable DCFH-DA dye to conduct 

quantitative intracellular ROS measurements to explore differences in ROS levels in wild-type 

and a metallothionein-phytochelatin triple mutant (mtl-1;mtl-2;pcs-1(zs2))  raised from L1 to L4 

stage in the presence or absence of 50 mg/L ZnONP. We opted to utilize the triple mutant over 

the single / double mutants due to its documented hypersensitivity to metal exposure (Hughes et 

al., 2009). The DCFH-DA assay has previously been applied to detect the formation of metal-

induced free radical compounds (Halliwell and Whiteman, 2004) but has also been criticized for 

its low specificity (Cohn et al., 2008; Karlsson et al., 2010). This assay provided quantitative 

evidence that the relative base-line levels of ROS generation are comparable between the wild-

type and the mutant nematodes. However, the exposure to ZnONPs resulted in a significant 

(p≤0.05) decrease in the total intracellular ROS levels in the wild-type strain, as the total 

fluorescence intensity of the DCF moiety decreased by 22% compared to the control levels. In 

, as hypothesized in studies 

that highlighted the carcinogenicity of ZnONPs (Sharma et al., 2012a,b; Ahamed et al., 2011; 

Sharma et al., 2009; Wu et al., 2010). 
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contrast, exposure to 50 mg/L ZnONP induced the ROS levels in the mtl-1;mtl-2;pcs-1(zs2) 

strain by a significant (p≤0.05) 44% (Fig.1C).  

We hypothesize that the observed differential response is due to the presence or absence of the 

functional metalloproteins. In wild-type, the presence of metalloproteins provides antioxidant 

protection to the organism; this protection is significantly impaired in the triple knockout mutant, 

findings that mirror those of others (Sharma et al., 2012a,b; Ahamed et al., 2011; Sharma et al., 

2009; Hanley et al., 2009; Huang et al., 2010).   

Raman Spectroscopy. Raman spectroscopy can provide a phenotypic fingerprint of constituent 

biomolecules without the need for labelling or staining. The fine spatial scale mapping ability of 

Raman, particularly Coherent anti-Stokes Raman spectroscopy (CARS), has successfully been 

used to localize metal oxide nanoparticles in tissues (Moger et al., 2008; Galloway et., 2010; 

Johnston et al., 2010). Here we utilized the ability of Raman spectroscopy to generate 

fingerprints from biological tissues to identify changes in the biomolecular phenotype in control 

and ZnONP exposed wild-type and mtl-1;mtl-2;pcs-1(zs2) nematodes. Supplementary Fig. 6A 

shows an example Raman spectrum of nematode tissue, with tentative peak assignments in 

Supplementary Table 1. 

The PCA analysis on the spectra obtained from the head and tail regions of wild-type and mtl-

1;mtl-2;pcs-1(zs2) nematodes raised in the absence of ZnONPs yielded only minor, statistically 

non-significant, differences in the global phenotypic fingerprint (Supplementary Fig. 7). 

Likewise, no statistically significant differences were identified between the respective head and 

tail regions of control and ZnONP exposed wild-type nematodes (Fig. 3). In contrast, a 

statistically significant separation of the spectra was observed in the head and tail region of the 

mtl-1;mtl-2;pcs-1(zs2) mutant upon exposure to ZnONPs (head: R2 = 0.102, F1,118 = 13.447, p = 

0.001 and tail: R2 = 0.0438, F1,118 = 5.408, p = 0.009). The fact that a statistically distinct 

phenotypic effect of ZnONP exposure was only observed in mtl-1;mtl-2;pcs-1(zs2), confirms 

that the phenotype of the metallochaperone mutant is more affected by ZnONP exposure than 

wild-type nematodes. Examination of the average spectra derived from control and ZnONP 

exposed nematodes gave some indication of the phenotypic changes (Supplementary Fig. 6B). 

Exposure to ZnONPs in mtl-1;mtl-2;pcs-1(zs2) nematodes caused reductions in peak intensities 

of proteins, amino acids (cytochrome c, amide I, phenylalanine) and nucleic acids, highlighting a 

broad effect on the nematode phenotype. Future fine-tuning of special resolution (e.g. intestinal 
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cells vs. germ cells) will aid in defining the correlation between Raman fingerprints and ZnONP 

dosage. Whether this physiological response to ZnONPs is directly dependent on 

metallothioneins and/or phytochelatins remains to be established.  

Life-cycle consequences of ZnONP exposure. Life-cycle traits are meaningful toxicological 

endpoints within the context of monitoring and assessing the ecological risk to human health. To 

date, C. elegans has been used to screen toxicological effects of synthetic or manufactured NPs, 

such as ZnO, Al2O3 or TiO2, silver nanoparticles, platinum nanoparticles 

The effects on growth, reproductive capacity and lifespan were examined following the chronic 

exposures to ZnONPs in wild-type and mtl-1;mtl-2;pcs-1(zs2). The initial growth rate was 

similar in both strains and seemingly not affected by ZnONP exposure, and all nematodes, 

irrespective of strain or exposure condition, reached adulthood within 4 days post-hatching (data 

not shown). However, a significant reduction in final adult body size (measured at day 6 post 

hatch) was observed in ZnONP exposed nematodes (Fig.4A), a phenotypic effect that was found 

to be concentration dependent and more pronounced in mtl-1;mtl-2;pcs-1(zs2) (Supplementary 

Table 2). In wild-type nematodes, the difference in final body size was statistically significant 

only at higher concentrations (20 and 50 mg/L ZnONP), but the mtl-1;mtl-2;pcs-1(zs2) mutant 

was more sensitive to ZnONP exposure (a statistical difference was observed at all 

concentrations tested, namely 5-50 mg/L ZnONP).  

and silica nanoparticles 

(Wang et al., 2009; Roh et al., 2009; Kim et al., 2008; Pluskota et al., 2009). In general, NPs 

were shown to reduce nematode lifespan, possibly in response to the particle mediated 

generation of reactive oxygen species (ROS), and induce a premature degeneration of 

reproductive organs. 

Others have reported that nanomaterials can cause a reduction in nematode reproduction (Wang 

et al., 2009; Roh et al., 2009; Kim et al., 2008; Pluskota et al., 2009). Therefore we examined the 

reproductive capacity of wild-type and the triple-knockout mutant following exposure to 

ZnONPs. In control conditions (i.e. in the absence of ZnONPs), wild-type and mtl-1;mtl-2;pcs-

1(zs2) produced 233.2 ± 2.4 and 160.4 ± 1.1 viable eggs, respectively (Supplementary Table 2). 

Analysis of the full data-set using two-way ANOVA indicated a significant effect of both strain 

(p≤0.001) and exposure concentration (p≤0.001) on brood size. A significant interaction term 

was also found supporting the dependence of sensitivity to ZnONP exposure on the tested strain. 

This was evident by the fact that exposure to ZnONPs resulted in a significant concentration-
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dependent reduction in reproductive output. In wild-type worms this was moderately significant 

(p≤0.05) at 5 mg/L ZnONP, and highly significant (p≤0.001) at higher concentrations, but 

notably already highly significantly different (p≤0.001) in the mutant strain exposed to 5 mg/L 

ZnONP (Fig. 4B and Supplementary Table 2). 

On control plates, median survival of wild-type nematodes was 13 days but only 11 days for mtl-

1;mtl-2;pcs-1(zs2)  (Supplementary Table 2). As with development and brood-size, exposure to 

ZnONPs induced a significant concentration-responsive effect on the median lifespan of the 

wild-type worms. In wild-type, survival between day 6 and 10 was marginally improved in 

worms exposure to the lowest concentration (5 mg/L ZnONP) marginally, a trend that was 

statistically insignificant and notably reversed at later time-points.  In fact, median lifespan in 

wild-type was decreased by a day at 5 mg/L ZnONP, and a further day at higher ZnONP 

concentrations. Analogous effects were found with mutant nematodes, however at the highest 

concentration the death rate was accelerated and nematodes died 3 days earlier compared to their 

respective controls (Fig. 4C). All exposure effects were found to be highly significant (p≤0.0001) 

(Supplementary Table 2). 

 

4. Conclusions 

Previous studies have demonstrated that nematodes lacking metallothioneins and phytochelatins 

are more susceptible to exposure to elemental metals (Swain et al., 2004; Hughes et al., 2009). 

To our knowledge this is the first report which utilizes a hypersensitive mutant and Raman 

spectroscopic tools to characterize the toxicity of ZnONPs in a triple knockout background. 

Given that exposure to ZnONPs was not lethal to nematodes suggests that the overall toxicity 

was relatively low, which may be explained by the time-dependent dissolution of ZnONPs to 

release ionic Zn, thereby reducing the accumulation rate and toxicity (Poynton et al., 2011; 

Franklin et al., 2007). The moderate, nevertheless toxic effects were amplified in the mtl-1;mtl-

2;pcs-1(zs2) strain, suggesting that metalloproteins may play an important role conferring a 

protective role in ZnONP induced toxicity. Which of the three genes (in isolation or 

combination) drives the observed susceptibility towards ZnONPs remains to be defined. 

Extrapolated to higher organisms, these results highlight that the toxicity of ZnONPs may be 
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exacerbated in individuals with mutations in key metalloproteins, akin to the impaired copper 

transport in Menkes and Wilson’s diseases.   
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Figure Legends: 

 

Fig. 1. Transmission Electron Microscopy (TEM) of ZnONP nanoparticles. Images of ZnONPs 

in HPLC water (A), in LB-broth (no bacteria) at 0 hrs (B), at 24hrs (C), in LB-broth with 

bacteria (OP50) at 0 hrs (D), and after 24hrs (E).  Energy Dispersive X-ray (EDX) analyzes and 

chemical mapping on four micron-sized windows (F) was performed to determine the percentage 

of Zn content (G) and the relative dissolution rate quantified (H). Note: the spectrum adjacent to 

the ZnONP agglomerate resulted in elemental Zn of 50% (spectrum 0) and decreased with 

distance from the ZnONPs (spectrum 1, 2 and 3).  

 

Fig. 2. Induction of green fluorescence protein (measured as relative fluorescence units) in mtl-

2::GFP and pcs-1::GFP transgenic Caenorhabditis elegans in response to ZnONPs (A). A 

quantitative analysis of induction of GFP (measured as relative fluorescence units) (B), showing 

that a significant stress response is caused by the ZnONPs treatment in both mtl-2::GFP and pcs-

1::GFP transgenic strains. Approximately 10 worms were observed in each case.  Error bars 

represent the standard error (n = 10). Statistical analysis was performed using the Wilcoxon 

signed rank test (p<0.05). Exposure to ZnONPs generates high levels of free radical H2O2 in C. 

elegans (C).  

 

 

Fig. 3.  PCA of the head and tail region of wild-type and mtl-1;mtl-2;pcs-1(zs2) nematode.  PCA 

showing the relationship between the Raman phenotype of ZnONP exposed and control 

treatments in wild-type and mtl-1;mtl-2;pcs-1(zs2) mutant nematodes in both the head and tail 

regions. Points represent replicates within (n= 5 per nematode) as well as between nematodes (n 

= 25 per treatment). Black points represent spectra from control nematodes, red points represent 

spectra from ZnONP exposed nematodes. Black and red ellipses represent standard deviations of 

point scores for the control and treatment groups, respectively. 
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Fig. 4. Volumetric area of wild-type and mtl-1;mtl-2;pcs-1(zs2) nematodes chronic exposure to 

ZnONP (A). Total cumulative brood size of wild-type and mtl-1;mtl-2;pcs-1(zs2) nematode 

strains exposed to different ZnONP concentrations (B). Lifespan of wild-type, and mtl-1;mtl-

2;pcs-1(zs2) nematode strains exposed to various ZnONPs concentrations (C). 
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Supplemental Figures 

Supplementary Fig. 1 Measuring the size of ZnONPs agglomerates by Dynamic Light 

Scattering (DLS) spectrometry. The characterization was performed at ZnONPs in HPLC 

water (A), ZnO particles in LB broth without OP50 bacteria (B) and in LB broth with OP50 

bacteria (C). 
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Supplementary Fig. 2 Effect of ZnONP addition on bacterial growth (A) and pH (B). The pH 

was measured at three time intervals: without ZnONPs (1), immediately after ZnONP addition (2) 

and 24 hours post addition (3). 
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 Supplementary Fig. 3 A Representative Raman spectra obtained from (A) unexposed wild-type 

nematodes and (B) wild-type nematodes exposed to 50 mg/L ZnONP for two days (from L1 to L4 

stage). The intense Raman shift in (B) was obtained by probing the fluorescent hot-spot seen in 

the gut area of exposed nematodes, which coincides with the major Raman peak between 1000 

and 1200 cm-1 of a ZnONP solution analysed ex vivo (data not shown).  
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Supplementary Fig. 4 Quantitative Assessment of ZnONPs-Responsive Gene Expression. n=3 

(technical repeats n=3, biological repeats n=2). Error bars represent mean ±SEM.  
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Supplementary Fig. 5 Quantitative assessment of ZnONPs-responsive gene expression – the 

second biological replicate.  
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Supplementary Fig. 6 A representative Raman spectrum of nematode tissue and Raman 

subtraction plot, which identifies the major differential wavelengths peaks that changed in mtl-

1;mtl-2;pcs-1(zs2) nematodes, following ZnONP exposure. The following biomolecules were 

found to be affected by ZnONPs: cytochrome c (assigned Raman peaks: 746, 1124, and 1582), 

nucleic acids (assigned Raman peaks: 780, and 1335), phenylalanine (assigned Raman peak: 

1001), and amide I (assigned Raman peak: 1655). 
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Supplementary Fig. 7 Phenotypic fingerprinting by Raman spectroscopy.  
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Supplementary 1 Assignment of Raman shift peaks.    

Frequency (cm-1) Assignment References 
477 Skeletal modes of carbohydrates (starch) 1 
549 COC glycosidic ring def 2 
618 Phenylalanine (skeletal) 1 
641 Tyrosine (skeletal) 1 
667 Guanine 1 
720 Adenine 1 
746 Cytochrome c 3 
780 Cytosine, uracil (ring, str) 1,4 
825 Nucleic acids (C–O–P– O–C in RNA backbone) 2 
849 Buried tyrosine 1 

1001 Phenylalanine, substituted benzene derivatives 1 
1029 Carbohydrates, mainly – C–C– (skeletal), C–O, def (C–O–H) 2 
1093 Phosphate, CC skeletal, and COC str from glycosidic link 1 
1124 Cytochrome c 3 
1154 n(CC, CN), r(CH3) 1 
1170 Tyrosine, phenylalanine 4 
1246 Amide III random, lipids 2 
1312 Cytochrome c 3 
1335 Adenine, guanine, tyrosine, tryptophan 4,5 
1386 Cytochrome c 3 
1397 Cytochrome c 3 
1448 C–H2 def 1 
1582 Cytochrome c 3 
1602 Phenylalanine 1 
1655 Amide I 1 

 
1. Maquelin, K. et al., 2002. Identification of medically relevant microorganisms by 

vibrational spectroscopy. Journal of Microbiological Methods 51, 255-271. 
2. Schuster, K.C., Reese, I., Urlaub, E., Gapes, J.R., Lendl, B., 2000. Multidimensional 

information on the chemical composition of single bacterial cells by confocal Raman 
microspectroscopy. Analytical Chemistry 72, 5529-5534. 

3. Johannessen, C., White, P.C., Abdali, S., 2007. Resonance Raman optical activity 
and surface enhanced resonance Raman optical activity analysis of cytochrome c. The 
Journal of Physical Chemistry A 111, 7771-6. 

4. Uzunbajakava, N. et al., 2003. Nonresonant Raman imaging of protein distribution 
in single human cells. Biopolymers 72, 1-9. 

5. Harz, A., Rosch, P., Popp, J., 2009. Vibrational spectroscopy - a powerful tool for the 
rapid identification of microbial cells at the single-cell level. Cytometry Part A 2009, 
75A:104-113. 
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Supplementary Table 2 Life-history traits of wild-type and mtl-1;mtl-2;pcs-1(zs2) mutants 

raised in the presence or absence of ZnONPs.   

   ZnONP (mg/L)  

 Strain  
Control 5 10 20 50 

G
ro

w
th

 

wild-type 

N 20 20 20 20 20 

Surface area (microns) 
97961  

± 1360 

93839  

± 2425 

90817  

± 2575 

84543  

± 2098 

82551  

± 1201 

Surface area (% of control) 100 96 92 86 84 

Statistical significance ns ns *** *** 

mtl-1;mtl-2;pcs-1(zs2)   

N 20 20 20 20 20 

Surface area (microns) 
72192  

± 1117 

68368  

± 1303 

64396 

± 1357 

62037  

± 1839 

58086  

± 1529 

Surface area (% of control) 100 95 89 86 80 

Statistical significance *** *** *** *** 

R
ep

ro
du

ct
io

n 

wild-type 

N 35 34 34 33 36 

Total brood size ± SEM 
233.2  

± 2.4 

222.5  

± 2.9 

210.3  

± 2.1 

201  

± 2.5 

191.8  

± 2.3 

Broodsize  (% of control) 100  95  90  86 82 

Statistical significance * *** *** *** 

mtl-1;mtl-2;pcs-1(zs2)   

N 34 33 34 35 36 

Total brood size ± SEM 
160.4  

± 1.1 

138.4  

± 0.9 

128.6  

± 1.1 

119.9  

± 1.1 

109.7  

± 1.0 

Brood size  (% of control) 100 86 80 75 68 

Statistical significance *** *** *** *** 

L
ife

sp
an

 wild-type 

N 370 370 374 370 370 

Median survival (days) 13 12 11 11 11 

Statistical significance 
 

**** **** **** **** 

mtl-1;mtl-2;pcs-1(zs2)   

N 400 400 400 400 400 

Median survival (days) 11 10 9 9 8 

Statistical significance 
 

**** **** **** **** 

For the growth assay, statistical significance was assessed using the 2-way ANOVA Test comparing untreated and 

treated wild-type and mutant group sets of measurements. For cumulative brood size statistical significance of data 

between groups was defined by Tukey's multiple comparison testing was evaluated using the Log-rank (Mantel-Cox) 

Test for comparison of survival curves comparing to control, where ns = not significant, * p≤0.05, ** p≤0.01, *** 

p≤0.001 and **** p≤0.0001. 
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