nerc.ac.uk

Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals

Tariq, Muhammad; Wright, Denis J.; Bruce, Toby J.A.; Staley, Joanna T.. 2013 Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals. PLoS ONE, 8 (7), e69013. 12, pp. https://doi.org/10.1371/journal.pone.0069013

Before downloading, please read NORA policies.
[img]
Preview
Text
N504478JA.pdf - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract/Summary

Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/belowground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40–55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and belowground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be affected by drought.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1371/journal.pone.0069013
Programmes: CEH Topics & Objectives 2009 - 2012 > Biodiversity > BD Topic 2 - Ecological Processes in the Environment
CEH Topics & Objectives 2009 - 2012 > Biodiversity > BD Topic 3 - Managing Biodiversity and Ecosystem Services in a Changing Environment
UKCEH and CEH Sections/Science Areas: Pywell
ISSN: 1932-6203
Additional Information. Not used in RCUK Gateway to Research.: Open Access paper - Official URL link provides full text
NORA Subject Terms: Ecology and Environment
Agriculture and Soil Science
Date made live: 13 Jan 2014 15:41 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/504478

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...