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Decomposition of cotton strips in soil: analysis of the

world data set
P INESON, P J BACON and D K LINDLEY

Institute of Terrestrial Ecology, Merlewood Research Station, Grange-over-Sands

1 Summary

This paper reports the results from the statistical
analyses performed on the cotton strip data set, ob-
tained during the Symposium workshop on the use of
cotton strip assay in decomposition studies. The data
set, derived from various workers, contained infor-
mation from 329 replicated cotton strip insertions. The
data were examined using multiple regression, in an
attempt to determine the factors which appeared to
control the rate of decomposition of cotton strips in
soil in a world-wide comparison.

Analysis of the large data set highlighted the problems
associated with the limited geographical distribution
of strip placement. Analysis of a subset of sites for
which an increased number of variables were available
revealed the importance of climatic factors in deter-
mining cotton strip decay rate. In particular, potential
evaporation derived from literature values related very
closely to decomposition rate.

2 Introduction

Many attempts have been made by soil ecologists to
utilize standard substrates in organic matter decompo-
sition studies, with the expectation that such substra-
tes would enable inter-site comparisons of
decomposition to be made, by removing the confound-
ing effect of substrate quality (Swift et al. 1979).
Substrates have ranged from shoe-laces (Rosswall
1974} through to matchsticks {(Abrahamsen et al.
1975}, with cellulose being the most widely used.

The cotton strip assay has been applied in a wide
variety of situations around the world, both to compare
effects of various treatments on rates of decompo-
sition at a single site (eg Howson 1988) or at different
sites (Heal et al. 1974). The inter-site study of Heal et
‘al. (1974) compared tensile strength loss of cotton
strips (CTSL) at a number of sites in the tundra biome
and, although cotton strips have since been used more
widely, that remains the only global survey of rates of
decomposition using cotton strips.

Global comparisons and models of decomposition
processes have been attempted by few workers
(Esser et al. 1982; Berg et al. 1984}, and such studies
have been aggravated by the paucity of data for com-
parable substrates at sufficiently widespread lo-
cations. Therefore, the current Symposium was seen
as an opportunity to collate the existing cotton strip
data in order to determine those environmental factors
controlling decomposition of this material at the global
scale.

During the course of the Symposium, 2 workshop
sessions were held in which interactive analyses of
the available data were attempted. Suggestions were
made by participants as to which analyses should
be performed and, from these sessions, there arose
several conclusions and suggestions for further work.
The current paper is principally a report of the outcome
of these workshop sessions and of subsequent re-
analysis of the world-wide data set after additional
information and amendments had been provided by
the relevant authors.

3 Methods

3.1 Original data set

Delegates to the Symposium were asked, prior to the
meeting, to provide data on the tensile strength loss
following insertion of cotton strips into soils. The
variables requested, together with the units of
measurement, are outlined in Table 1. The data were
collated into a standard tabular form, and then coded
in a manner suitable for analysis using the GENSTAT
statistical computer package (Alvey et al. 1983). All
computations were carried out on a Honeywell 66/
DPS-300, in batch mode.

A total of 329 cases was included in the full data
set, with each case representing the mean value of
replicated strips for the same site and treatment. The
calculation of the standard cotton rotting rate (CRR),
as described by Hill et al. {1985), was performed for
each case to permit comparison of results, expressed
on a yearly basis. Data sets outside the recommended
limits of 10-90% tensile strength loss were rejected.

The mean, minimum and maximum values for each
of the variables requested from the contributors (Table
2) revealed that several important variables were miss-
ing from the data set, either because they had not
been measured, or because authors had failed to
provide them. Unfortunately, no data were provided
for assay period air temperature, soil temperature or
soil moisture content for any of the cases, and the
majority of contributors were unable to supply data
for many aspects of soil chemistry.

3.2 Augmented data set

After the Symposium, the data sets were checked by
authors and some further information was provided.
It was also decided that estimates for certain variables
could be obtained from published sources in order to
explain the variance observed in CRR rates for as wide
a range of sites as possible, in terms of climatic
factors.
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Table 1. The variables requested for the full data set

Mnemonic Variable Units

Details of strip placement

DEPTH Depth in soil cm

TS Mean tensile strength kg

SE Standard error of the mean of tensile
strength

FC Field control tensile strength kg

CcLoC Cioth control

N Number of samples

WIDTH Frayed width of tested substrip cm

DAYS Number of days in the field

DAYNO  Standard day number when samples
were placed

YEAR Year

CLOTH Cloth batch {(colour code) *

STRIP Code number for strip

NAME Name of worker *

Site characteristics

SITE Name of site *

PLOT Name of plot *

SUBPLOT Name of subplot *

COUNTRY Country *

LAT Latitude

LONG Longitude

HABIT Habitat type *

VEG Vegetation type *

MAN Form of management *

ALT Altitude m

Climatic variables

CLIM Climatic zone *

TEMP Mean annual temperature °C

RAIN Total annual rainfall mm

SOILT Mean annual soil temperature °C

SOILM Mean soil moisture % moist weight

PTEMP Period mean temperature during strip °C
insertion

PRAIN Period rainfall mm d-!

PSOILT  Period soil temperature °C

PSOILM  Period soil moisture % moist weight

Soil characteristics

STYPE Soil type *
LOI Loss on ignition %
TOTN Total soil nitrogen %
EXTN Extractable soil nitrogen ug g
TOTP Total soil phosphorus Hg g'
EXTP Extractable soil phosphorus Hg g!
CA Total soil calcium Mg g
EXTK Extractable soil potassium ug g™
PH Soil pH .

* denotes an alphanumeric string

Values of mean daily temperature, precipitation and
potential evaporation calculated for the period of strip
insertion were derived from the climatic compilation
of Muller (1982), using data for the nearest climatic
station at comparable altitude. Where possible, actual
climatic data provided by the individual workers were
used in preference to those derived from Muller
(1982), and there was generally good agreement be-
tween these values where both were available.

Table 2. Mean, minimum and maximum values for numerical data
in the full data set. The mnemonics used to describe the variables
are outlined in Table 1

Number of

Variable Mean Minimum  Maximum  missing values

Details of strip placement

DEPTH 8.65 1.50 18.00 0
TS 20.65 3.10 52.00 0
SE 1.94 0.13 5.54 0
FC 36.23 12.00 56.00 0
CLoC * * * 329
N 10.72 4.00 20.00 0
WIDTH 4.02 3.00 5.00 0
DAYS 191.83 14.00 383.00 0
DAYNO 205.70 8.00 341.00 0
YEAR 1975.44 1968.00 1984.00 0
Site characteristics

LAT 3/.56 -85.25 71.28 0
LONG 6.8 -113.00 156.68 0
ALT 396.09 5.00 1320.00 0
Climatic variables

TEMP 5.54 -12.50 27.50 38
RAIN 979.91 108.00 2011.00 38
SOILT 34.32 23.00 48.00 190
SOILM 64.70 12.00 99.00 142
PTEMP * * * 329
PRAIN 102.54 92.00 112.00 236
PSOILT * * * 329
PSOILM * * - 329
Soil characteristics

LOI 57.97 1.00 98.50 37
TOTN 1.56 0.10 3.10 96
EXTN 431.50 2.00 1000.00 285
TOTP 530.59 1.00 1500.00 243
EXTP 66.21 4.00 220.00 69
CA 1561.04 68.00 7906.00 51
EXTK 344.66 1.40 1040.00 51
PH 4.49 3.00 9.20 95

*denotes missing values

The augmented data set was restricted to data for
decomposition rates of strips in the top 2 cm of the
soil, and to strips not receiving any additional form of
treatment. Duplicate site cases were only used if they
represented results from insertions during different
periods of the year, and this resulted in the selection
of 48 cases, representing all of the sites identified in
Figure 1.

4 Results of analyses

4.1 Original data set

The analyses of the basic data set are described in
3 sections: (i) a brief discussion of the choice of
parameters used to describe the rate of cotton strip
rotting; (ii) a brief description of some sample analyses
performed during the workshop; and {iii) a more com-
prehensive investigation of the data set undertaken
after the workshop, with the benefit of experience of
the analyses done during the workshop. As a result
of this latter analysis, several difficulties in analysing
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the original data set were revealed. The shortness of
the section describing analyses requested by del-
egates during the workshop is largely due to our

subsequent realization that the data set was often -

incompatible with the analyses which had been re-
quested. '

4.1.1 Measurement of cotton strip decomposition

The work of Hill et al. (1985, 1988} has established
a ‘cotton rotting rate’ parameter (CRR), which was
specifically designed to be less affected by the known
technical difficulties of the procedure. In general, this
parameter was used as the dependent variable, de-
scribing cotton rotting rates, throughout the analyses.
A histogram of its distribution is given in Figure 2, and
can be seen to be highly skewed, most values being
of small magnitude from 0 to 5 {due to the predomi-
nance of cold sites), but with a very long tail to the
right. During the workshop, one of the delegates re-
quested the calculation of an earlier measure of cotton
rotting rate, CTSL day™', and, having calculated this
measure, we decided, for interest’s sake, to see how
closely it was related to the CRR parameter of Hill et
al. (1985). The scatter diagram shown in Figure 3
reveals a surprisingly tight relationship. Indeed, the
linear correlation between the 2 variables explains
96% of their variation, but the scatter plot reveals a
sigmoid ‘backbone’ arising from the transformation
equation applied by Hill et al. {1985), and suggests
that the linearization of the decay curve is not fully
achieved.

Table 3. CRR as a function of temperature, longitude, absolute
latitude and the number of days of strip insertion

Regression coefficients: Y-variate = CRR

Estimate SE t
Constant 30.82 3.39 9.1
TEMP -0.49 0.13 -3.8
DAYS -0.03 0.00 -9.3
ALAT -0.31 0.04 7.2
LONG -0.02 0.01 -2.3
Analysis of variance

Degrees of Sum of Mean

freedom squares square
Regression 4 11299 2824.68
Residual 323 4972 15.39
Total 327 16271 49.76

Variation accounted for 69.1%

Correlation matrix: df = 326

CRR CTSL day™' TEMP LONG ALAT DAYS
CRR 1.00
CTSL day™' 0.98 1.00
TEMP 0.78 0.74 1.00
LONG —-0.61 -0.57 -0.83 1.00
ALAT -0.75 -0.7 -0.94 0.80 1.00
DAYS -0.74 -0.71 -0.80 0.51 062 1.00

It is somewhat surprising that the less robust conven-
tional measure, CTSL day™', is so highly correlated
with the CRR measure that the 2 could almost be
regarded as equivalent. In practice, given that the
quality of the cloth is carefully controlled to give a
standard tensile strength, and that all investigators
endeavour to remove their cloth at a time when it is
expected to be around 50% rotted, the correlation is
perhaps rather less surprising with hindsight. It does,
however, indicate that the procedural difficulties may,
in practice, be rather less than were feared. In view
of the fact that the CRR measure of Hill et al. (1985)
is biologically sound and mathematically robust, we
have preferred this measure in our subsequent analy-
ses. However, for the benefit of investigators who
have used the other method, or those who wish to
compare previous results with the values of CRR given
in this paper, the regression equation predicting CRR
from CTSL day~! was found to be:

CRR = 0.8433 + 14.5620 x CTSL day™'

4.1.2 Examples of analyses requested during the work-
shop

Several requests were made to investigate the re-
lationship between CRR and fundamental environ-
mental parameters, such as temperature and latitude.
The example given below analyses CRR as a function
of temperature, longitude, absolute latitude and the
number of days the strips were in the soil. These 4
variables were derived from a step-wise regression.
Absolute latitude (ALAT) is the latitude expressed as
a positive number, representing degrees from the
equator, regardless of whether in the northern or
southern hemisphere. The analysis is given in Table
3, from which it can be seen that all 4 predictor
variables are significantly related, and that the analysis
is based on almost the entire data set (327 out of 329).

c 10— %
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Figure 4. Scatter plot of residuals as a function of fitted
values for the regression outlined in Table 3



While the relationship with temperature and latitude,
which also has a temperature component, would be
expected, the significant effect of the parameter for
days is interesting, as the CRR variable would be
expected to have removed the time component.
Again, this relates to the way in which investigators
endeavour to attain 50% CTSL, and reflects their a
priori judgement of the time required to reach this
rate. If we examine the scatter plot of the residuals
against the fitted values, given in Figure 4, we see
that the assumptions of the regression analysis have
not been properly met: there is a broad trend for the
residuals to decrease with the magnitude of the fitted
values, while 2 (or more) data sets from particular
regions give broad scatters of residuals for very similar
magnitudes of the fitted values (these appear as verti-
cal scatters of points at the centre and at the right of
the diagram of Figure 4). We should further note, when
examining the correlation matrix, that the regressor
variables are themselves highly interdependent, a fact
which makes the use of ‘step-up’ or 'step-down’ pro-
cedures of multiple regression highly dubious to ident-
ify the better predictor variables. The reason is that
multiple regression makes a largely arbitrary choice
as to which of a set of highly interdependent variables
to include, depending on minor and insignificant differ-
ences in the structure of the correlation matrix.

A second analysis was requested, directed more bio-
logically at understanding the process of cotton de-
composition, and this analysis examined the
relationship between the loge CRR and temperature,
subsequently adding the loge carbon/nitrogen ratio
{LGCN) and pH. The scatter diagram of loge CRR on
temperature is given in Figure 5, from which a broad
relationship is evident, explaining 40% of the variation
(Table 4). In the full model (CRR =f(temperature,
LGCN, pH)), the effect of pH was not significant, but
the effects of both temperature and LGCN were as
indicated in Table 5, and together explained 43% of
the variance in CRR.

4.1.3 Examination of the original data set

Straightforward interpretation of multiple regression
analyses requires the regressor, or predictor, variables
to be uncorrelated and the data set to have multivariate
normal distribution. We have already indicated above
that many of the variables in the present data set are
inter-correlated, which makes interpretation difficult.
Furthermore, many of the biologically more interesting
variables were not available from many locations rep-
resented by this data set. Accordingly, analyses which
include the more interesting parameters are perforce
restricted to a subset of the data which will often
not be representative. We illustrate this difficulty by
presenting 2 correlation matrices as Table 6. The full
data set comprises 329 sites and, if we confine our
interest to 7 basic variables, we are able to utilize
information from 236 of these; adding 4 commonly
recorded, but not especially interesting, biological vari-
ables only reduces the number of sites to 231, but
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Table 4. Relationship between loge CRR and mean annual tempera-
ture

Regression coefficients: Y-variate = loge CRR

Estimate SE t
Constant 0.08 0.04 2.1
TEMP 0.09 0.01 124

Analysis of variance

Degrees of Sum of Mean

freedom squares square

Regression 1 59.60 59.60
Residual 233 89.81 0.38
Total 234 149.41 0.64

Variation accounted for 39.6%

Table 5. Relationship between loge CRR, mean annual temperature
and LGCN

Regression coefficients: Y-variate = loge CRR

Estimate SE t
Constant 1.37 0.33 4.1
TEMP 0.10 0.01 131
LGCN -0.40 0.10 -39

Analysis of variance

Degrees of Sum of Mean

freedom squares square

Regression 2 65.11 32.55
Residual 232 84.30 0.36
Total 234 149.41 0.64

Variation accounted for 43.1%
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Table 6. Correlation matrices demonstrating the effect of sample size reduction on correlation coefficients

ALAT LONG ALT TEMP RAIN LOI TOTN EXTP CA  EXTK PH SOILT SOILM EXTN TOTP
Data sets = 231
ALAT 1.00
LONG 0.20 1.00
ALT -023 -0.M 1.00
TEMP 079 -048 006 1.00
RAIN -081 -032 027 077 1.00
LOI 019 -0.02 -0M 029 032 1.00
TOTN -009 -002 OoMN 0.12 012 056 1.00
EXTP 0.31 0.19 -020 -036 -045 -0.12 -007 1.00
CA 008 -018 048 025 004 032 051 -0.07 1.00
EXTK -0.00 -0.02 0.20 -0.16 -0.06 0.19 0.05 0.66 0.17 1.00
PH 0.16 031 0068 -040 -051 -049 -0.08 026 019 -003 1.00
Data sets = 20
ALAT 1.00
LONG 1.00 1.00
ALT -022 022 100
TEMP 099 099 038 1.00
RAIN -100 -1.00 032 099 1.00
LOI -023 -023 -050 -012 0.23 1.00
TOTN 0.18 0.18 -0.99 024 -018 -0.48 1.00
EXTP 029 029 022 025 029 0.17 -028 1.00
CA -004 004 072 003 004 034 076 072 1.00
EXTK 0.24 0.24 0.09 023 024 0.31 013 0.87 -0.58 1.00
PH -0.17 -0.17 -0.87 -0.09 - 017 -031 093 -0.39% 0.78 -0.21 1.00
SOILT -084 084 -024 080 084 004 038 042 045 -030 067 1.00
SOILM 0.26 0.26 -0.99 030 -026 -0.60 098 -0.22 071 0N 0.87 0.30 1.00
EXTN 065 065 006 063 -065 -020 -003 021 -020 001 -027 -063 003 1.00
TOTP -1.00 -1.00 032 -099 1.00 023 -0.17 -0.29 004 024 -018 084 -025 -065 1.00

adding a further 4 variables which are biologically
important (period soil temperature, period soil moist-
ure, extractable nitrogen, and total phosphorus) dra-
matically reduces the available data to only 20 sites.
By referring to the correlation matrices given in Table
6. we can see that it would be difficult to interpret
multiple regression analyses due to inter-correlations
between the predictor variables. However, if we inves-
tigate pairs of predictor variables in more detail, a
further difficulty becomes apparent.

In Figure 6, we plot absolute iatitude against tempera-
ture, and most of the values appear in the top left
of the Figure, with an indication that temperature
decreases with latitude, as would be expected; how-
ever, the form of this relationship, whether it is as-
sumed to be linear or not, will be highly affected by a
set of 9 values at low latitude, with corresponding
high temperature, appearing as a single cluster of
points in the bottom right of the Figure. Even more
dramatic discrepancies can be seen in Figures 6 ii and
6 iii, which plot absolute latitude against, respectively,
altitude and loss-on-ignition. Both these Figures reveal
a broad scatter of points, largely uncorrelated, at high
latitudes, an absence of information at intermediate
latitudes, and a confined spread of points at low lati-
tudes; such distributions are far from a bivariate-nor-
mal distribution, and, in the cases of Figures 6 i and 6
ili, could give rise to apparent correlations between
the 2 variables, which are largely dependent on the
absence of intermediate values.

Simitar discontinuous distributions can be seen for the
biological parameters, as illustrated in Figures 7 i and
7 ii, which plot loss-on-ignition against, respectively,
pH and total phosphorus. There is thus a dual problem
with the data set: first, some of the biologically more
interesting parameters are only recorded for a minority
of sites, which may well not be representative (the
percentage of variation of CRR explained for the sub-
set cannot be expected to be the same for the whole
data set); second, within the minority of sites for which
some parameters are recorded, it appears that there
are frequently sites which are atypical of the others;
indeed, they may have been specifically selected as
representing extreme, but interesting, circumstances;
thus, any predictor variable for which these sites also
have unusual values (as illustrated in Figures 6 & 7)
could statistically act simply to distinguish these sites
from the others (as binary variables would do), rather
than indicating a true functional relationship between
the parameter and CRR.

In Figure 8, we confirm that this possibility is a real
risk with the present data set by showing scatter
diagrams of CRR against 2 physical parameters, absol-
ute latitude and temperature, and 2 chemical par-
ameters, loss-on-ignition and pH. Examination of other
scatter plots not shown in this paper shows that most
of the regressor variables have very odd distributions
with CRR, and that problems of outlying values are
frequent. Indeed, the distributions of bivariate plots,
and the frequency and magnitude of outlying sets are
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such that it is not possible to suggest useful non-linear
transforms.

Unfortunately, the only feasible solution to these dif-
ficulties is to obtain more data to fill the gaps. If all
the sites which were extreme in any parameter are
omitted, the resulting data set is very small and almost
certainly unrepresentative. Had the data set rep-
resented a more comprehensive series of sites (effec-
tively filling in the gaps between the majority of sites
and some of the extreme ones), a multivariate tech-
nique, such as principal component analysis, used on
the predictor variables might perhaps have overcome
statistical difficulties. However, principal component
analysis does itself require a full data set in order to
ordinate any one set, and would also be prone to
giving undue weight to extreme values in any variable.
Thus, in the analyses described below, we have felt
obliged to confine our remarks to the broader trend
exhibited by the fundamental physico-chemical par-
ameters which are recorded for the great majority of
data sets. Even so, our conclusions have to be modi-
fied in the light of which data sets were actually
included in which analyses.

4.1.4  Relationships with basic physico-chemical par-
ametérs

During the workshop, a regression analysis on a large
proportion of the data set indicated that 3 parameters,
absolute latitude, temperature, and cotton strip depth,
explained about 70% of the variance of CRR. During
subsequent analyses, we noticed that this same equa-
tion explained 60% of the variation with a data set of
326, but only 34% with a data set reduced to 228
by the inclusion of additional interesting biological
parameters. It appears, from a number of analyses,
that temperature and absolute latitude are almost
synonymous with regard to this data set, their inter-
correlation explaining 60% of their variance. For sev-
eral different, but large, subsets of data, absolute
latitude and temperature are both highly significant
predictors, but the accuracy of the prediction is not
greatly affected by which is used, as might be ex-
pected given their high inter-correlation. For example,
on a data set of 230, the relationship with the best 9
parameters (absolute latitude, temperature, rainfall,
loss-on-ignition, total nitrogen, extractable phos-
phorus, calcium, total potassium and pH) is found
to include temperature, rainfall and total nitrogen as
having significant effects. However, the effects of
rainfall and total nitrogen are only just significant
(P<0.05, as opposed to the very highly significant .
effect of temperature, P<0.001), and the overall equa-
tion only explains 2% more variation than the corre-
lation with temperature alone (which explains 35%
variance).

A different, and somewhat larger, data set, with 325
degrees of freedom and using absolute latitude,
temperature, rainfall and loss-on-ignition as predictor
variables, ascribes highly significant effects to tem-
perature, loss-on-ignition and rainfail, but not absolute
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Table 7. Correlation matrix derived when attempting to provide a
predictive equation for CRR, using 328 cases

Table 9. Correlation matrix derived when attempting to provide a
predictive equation for CRR, using 235 cases

CRR DEPTH ALAT TEMP RAIN LOI CRR DEPTH ALAT TEMP RAIN LOI TOTN
CRR 1.00 CRR 1.00
DEPTH -0.20 1.00 DEPTH 030 1.00
ALAT -0.75 0.10 1.00 ALAT -043 0N 1.00
TEMP 078 -014 094 -1.00 TEMP 057 -019 079 1.00
RAIN 048 -009 -072 0.79 1.00 RAIN 042 -006 -082 077 100
LOI -0.65 0.07 050 -046 -0.19 1.00 LOI -001 001 -013 023 020 1.00

TOTN 007 005 -0.06 009 006 057 100

Table 8. The analysis of variance table for the regression analysis
shown in Table 7 Table 10. The analysis of variance table for the regression analysis

sh in Table 9
Regression coefficients, Y-variate = CRR own

Regression coefficients, Y-variate = CRR

Estimate SE t
Estimate SE t
Constant 10.54 0.72 14.7
TEMP 0.55 0.04 14.2 Constant 2.42 0.26 9.4
LOI -0.07 0.01 -95 TEMP 0.14 0.01 10.3
RAIN -0.00 0.00 4.1 DEPTH -0.05 0.01 -37
DEPTH -0 0.04 -2.8 LOI -0.01 0.00 2.2
Analysis of variance Analysis of variance
Degrees of Sum of Mean Degrees of Sum of Mean

freedom Squares Square freedom squares square
Regression 4 11939 2984.82 Regression 3 160.2 53.40
Residual 323 4332 13.41 Residual 231 262.8 1.14
Total 327 16271 49.76 Total 234 423.0 1.81

Variation accounted for 73.0%

Variation accounted for 37.1%

latitude, and explains 72% of the variation. Again,
temperature explains a considerable proportion (60%)
of the variation on its own. ltis interesting to note that
the larger data set (328 as opposed to 230) has nearly
twice as much variance explained by the total model
and by temperature alone (72% and 37% for the
full model and 60% and 36% for temperature alone,

respectively). Temperature appears to be the most
important of the physico-chemical parameters rec-
orded, with loss-on-ignition and rainfall also having
significant predictive effects, but the importance vary-
ing considerably with the sets of data that are included
in a particular analysis.
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Figure 8. Scatter plots showing the relationship between CRR and absolute latitude, mean annual temperature,

loss-on-ignition, and pH

[n a final analysis, we attempted to find a good predic-
tive equation for CRR based on variables which were
recorded for 328 out of 329 of the data sets. CRR was
predicted from depth of insertion, absolute latitude,
temperature, rainfall, and loss-on-ignition. The first
analysis included all 328 data sets; the correlation
matrix is given in Table 7 and the analysis of variance
for the regression analysis in Table 8. The 4 variables,
temperature, loss-on-ignition, rainfall and depth, are
shown to have significant effects, with slopes as given
in Table 8. However, when the data set was reduced to
two-thirds of this size, 235 data sets, and the analysis
repeated, a somewhat different situation emerged.
The correlation matrix is given in Table 9, and the
analysis of variance for the final regression model in
Table 10. The effect of rainfall is no longer significant,
but the effects of temperature, depth and loss-on-
ignition still are significant. However, it should be

noted that the parameter estimates are sensitive to
the data sets used, although the coefficients for the
effects of loss-on-ignition are not dissimilar between
the 2 analyses (328 versus 235 sets). The parameter
estimates for the effects of temperature and depth of
insertion vary considerably, and significantly, between
the 2 analyses.

We concluded, with regret, that the data set here
analysed, although extensive, is not sufficiently com-
prehensive (lacking values for many important biologi-
cal parameters for many of the sites investigated) to
permit firm conclusions to be reliably drawn (over and
above the broad trends evident from Tables 8 & 10).
Accordingly, we have attempted to estimate some of
the missing data using a compendium of meteorologi-
cal data, which allows us to estimate, albeit somewhat
imprecisely, some of the missing values on the basis
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Figure 9. Scatter plot showing the relationship be-
tween CRR and period potential evaporation (PEVAP),
using the augmented data set

of their geographic locations. This analysis is described
below.

4.2 Augmented data set

Analysis of the original data set had highlighted the
over-riding importance of climatic factors in determin-
ing the rate of decomposition of cotton strips. In the
analyses of the extended data set, soil chemical vari-
ables were not included, and period temperatures,
rainfall and potential evaporation (PEVAP) were de-
rived from published tables.

Table 11 shows the correlation matrix between the
variables used in the multiple regression analysis, in
which CRR was the dependent variable. From this
matrix, the importance of PEVAP in explaining de-
composition rate is apparent, and this importance is
reinforced in Table 12, which shows the analysis of
variance table and regression coefficients resulting
from the step-wise multiple regression. Period poten-
tial evaporation explained 77% of the variance, yield-
ing the equation:

CRR = 0.20 + 3.13 (PEVAP)

Table 12. The analysis of variance table for the regression analysis
of the extended data set

Regression coefficients, Y-variate = CRR

Estimate SE T
Constant 0.20 0.92 0.2
PEVAP 3.13 0.26 12.2
Analysis of variance

Degrees of ~ Sum of Mean

freedom Squares square
Regression 1 2796.0 2796.04
Residual 43 811.6 18.87
Total a4 3607.7 81.99

Variation accounted for 77.0%

Addition «of other variahles failed to improve signifi-
cantly the explanation of residual variance, and Figure
9 shows the plot of CRR against PEVAP. Examination
of the residuals failed to suggest any need for trans-
formation, and they appeared randomly distributed.

5 Conclusions

One of the principal conclusions arising from this
analysis of available cotton strip data is that it is very
difficult to perform a posteriori multivariate analyses
using a data set which is heterogeneous. The first part
of the analysis revealed that apparent trends in the
data were really a consequence of the few locations
in which research effort had been made. This limitation
severely affected the nature of the results, and their
interpretation. It proved far more satisfactory to select
a limited number of cases, examining these in more
detail and extracting back-up information from publi-
shed sources.

it is apparent from the analysis of the extended data
set that the decomposition of cotton strips is strongly
influenced by climate, and that the most useful cli-
matic parameter for predicting cotton strip decay rate
is PEVAP. In fact, the equation linking decomposition
rate to PEVAP could be of use in deciding the time
periods for inserting cotton strips at new sites.

The close relationship between PEVAP and decompo-
sition rate is due to the fact that the 2 principal environ-
mental controls on decomposition are temperature

Table 11. Correlation matrix derived when attempting to derive a predictive equation for CRR, using the restricted data set (df = 43)

TS CRR DAYS LAT LONG- TEMP  PTEMP RAIN PRAIN  PEVAP ALT
TS 1.00
CRR --0.16 1.00
DAYS 0.1 -0.68 1.00
LAT -0.24 -0.67 0.62 1.00
LONG -0 -0.07 0.1 -0.17 1.00
TEMP 0.22 0.67 -0.70 -0.94 0.29 1.00
PTEMP -0.07 0.69 -0.70 -0.78 0.28 0.83 1.00
RAIN 0.02 0.62: -0.67 -0.83 0.30 0.85 0.72 1.00
PRAIN -0.05 0.67 -0.63 -0.60 0.21 0.71 0.70 0.76 1.00
PEVAP 0.00 0.88 -0.63 -0.78 -0.07 0.77 0.80 0.62 0.67 1.00
ALT -0.16 -0.39 0.45 0.37 0.15 -0.51 -0.38 -0.32 -0.40 -0.47 1.00




and moisture (Bunnell et al. 1977). The magnitude of
PEVAP is dictated by rainfall and temperature, being
large when rainfall and temperature are high, and
lower when either of these factors decrease. Thus,
conditions of high PEVAP are those which favour a
high decomposition rate.

The current synthesis of data suggests that decompo-
sition of a single substrate, when placed in a widely
diverging range of environments, can be modelled
with accuracy from readily available climatic data.
Swift et al. (1979) suggested that decomposition raté
is the product of the interaction of substrate quality,
physical environment and decomposer organisms. Hill
et al. (1985) concluded, from a mathematical model
of the decay process of cotton in soil, that the rate of
degradation depended mainly on the physico-chemical
environment in the soil, and was insensitive to the
size of the microbial inoculum.

In the synthesis presented here, the substrate quality
has been kept constant between sites, and differences
in cellulose decomposition rates at different sites are,
therefore, due to a combination of physico-chemical
environment and presence of decomposer organisms.
The analysis further suggests that, of these 2 factors,
a major component determining decay rate is physical
environment, particularly temperature and moisture,
as reflected by PEVAP. Residual values may well be
a combination of discrepancies between published
PEVAP values and actual site values, differences in
site chemistry, or a measure of decomposer popu-
lation differences. The simplest hypothesis necessary
to explain the observed results is to assume that
‘wherever a cotton strip is placed, it will select for a
cellulolytic flora capable of cotton degradation, and
that the subsequent rate of decay becomes a simple
function of physico-chemical environment.

A major feature lacking in the current analysis is the

detailed description of soil chemistry at each of the

sites and, if the cotton strip method is to be used to

increase our understanding of the controlling factors

for cotton decay around the world, it is essential that

workers make a full assessment and record of climatic
and chemical parameters at their sites.

The results reported here lend support to the obser-
vatioris of Meentemeyer (1978) that decomposition
on a regional scale relates to evaporative losses. The
parameter investigated by Meentemeyer (1978) was
actual evapotranspiration, to which potential evapor-
ation, as used in this study, approximates. The more
recent work of Berg et al. (1984) confirms that this
approach is useful for furthering our understanding of

"' the decomposition of standard litter material from

Scots pine (Pinus sylvestris), yet he also emphasizes
that local site variability, acting both through litter
quality and microscale climate, can be extremely im-
portant in determining litter decomposition rates (Berg
et al. 1982).

We emphasize that the rate of litter decay is deter-
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mined by the interaction of substrate quality, physico-
chemical environment and decomposer population.
Although the use of a standard substrate can provide
insights into the factors controlling the rates of de-
composition, it is currently impossible to extrapolate
such results to the natural substrates intrinsic to the
site.
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