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Abstract 18 

Relative sea-level changes during the last ~2500 years in New Jersey, USA were reconstructed to test if 19 

late Holocene sea level was stable or included persistent and distinctive phases of variability.  20 

Foraminifera and bulk-sediment δ13C values were combined to reconstruct paleomarsh elevation with 21 

decimeter precision from sequences of salt-marsh sediment at two sites using a multi-proxy approach. 22 

The history of sediment deposition was constrained by a composite chronology.  An age-depth model 23 

developed for each core enabled reconstruction of sea level with multi-decadal resolution. Following 24 

correction for land-level change (1.4mm/yr), four successive and sustained (multi-centennial) sea-level 25 

trends were objectively identified and quantified using error-in-variables change point analysis to account 26 

for age and sea-level uncertainties.  From at least 500BC to 250AD sea-level fell at 0.11mm/yr.  The 27 

second period saw sea-level rise at 0.62mm/yr from 250AD to 733AD.  Between 733AD and 1850AD sea 28 

level fell at 0.12mm/yr.  The reconstructed rate of sea-level rise since ~1850AD was 3.1mm/yr and 29 

represents the most rapid period of change for at least 2500 years.  This trend began between 1830AD and 30 

1873AD and its onset is synchronous with other locations on the U.S. Atlantic coast.  Since this change 31 

point, reconstructed sea-level rise is in agreement with regional tide-gauge records and exceeds the global 32 

average estimate for the 20th century. These positive and negative departures from background rates 33 

demonstrate that the late Holocene sea level was not stable in New Jersey. 34 
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1. Introduction 38 

Late Holocene (last ~2000 years) sea-level reconstructions with decimeter vertical and multi-decadal 39 

temporal resolution provide important information for investigating the relationships between sea-level 40 

change and temperature.  Such data calibrate and test the validity of models that predict sea-level changes 41 

under scenarios of global climate evolution (e.g. Bittermann et al., 2013; Rahmstorf, 2007).  Instrumental 42 

measurements of sea level (tide gauges and satellites) are too short to capture pre-anthropogenic trends 43 

and the long-term (100s to 1000s of years) response of sea level to temperature variations.  This 44 

time-series limitation hinders the development of predictive models and is a motivation for reconstructing 45 

late Holocene sea-level changes.  Proxy-temperature data show distinct climate phases during the last 46 

2000 years such as the Medieval Climate Anomaly, Little Ice Age and 20th century warming (e.g. Ahmed 47 

et al., 2013; Mann et al., 2008; Moberg et al., 2005; Thompson et al., 2013).  In contrast, relatively little is 48 

known about sea level during this period, although there is some evidence that persistent positive and 49 

negative departures from regional, linear background rates (driven primarily by glacio-isostatic 50 

adjustment; GIA) occurred prior to the onset of modern sea-level rise in the late 19th or early 20th 51 

centuries (e.g. Gehrels, 2000; González and Törnqvist, 2009; Kemp et al., 2011; Sivan et al., 2004; van de 52 

Plassche, 2000). 53 

 54 

Salt-marsh sediment is one of the most important archives for reconstructing relative sea level (RSL) 55 

during the late Holocene.  Under regimes of RSL rise salt marshes accumulate sediment to maintain their 56 

elevation in the tidal frame (Morris et al., 2002).  The resulting sequences of salt-marsh sediment 57 

accurately preserve the elevation of past RSL, which is the net result of all driving mechanisms.  The 58 

vertical precision of RSL reconstructions is maximized by employing sea-level indicators that 59 

differentiate among salt-marsh sub-environments to estimate the tidal elevation where the sediment was 60 

originally deposited (paleomarsh elevation; PME).  Salt-marsh foraminifera are sea-level indicators 61 

because their distribution is controlled by the frequency and duration of inundation, which is principally a 62 

function of tidal elevation (e.g. Horton and Edwards, 2006; Scott and Medioli, 1978).  Foraminifera are 63 

abundant in salt marshes where they form assemblages occupying narrow elevational ranges making them 64 

suitable for quantitative and precise PME reconstructions.  Bulk sediment geochemistry can also be 65 

employed as a sea-level indicator.  In regions where salt marshes are dominated by C4 plants such as the 66 

mid-Atlantic and northeastern U.S., measured δ13C values readily identify sediment of salt-marsh origin 67 

(e.g. Middleburg et al., 1997; Tanner et al., 2010; Wilson et al., 2005).  RSL reconstructions also require 68 

the timing of sediment deposition to be estimated.  Sediment that accumulated under low-energy 69 
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conditions on salt marshes is often undisturbed and well suited to developing detailed chronologies.  70 

Radiocarbon is the principal means to date late Holocene salt-marsh sediment, but alternatives are 71 

necessary for the period since approximately 1650AD because of a plateau on the calibration curve (e.g. 72 

Reimer et al., 2011).  Age-depth models developed from composite chronologies incorporating 73 

radiocarbon dates and age markers of pollution and land-use change enable RSL to be reconstructed with 74 

the multi-decadal precision necessary to describe small (decimeter) RSL changes (e.g. Marshall et al., 75 

2007).  The resulting RSL reconstructions filter out short-lived (annual to decadal) sea-level variability 76 

because of the time-averaging effect of sedimentation and sampling.  The resulting records are analyzed 77 

using numerical tools to identify and quantify the timing and magnitude of persistent (decadal to 78 

centennial) phases of sea-level evolution. 79 

 80 

Relative sea-level changes in New Jersey over the past ~2500 years were reconstructed to determine how 81 

and when persistent sea-level trends deviated from background rates.  Reconstructions were developed 82 

from salt-marsh sediment at two sites (Leeds Point in the Edwin Forsythe National Wildlife Refuge and at 83 

Cape May Courthouse; Figure 1) using foraminifera and stable carbon isotopes (δ13C) as sea-level 84 

indicators and age-depth models constrained by composite chronologies of radiocarbon, 137Cs activity, 85 

and pollen and pollution chrono-horizons. Change point analysis identified four persistent periods of 86 

sea-level behavior during the last 2500 years that mark positive and negative departures from a linear 87 

background rate.  The new reconstructions demonstrate that the rate of sea-level rise since ~1850AD 88 

exceeds any previous persistent rate in the late Holocene. 89 

 90 

2. Study Area 91 

The New Jersey coast from Great Bay to Cape May consists of a barrier island and lagoon system 92 

separating the mainland from the Atlantic Ocean (Figure 1).  Inlets allow exchange of water between the 93 

lagoons and ocean.  Great diurnal tidal ranges are smaller in the lagoons (typically 1.1m to 1.2m, but as 94 

small as 0.17m in the upper reaches of Barnegat Bay) than on the ocean side of the barrier islands (e.g. 95 

1.4m at Atlantic City).  Tidal influence extends up to 25km from the coast into bays and brackish river 96 

systems such as Great Egg Harbor River.  Modeling of paleotides in New Jersey indicates that great 97 

diurnal tidal range changed very little during the late Holocene, even at the scale of coastal embayments 98 

and estuaries (Horton et al., 2013). 99 

 100 
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Modern salt marshes in the study region form extensive (often more than 1km wide) platforms with very 101 

gentle elevation gradients.  Tidal flats are rare in New Jersey because the marsh front is usually a 102 

pronounced step change in elevation.  Low-marsh settings between mean tide level (MTL) and mean high 103 

water (MHW) are typically vegetated by the C4 plant Spartina alterniflora (tall form).  The high-marsh 104 

floral zone between MHW and mean higher high water (MHHW) is vegetated by Spartina patens, 105 

Distichlis spicata, and Spartina alterniflora (short form), all of which are C4 plants. The transition above 106 

MHHW from high salt marsh to freshwater upland is characterized by Phragmites australis, Iva 107 

fructescens, and Baccharis halimmifolia, all of which are C3 plants.  At sites with greater freshwater 108 

influence, Typha augustifolia, and Schoenoplectus americanus (C3 plants) are also common (Stuckey and 109 

Gould, 2000).  Salt marshes are replaced upstream by brackish marshes dominated by Phragmites 110 

australis, Typha augustifolia, Spartina cynosuroides, and Schoenoplectus americanus (Tiner, 1985).  111 

Examples of these environments are found on the Great Egg Harbor River (Figure 1). 112 

 113 

Several distinctive assemblages of foraminifera exist of modern salt marshes in New Jersey (Kemp et al., 114 

2012a; Kemp et al., 2013).  The dominant species in low-marsh environments are Miliammina fusca and 115 

Ammobaculites spp.  High-marsh environments are populated by at least five distinctive assemblages of 116 

foraminifera, including groups dominated by Jadammina macrescens, Tiphotrocha comprimata, 117 

Trochammina inflata, Arenoparrella mexicana, and Ammoastuta inepta (most prevalent in low-salinity 118 

settings).  At some sites Haplophragmoides manilaensis is the dominant species in the transitional marsh 119 

zone.  Foraminifera are absent from freshwater environments. 120 

 121 

Throughout the Holocene New Jersey experienced RSL rise from eustatic rise and isostatic subsidence.  122 

RSL 8000 years before present (yrs BP) was at approximately -12m, at 5000 yrs BP it was at -9m, and at 123 

2000 yrs BP it was at -4m (Engelhart and Horton, 2012; Horton et al., 2013; Miller et al., 2009).  During 124 

the late Holocene the primary driver of RSL change in New Jersey was glacio-isostatic subsidence caused 125 

by retreat and collapse of the Laurentide Ice Sheet’s forebulge at a rate of approximately 1.4mm/yr 126 

(Engelhart et al., 2009; Engelhart et al., 2011b).  As RSL rose sediment deposited in back-barrier settings 127 

(including salt-marsh peat and estuarine muds) formed sedimentary archives from which RSL changes 128 

can be reconstructed (Daddario, 1961; Meyerson, 1972; Psuty, 1986).  Instrumental measurements of 129 

RSL in New Jersey are available since 1911AD when the Atlantic City tide gauge was installed.  The 130 

Sandy Hook tide gauge began measurements in 1932AD, while the tide gauges at Cape May and Lewes 131 

(Delaware) provide data since 1966AD and 1919AD respectively.  The linear rate of RSL rise (to 132 
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2012AD) is 4.10mm/yr at Atlantic City, 4.06mm/yr at Sandy Hook, 4.64mm/yr at Cape May, and 133 

3.39mm/yr at Lewes. 134 

 135 

The Leeds Point and Cape May Courthouse sites were selected after coring at numerous locations in 136 

southern New Jersey demonstrated that they had long and/or uninterrupted accumulations of salt-marsh 137 

sediment suitable for reconstructing late Holocene RSL.  Leeds Point is located in the Edwin Forsythe 138 

National Wildlife Refuge on the west side of Great Bay (Figure 1A, B), in an area where salt marshes 139 

frequently exceed 1km in width (Ferland, 1990).  Low-marsh areas bordering tidal creeks are vegetated 140 

by Spartina alterniflora (tall form).  The expansive high salt-marsh platform is characterized by Spartina 141 

patens with Distichlis spicata.  A narrow (10-20m wide) brackish zone bordering the surrounding 142 

forested upland is vegetated by Phragmites australis and Typha augustifolia.  The Leeds Point salt marsh 143 

was extensively ditched in the early 20th century for mosquito control.  As a result, shallow sediment at 144 

the site is unsuitable for RSL reconstruction, but deeper material is unaffected.  VDatum (Yang et al., 145 

2008) estimated the tidal range at the Leeds Point to be 1.11m. 146 

 147 

Cape May Courthouse is located on the Cape May peninsular (Figure 1a, c).  Vegetation at the site 148 

includes Spartina alterniflora (tall form) along the main tidal channel and smaller creeks, a high-salt 149 

marsh community of Spartina patens with Distichlis spicata, and a water-logged brackish environment 150 

marking the transition between salt marsh and upland.  The dominant vegetation in this zone is 151 

Phragmites australis with Typha augustifolia, and Schoenoplectus americanus.  A narrow, infilled valley 152 

was investigated because it showed little evidence of human modification.  The sediment underlying the 153 

Cape May Courthouse site is suitable for detailed reconstruction of recent RSL changes including the 154 

historic period.  VDatum (Yang et al., 2008) estimated the tidal range at Cape May Courthouse to be 155 

1.40m. 156 

 157 

3. Materials and Methods 158 

3.1 Estimating Paleomarsh Elevation 159 

At each site multiple transects of hand cores were recovered to describe the underlying stratigraphy.  The 160 

cores chosen for detailed analysis are Leeds Point core 10 (LP-10) and Cape May Courthouse core 8 161 

(CMC-8) because they included some of the thickest sequences of high salt-marsh peat. Cores for 162 
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laboratory analysis were collected using a Russian-type core to prevent compaction during sampling, 163 

sealed in plastic wrap and kept refrigerated.  Samples of core material (1cm thick) were sieved under 164 

running water to isolate and retain the foraminifera-bearing fraction between 63µm and 500µm.  165 

Foraminifera were counted wet under a binocular microscope and a minimum of 100 individuals were 166 

enumerated or the entire sample was counted if <100 were present.  Identifications were made by 167 

comparison with modern examples from the study region (Kemp et al., 2013).   168 

 169 

A weighted averaging transfer function with inverse deshrinking (WA-inv) was applied to assemblages of 170 

foraminifera in the LP-10 and CMC-8 cores to estimate the PME at which the sample was originally 171 

deposited.  A unique (sample specific) uncertainty was generated for each sample using bootstrapping 172 

(n=10,000) that represents an approximately 1σ confidence interval for PME.  This transfer function was 173 

developed (and described) by Kemp et al. (2013) from 175 modern samples of foraminifera compiled 174 

from 12 salt marshes in southern New Jersey (including Leeds Point and Cape May Courthouse) 175 

representing a range of physiographic settings (Figure 1a).  Transfer function performance was assessed 176 

using seven tests and indicated that PME could be reconstructed with an estimated uncertainty of ±14% of 177 

great diurnal tidal range.  Leave-one-site-out cross validation indicated that spatial autocorrelation caused 178 

by sampling along transects was negligible (Kemp et al., 2013).  Core assemblages were analyzed after 179 

square-root transformation of population data.  All taxa were retained and used in estimating PME.  180 

Reconstructions of PME from the transfer function are in standardized water level index (SWLI) units, 181 

which was used to combine modern assemblage data from sites with different tidal ranges (Horton and 182 

Edwards, 2006).  A value of 0 corresponds to MLLW and 100 to MHHW. 183 

 184 

To investigate the ecological plausibility of these reconstructions, dissimilarity between assemblages of 185 

foraminifera in core material and their closest modern counterpart was calculated using the Bray-Curtis 186 

metric.  Thresholds for assessing the degree of analogy were established from pairwise analysis of the 187 

modern dataset (Kemp et al., 2013).  Distances within the lower 20% of dissimilarity between modern 188 

samples were treated as having acceptable analogues, within 10% as having good analogues, and within 189 

2% as having very strong analogues.  To assess how well the transfer function fits observations of 190 

elevation, goodness-of-fit statistics were calculated for core samples by passively fitting them into a 191 

constrained ordination (canonical correspondence analysis; CCA) of the modern dataset with tidal 192 

elevation as the only constraint following the approach of Simpson and Hall (2012).  The squared residual 193 

length between core samples and their fitted positions on the first constrained axis was compared to 194 
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residual differences in the modern dataset.  Thresholds at 90% (weak), 95% (poor), and 99% (very poor) 195 

were established from the modern dataset for progressively worse fits to tidal elevation. These two 196 

analyses were conducted on square root transformed population data using the analogue package (v.0.8-2; 197 

Simpson, 2007) for R.  They represent different and independent criteria for evaluating reconstructions 198 

from transfer functions, it is possible to have a close modern analogue, but a poor fit and vice versa 199 

(Birks, 1998).  Samples exceeding the 20% dissimilarity threshold and the 95% goodness-of-fit threshold 200 

were excluded from the RSL reconstruction. 201 

 202 

The measurement of stable carbon isotopes in core material (1cm thick bulk sediment) used the same 203 

sample-preparation method and instrument as the measurements made on modern salt-marsh sediment 204 

from New Jersey (Kemp et al., 2012c).  Reported δ13C values were calculated to the Vienna Pee Dee 205 

Belemnite scale (VPDB; ‰).  Comparisons to standards were always within 0.1‰ and confirm that 206 

measured δ13C values are accurate.  Replicate analysis of well-mixed samples indicated precision of 207 

± <0.1‰ for δ13C measurements (1σ).  Analysis of modern salt-marsh sediment in New Jersey 208 

demonstrated that bulk sediment with δ13C values more depleted than -22.0‰ formed above MHHW, 209 

while values less depleted than -18.9‰ were associated with low and high salt-marsh environments 210 

situated between MTL and MHHW (Kemp et al., 2012c).  This distinction results from the photosynthetic 211 

pathways of C3 and C4 plants.  On the mid-Atlantic and northeastern coasts of the United States 212 

(including New Jersey) elevations below MHHW are vegetated by C4 plants (e.g. Spartina spp., Distichlis 213 

spicata), while elevations above MHHW are vegetated by C3 plants (e.g. Phragmites australis, Iva 214 

fructescens). Since the dominant input to salt-marsh sediment is in-situ vegetation (Chmura and Aharon, 215 

1995), δ13C values measured in bulk sediment provide a simple and reliable means to determine if a 216 

sample was deposited above or below the MHHW tidal datum (e.g. Johnson et al., 2007; Kemp et al., 217 

2012c).  All salt marshes receive a contribution to bulk sediment from allocthonous organic matter (e.g. 218 

marine phytoplankton), although it is usually a minor component of measured δ13C values (Lamb et al., 219 

2006) and insufficient in most cases to influence paleoenvironmental interpretation.  The difference 220 

between living plant material and bulk surface sediment similar in composition to the New Jersey cores is 221 

<7‰ (Benner et al., 1991; Goñi and Thomas, 2000) and insufficient to cause mis-interpretation of 222 

dominance by C3 or C4 plants (e.g. Benner et al., 1987; Ember et al., 1987; Fogel et al., 1989). Empirical 223 

results indicate that there is little post-burial modification of bulk sediment δ13C values (Byrne et al., 224 

2001; Malamud-Roam and Ingram, 2004).  Indeed, an investigation of δ13C values in plants, surface 225 

sediment, and buried sediment at the Leeds Point site concluded that no systematic, post-burial shift could 226 

be discerned for bulk sediment derived from salt-marsh plants (Kemp et al., 2012c).  Therefore δ13C 227 
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values are a robust tool for distinguishing between bulk sediment that accumulated in environments 228 

dominated by C3 or C4 plants.  Identification of extant surface vegetation to the species level would 229 

require complementary biogeochemical techniques such as molecular markers and isotopic discrimination 230 

(carbon and other elements) within structural compounds such as lignin or cellulose (e.g. Middleburg et 231 

al., 1997; Tanner et al., 2010; Vane et al., 2013). 232 

 233 

To utilize all available palaeoenvironmental information, PME was estimated for core samples by 234 

combining results from the foraminiferal transfer function and downcore measurements of δ13C.  The 235 

range of transfer function reconstructions was restricted to elevations in agreement with those estimated 236 

from measured δ13C values.  The restricted ranges were treated as having uniform probability 237 

distributions in subsequent analysis.  PME was therefore reconstructed in one of three ways: 238 

i) For samples with a δ13C value more depleted than -22‰, the transfer function estimate was trimmed to 239 

retain only the range above MHHW (SWLI>100) because C3 plants were the dominant type of 240 

vegetation; 241 

ii) For samples with a δ13C value less depleted than -18.9‰, the transfer function estimate was trimmed to 242 

retain only the range below MHHW (SWLI<100) because C4 plants were the dominant type of 243 

vegetation; 244 

iii) For samples with intermediate δ13C values (-22.0‰ to -18.9‰), and/or transfer function estimates that 245 

did not encompass MHHW, the full range of the original transfer function was retained because it was not 246 

possible to reliably determine if C3 or C4 plant species were the dominant type of vegetation. 247 

 248 

3.2 Dating and Age-Depth Modeling 249 

Radiocarbon dating was performed on identifiable plant macrofossils found in growth position in the 250 

cores.  Macrofossils were separated from the sediment matrix and cleaned under a microscope to remove 251 

contaminating material including adhered sediment particles and in-growing younger roots.  The cleaned 252 

samples were oven-dried at 45ºC and submitted to the National Ocean Science Accelerator Mass 253 

Spectrometry (NOSAMS) facility for dating.  At NOSAMS, all samples underwent standard acid-base-254 

acid pretreatment.  Reported radiocarbon ages and uncertainties (Table 1) were calibrated using the 255 

Intcal09 dataset (Reimer et al., 2011).  Measured δ13C values for radiocarbon dates are from an aliquot of 256 
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CO2 collected during sample combustion and were used to correct for natural fractionation of carbon 257 

isotopes.   258 

 259 

Activity of 137Cs in CMC-8 was measured at the Yale University Environmental Science Center by 260 

gamma spectroscopy.  Peak 137Cs activity in core material identifies sediment deposited around 1963AD 261 

when above ground testing of nuclear weapons was at its maximum (Warneke et al., 2002).  262 

Concentrations of elements (Cu, Pb, Zn, Cd, and Ni) and isotopic ratios (206Pb:207Pb) were measured at 263 

the British Geological Survey Environmental Science Centre to establish the timing of recent sediment 264 

deposition in CMC-8.  Bulk samples (1cm thick) were prepared in an identical manner to that previously 265 

described by Vane et al. (2011) and analyzed using a quadropole ICP-MS instrument (Agilent 7500c) 266 

operated under the conditions specified in Kemp et al. (2012b).  Concentrations were not normalized by 267 

grain size because in salt-marsh environments, heavy metal pollutants are more strongly associated with 268 

organic content (Vane et al., 2009), which was high (30-40% by weight) and relatively uniform in the 269 

upper section of core CMC8.  Normalization is an appropriate step for comparing concentrations among 270 

sites, but it was not necessary for identifying trends within a single core.  Downcore trends in absolute 271 

elemental concentration and their stratigraphic position were matched to features of historic production 272 

and consumption.  Interpretation of the Pb and 206Pb:207Pb profiles in CMC-8 followed the approaches 273 

described in similar studies (e.g. Gobeil et al., 2013; Kemp et al., 2012b; Lima et al., 2005).  In addition, 274 

the downcore Zn profile was compared to regional production records to recognize the onset 275 

(1880-1900AD) and peak (1943-1969AD) of industrial output (Bleiwas and DiFrancesco, 2010).  276 

National production records from the United States Geological Survey Minerals Yearbook also enabled 277 

recognition of peaks in Cd (1956-1969AD) and Ni (1950-1980AD; 1992-2002AD) and the onset of Cu 278 

pollution (1890-1910AD). Changes in production and consumption were assumed to have caused a 279 

corresponding change in elemental emissions that were transported through the atmosphere by constant 280 

prevailing wind patterns and deposited on the salt-marsh surface within a few years (Bollhöfer and 281 

Rosman, 2001; Graney et al., 1995) and without isotopic fractionation (Ault et al., 1970). Since emissions 282 

per unit of production or consumption changed through time, trends rather than absolute values were the 283 

basis for recognizing these features in core CMC8.  Comparison of independent chronologies developed 284 

using markers of industrial pollution and radiometric decay of 210Pb activity elsewhere in New Jersey 285 

indicated that heavy metal pollution is synchronous with industrial activity within the age and sample 286 

thickness uncertainties assigned to each marker (Kemp et al., 2012b). 287 

 288 
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Palynomorphs (pollen and fern spores) were isolated from 1cm thick sediment slices of core CMC-8 289 

using standard palynological preparation techniques (Traverse, 2007). At least 300 pollen grains and 290 

spores were counted from each sample to determine percent abundance of palynomorphs. The rise of 291 

Ambrosia in southern New Jersey was estimated to be 1710AD ± 50 years based on histories of European 292 

arrival and colonization of the region; the areas around Leeds Point and Cape May Courthouse were first 293 

settled between 1695AD and 1725AD (Wacker, 1975; Wacker and Clemens, 1994). 294 

 295 

Discrete dated samples were used to generate separate accumulation histories for LP-10 and CMC-8 using 296 

the Bchron package (v.3.1.5; Haslett and Parnell, 2008; Parnell et al., 2008) executed in R.  Excess 210Pb 297 

was measured in CMC-8, but it was excluded from the age-depth model because the age estimates for 298 

individual samples would be treated as independent by Bchron.  Since 210Pb accumulation histories are 299 

modeled, the resulting suite of down core age estimates are not independent of one another and would 300 

cause the Bchron age-depth model to be weighted (and unfairly biased) toward 210Pb results.  Chrono 301 

horizons associated with 137Cs, pollution markers, and pollen were treated as having uniform probability 302 

distributions.  Bchron utilized a Bayesian approach to produce an age-depth model for both cores.  From a 303 

suite of 200,000 iterations the age-depth models provides an estimate of age with a 95% confidence 304 

interval for every 1cm thick interval in the cores.  This age estimate and uncertainty was applied to all 305 

samples with reconstructed PME. 306 

 307 

3.3 Reconstructing Relative Sea Level and Identifying Persistent Sea-Level Trends 308 

Relative sea level was reconstructed by subtracting the estimated PME for each sample from the 309 

measured elevation at which the sample was recovered (depth in core), where both values were expressed 310 

relative to mean tide level (MTL).  Core top elevations were established using real time kinematic (RTK) 311 

satellite navigation with conversion from orthometric to tidal datums using VDatum (v2.3.5, New Jersey 312 

coastal embayment dataset v1).  Core LP-10 is at 0.56m MTL and core CMC-8 is at 0.53m MTL.  The 313 

vertical uncertainty of the reconstruction is the range from the transfer function that was amended by δ13C 314 

values.  The age (with associated range) of each core sample was taken directly from the age-depth 315 

model.  RSL data are presented as boxes, where the height represents sea-level error and the width is age 316 

error.  RSL data are provided in appendix A. 317 

 318 
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Following adjustment for the estimated rate of land subsidence in New Jersey, the independent 319 

reconstructions from Leeds Point and Cape May Courthouse were combined into a single dataset and 320 

reordered by age.  The combined record has the advantage over analyzing two individual records of 321 

spanning all of the last 2500 years.  Change point analysis of this dataset identified periods of persistent 322 

sea-level variability in New Jersey during the late Holocene and estimated the timing of change points 323 

and the rate of sea-level rise between them with 95% confidence.  Proxy reconstructions are characterized 324 

by age and sea-level errors that are unique to each sample and an uneven distribution of samples in time.  325 

Simple linear regression is therefore an unsuitable method of analysis since it assumes that the 326 

explanatory variable (x, in this case age) is fixed and known.  An extension of the error-in-variables (EIV) 327 

model is applied to proxy reconstructions because it accounts for both age and sea-level uncertainties 328 

(Spiegelhalter et al., 2002). 329 

 330 

The simplest EIV model can be written as 331 

ixiiy   µ  332 

Where yi is sea level for the ith observation, α is the intercept, β is the rate of sea-level change, and μxi is 333 

the unknown age for the ith observation.  Since ages in paleoenvironmental reconstructions have 334 

uncertainty it is treated as an unknown random variable to be estimated.  The term �i is the model error 335 

for the ith observation which incorporates the uncertainty for each sea-level reconstruction which is fixed 336 

and known and also an unknown error which was not included in the measurement error.  Therefore  337 

i ~ N 0, yi
2  y   , and ixiix  µ , and i ~ N(0, xi

2 ). 338 

The terms σ2
yi and σ2

xi are the variances of sea level and age respectively.  The variance parameter (τy) 339 

represents overall variation in the dataset.  The model assumes that xi and yi follow the bivariate normal 340 

distribution shown below where xi is sample age and yi is reconstructed sea level for samples i to n. 341 
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With a single change point it is assumed that the data follow one EIV model before the change point, 343 

where yi ~ N( 1(xi  xchange ), y ) , and another EIV model afterward, where 344 

yi ~ N( 2 (xi  xchange ), y ) .  The parameter xchange represents the age at which the sea-level rate 345 
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changes significantly, and the parameters β1 and β2 are the rate before and after the change point 346 

respectively.  For the New Jersey sea-level reconstruction the model was extended to include one to four 347 

change points.  The model that best describes the data was selected using the deviance information 348 

criterion (DIC; Spiegelhalter et al., 2002) which is a Bayesian method for model comparison, where the 349 

posterior distribution was obtained by Markov Chain Monte Carlo simulation.  Deviance is a measure of 350 

distance between the data (reconstructed sea level) and model predictions.  More complex models will 351 

almost always have lower deviance and are consequently penalized relative to the number of 352 

unconstrained parameters in the model.  DIC accounts for both mean deviance and also complexity to 353 

ensure that model selection is fair and unbiased.  Models with lower are preferable to those with larger 354 

DIC. Since the data are corrected for the contribution of land-level changes, the covariance matrix for the 355 

EIV model accounts for the distortion of data points from rectangles to parallelograms and the angle of 356 

the parallelogram (i.e. the rate of land-level change). 357 

 358 

4. Results 359 

4.1 Foraminifera and δ13C values in cores from Leeds Point (LP-10) and Cape May Courthouse (CMC-8) 360 

To establish the environment and elevation of sediment deposition, foraminifera were counted in core 361 

samples positioned at regular intervals, dated levels, and to capture transitions between assemblage types 362 

and stratigraphic units.  The lowest occurrence of foraminifera in LP-10 was at 3.95m (Figure 2).  363 

Between 3.95m and 2.85m the most common foraminifera was Jadammina macrescens that occurred 364 

with Tiphotrocha comprimata and Trochammina inflata.  The interval between 3.13m and 3.00m was 365 

characterized by an unusually high abundance of Miliammina petila (24-60%), while the low-marsh 366 

species Miliammina fusca was common (>20%) from 2.82m to 2.95m.  Trochammina inflata was the 367 

dominant species of foraminifera from 2.82m to 1.85m.  Foraminifera were absent between 1.85m and 368 

1.73m  The uppermost section of LP-10 (1.73m to 1.20m) was comprised of a near mono-specific 369 

assemblage of Jadammina macrescens.  Foraminifera were present in the top 1.20m of LP-10, but were 370 

not analyzed in detail because this material was unsuitable for sea-level reconstruction due to human 371 

modification.  Foraminifera throughout core LP-10 indicate deposition in a high salt-marsh environment. 372 

 373 

Measurements of δ13C values were made on bulk sediment in LP-10 at regularly spaced intervals to 374 

establish the botanical and environmental origin of core samples.  At depths between 4.20m and 3.31m 375 

δ13C values varied from -27.0‰ to -22.2‰ (Figure 2), which is characteristic of an environment 376 
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dominated by C3 plants such as those in the transition between salt marsh and freshwater upland 377 

communities.  This sedimentary unit was a black, amorphous organic unit.  The interval between 3.26m 378 

and 2.86m included some δ13C values (-21.4‰ to -19.1‰) that are intermediate between those of modern 379 

C3 and C4 plants.  Measured δ13C values in the upper 2.81m of LP-10 varied from -16.8‰ to -13.1‰ and 380 

were typical of a salt-marsh environment vegetated by C4 plants.  These δ13C values indicate that the 381 

section of LP-10 that was devoid of foraminifera (1.85m to 1.73m) formed in a salt-marsh environment. 382 

 383 

Foraminifera were present in core CMC-8 to a depth of 2.22m, but below 1.72m there were few 384 

individuals and these sparse assemblages were not considered suitable for quantitative analysis (Figure 3).  385 

From 1.72m to 1.29m, assemblages were largely composed of Jadammina macrescens and Trochammina 386 

inflata.  Foraminifera were absent between 1.25m and 1.12m.  The dominant species from 1.10m to 387 

0.33m was Jadammina macrescens, while samples from 0.31m to 0.05m had assemblages of 388 

Trochammina inflata, Tiphotrocha comprimata and Jadammina macrescens.  These assemblages 389 

demonstrate that core CMC-8 accumulated in a high salt-marsh environment.  The two uppermost 390 

samples (0.03m and 0.05m) had an assemblage that included 17% and 21% Miliammina fusca 391 

respectively.  In core CMC-8, bulk sediment between 2.58m and 1.85m had δ13C values between -28.6‰ 392 

and -22.1‰ (Figure 3), which is typical of an environment dominated by organic inputs from C3 plants. 393 

This sedimentary unit was a black, amorphous organic unit.  The uppermost 1.78m of the core included 394 

samples with δ13C values from -18.9‰ to -13.1‰, which fall within the range of modern salt marshes 395 

dominated by C4 plants in New Jersey.  This indicates that sediment in the interval devoid of foraminifera 396 

(1.25m to 1.12m) formed in a salt marsh.  A single sample at 1.81m had an intermediate value of -20.3‰. 397 

 398 

4.2 Transfer function application and evaluation 399 

To reconstruct paleomarsh elevation (PME), the regional weighted-averaging transfer function with 400 

inverse deshrinking (WA-inv) of Kemp et al. (2013) was applied to assemblages of foraminifera 401 

enumerated from cores LP-10 and CMC-8 (Figures 2 and 3).  The transfer function estimated PME and an 402 

uncertainty (in SWLI units) derived by bootstrapping that is unique to each sample.  In LP-10, transfer 403 

function estimates of PME ranged from 54 to 111 SWLI units (average 95) with an average uncertainty of 404 

±14 SWLI units (equating to ±0.15m at this site).  Samples with high abundances of Miliammina petila 405 

between 3.10m and 3.00m had slightly above average reconstructed PMEs (average 104 SWLI units), 406 

while the eight samples in which the low-marsh foraminifera Miliammina fusca made up more than 20% 407 



    15 

of the assemblage (2.98m to 2.82m) had correspondingly lower PME (average 75 SWLI units).  PME 408 

estimated by the transfer function for samples in CMC-8 reflects the dominance of high-marsh species of 409 

foraminifera (Jadammina macrescens, Trochammina inflata and Tiphotrocha comprimata) throughout 410 

the core.  The average PME was 97 SWLI units with an uncertainty of ±14 SWLI units (equating to 411 

±0.20m at this site).  The two samples near the top of the core with increased Miliammina fusca formed at 412 

a slightly lower PME (86 to 88 SWLI). 413 

 414 

To judge ecological plausibility of transfer function results, the measured dissimilarity between core 415 

samples and their closest modern counterpart was compared to thresholds established by pairwise 416 

comparison of the modern training set.  In LP-10, 74 samples were within the 20th percentile threshold for 417 

an acceptable modern analogue that was established from pairwise analysis of the training set (Figure 2).  418 

Twenty two samples exceeded this threshold, including most samples above 1.75m that were comprised 419 

of near-monospecific assemblages of Jadammina macrescens.  These samples lacked a modern analogue 420 

because Jadammina macrescens had a maximum abundance of 62% in the modern training set.  The 421 

samples exceeding the 20th percentile threshold between 3.03m and 3.25m included abundances of 422 

Miliammina petila that exceed its maximum contribution to any modern sample (19%).  In CMC-8, seven 423 

samples had a minimum dissimilarity exceeding the 20th percentile because they included abundances of 424 

Jadammina macrescens greater than any sample in the modern training set (Figure 3). 425 

 426 

The validity of elevation reconstructions was judged using goodness-of-fit statistics where core samples 427 

were positioned passively on the ordination of modern samples and residual fits were compared to 428 

thresholds for weak (90%), poor (95%), or very poor (99%) fits.  In LP-10, 23 samples exceeded the 95% 429 

threshold established for a poor or very poor fit (Figure 2). These samples were associated with the 430 

interval where Miliammina petila was abundant and also in the uppermost 1.72m where Jadammina 431 

macrescens formed near mono-specific assemblages.  In most cases, samples with large residual lengths 432 

were also dissimilar to modern samples in their faunal composition.  In CMC-8, three samples surpassed 433 

the 95% threshold for a poor or very poor fit (Figure 3). 434 

 435 

4.3 Core chronologies 436 
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In LP-10, 21 radiocarbon dates on identifiable plant macrofossils show that accumulation of organic 437 

sediment began at approximately 600 BC (Figure 4; Table 1).  The Bchron age-depth model was 438 

developed using all 21 radiocarbon dates and estimated the age of each 1cm thick interval in LP-10 with a 439 

unique uncertainty that ranged from ±17 years to ±113 years (average of ±50 years).  From the lowest 440 

dated level (3.93m; approximately 580BC) to the radiocarbon date at 3.14m (286AD), the average rate of 441 

sediment accumulation was 0.9mm/yr.  From 286AD to 1344AD, the average rate of sediment 442 

accumulation in LP-10 was 1.6mm/yr and from 1344AD to 1570AD it averaged 0.8mm/yr. 443 

 444 

To provide a decadal chronology for the period since ~1650AD that is affected by the radiocarbon 445 

plateau, the upper 0.70m of core CMC-8 was dated by identifying chronohorizons from changes in pollen 446 

(Ambrosia), concentrations of Pb, Zn, Cu, Cd, and Ni, 137Cs activity, and shifts in the isotopic ratio of 447 

206Pb:207Pb (Figure 5).  These downcore changes were related to historic events such as widespread land 448 

clearance by European settlers and trends in national and regional industrial production.  In addition to 449 

these age estimates, 13 radiocarbon dates constrain the timing of sediment deposition from 0.76m to 450 

2.08m (Figure 6).  Accumulation of organic material at the core site began at around 700AD and 451 

continued without interruption to the present day.  All chronological data provided constrains for the 452 

Bchron (Parnell et al., 2008) age-depth model that estimated the age of each 1cm interval in the core with 453 

errors ranging from ±1.5 years to ±58 years (average ±28.5 years).  The average rate of sediment 454 

accumulation in CMC-8 between 700AD and 1850AD was approximately 1.3mm/yr, after which it 455 

increased to 3.9mm/yr (Figure 6). 456 

 457 

5. Sea Level Change in New Jersey 458 

The New Jersey RSL reconstruction is represented by boxes that incorporate sea-level and age uncertainty 459 

(Figure 7).  Core samples that lacked a modern analogue (>20% threshold for dissimilarity) and had a 460 

poor or very poor fit to tidal elevation (>95% threshold for goodness-of-fit) were excluded.  The Leeds 461 

Point and Cape May Courthouse sites experienced sediment accumulation for the period under 462 

consideration as a result of RSL rise.  RSL in New Jersey was -4.20m at approximately 500BC and rose 463 

to -0.70m at around 1850AD (Figure 7).  Agreement between the RSL reconstructions from Cape May 464 

Courthouse and Leeds Point between 970AD and 1460AD indicates that local-scale processes were not 465 

the dominant drivers of RSL in New Jersey, at least for that shared interval.  The RSL reconstruction lies 466 

within the uncertainties of basal reconstructions compiled for New Jersey (Figure 7a) indicating a lack of 467 
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detectable compaction.  Furthermore, the overlap and coherence of the reconstructions from Leeds Point 468 

and Cape May Courthouse which have different sediment thicknesses and compositions indicates that 469 

compaction did not make a significant contribution to reconstructed RSL trends, likely because the 470 

saturated, low density nature of salt-marsh peat makes it resistant to compaction (e.g. Brain et al., 2012).   471 

Similarly, annual RSL measurements from tide gauges at Atlantic City, Sandy Hook, Cape May, and 472 

Lewes display a high degree of coherence, demonstrating that local processes are not the dominant drivers 473 

of historical RSL change in New Jersey (Figure 8a).  A regional tide-gauge record generated by averaging 474 

the four gauges shows approximately 0.37m of RSL rise in New Jersey since 1911AD at an average rate 475 

of 4.03mm/yr (Figure 8b).  During the 20th century, RSL was reconstructed to be approximately 0.4m.  476 

The averaged tide-gauge measurements lie within the age and vertical uncertainties of the RSL 477 

reconstruction and give confidence that the reconstruction is an accurate representation of long-term, 478 

persistent RSL changes in New Jersey. 479 

 480 

Measurements and reconstructions of RSL are the net result of multiple processes that often act 481 

simultaneously. To allow comparisons among regions and to identify climate-related sea-level trends, it is 482 

necessary to estimate and remove the contribution made by land-level changes.  The principal mechanism 483 

for regional land-level change in coastal New Jersey during the late Holocene was GIA from collapse and 484 

retreat of the Laurentide Ice Sheet’s proglacial forebulge (Engelhart et al., 2011b).  The ICE6G-VM5b 485 

Earth-Ice model predicts RSL being 2.13m below present at 2000 yrs BP at Cape May Courthouse and 486 

Leeds Point (Engelhart et al., 2011b).  Eustatic input ceases at 4000 yrs BP in this model, since when all 487 

RSL changes (1.1mm/yr) are attributed to GIA and associated processes such as redistribution of water in 488 

response to changes in the geoid.  The total contribution of land-level change also includes tectonic 489 

processes and regional sediment consolidation.  Total land-level change was estimated from a regional 490 

compilation of basal RSL reconstructions (Shennan et al., 2012).  This approach fits a linear regression to 491 

late Holocene, basal, sea-level index points (up to 1900AD) and like the Earth-Ice model assumes there 492 

was no eustatic contribution, meaning that the RSL trend approximates land-level changes (Engelhart et 493 

al., 2009).  This approach captures land-level changes caused by processes other than GIA.  For New 494 

Jersey, the estimated rate of land-level change is subsidence of 1.4mm/yr (Engelhart et al., 2011b).  The 495 

difference (0.3mm/yr) in rates estimated from the Earth-Ice model and database of sea-level index points 496 

could be from land-level change caused by non-GIA processes or a misfit in model parameters. 497 

 498 
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It is widely assumed that late Holocene sea level was stable at multi-decadal to multi-centennial 499 

timescales until the onset of modern rates of rise in the late 19th or early 20th century (Bindoff et al., 2007; 500 

Church et al., 2008; Cronin, 2012).  The annual to decadal variability that is apparent in tide-gauge 501 

records must also have characterized the late Holocene.  Given the attribution of 20th century sea-level 502 

rise to global climate change (e.g. Rahmstorf, 2007), it is reasonable to expect phases of sea-level 503 

behavior within the late Holocene related to known phases of warmer (e.g. Medieval Climate Anomaly) 504 

and cooler (e.g. Little Ice Age) temperatures.  To challenge the assumption of stability it is necessary to 505 

reconstruct sea level through the full late Holocene period with accuracy and precision that enables 506 

confident identification of relatively small and relatively short lived sea-level changes.  Therefore the 507 

New Jersey reconstruction represents a suitable dataset for identifying regional departures from late 508 

Holocene stability after correction for land-level changes.  After subtracting 1.4mm/yr of land-level 509 

change from the RSL reconstructions three change points were identified using the EIV model (Figure 9).    510 

Models with fewer, or more than, three change points were inferior because they had larger DIC values 511 

(Table 2).  The three change points therefore define four periods of persistent (centennial) sea-level 512 

trends.  From at least 500BC to 250AD sea level fell at a mean rate of 0.11mm/yr.  The second period saw 513 

sea level rise at a mean rate of 0.62mm/yr from 250AD to 733AD.  Between 733AD and 1850AD sea 514 

level fell at a mean rate of 0.12mm/yr.  Since 1850AD the reconstructed rate of sea-level rise was 515 

3.1mm/yr.  Late Holocene sea-level changes in New Jersey include distinct positive and negative 516 

departures from background rates and demonstrate that the assumption of sea-level stability (in this region 517 

at least) is unjustified. 518 

 519 

The most prominent feature in the New Jersey sea-level reconstruction is the inflection that marks the 520 

initiation of modern rates of sea-level rise between 1830AD and 1873AD (Table 2; Figure 9a).  Using a 521 

global compilation of tide-gauge records (Church and White (2006); 2011) recognized an increase in the 522 

rate of sea-level rise at around 1930AD, but concluded that the primary change from background to 523 

modern rates of rise likely occurred prior to 1870AD.  Therefore the onset of modern rates of sea-level 524 

rise pre-dates all tide gauges in New Jersey and almost all globally.  Based on the limited number of 525 

pre-1870AD gauges, Jevrejeva et al. (2008) developed a global tide-gauge record since 1700AD and 526 

concluded that accelerated sea-level rise may have begun in the late 18th century. Sea-level 527 

reconstructions from salt-marsh sediment address the limited duration of instrumental data and estimate 528 

when modern rates of rise began (Barlow et al., 2013).  In North Carolina, change point analysis 529 

identified the increase in rate as occurring between 1865AD and 1892AD (Kemp et al., 2011).  In 530 

Connecticut, the change was identified in the second half of the 19th century from the difference between 531 
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reconstructed background rates and modern rates of rise measured by tide gauges (Donnelly et al., 2004).  532 

The onset of modern sea-level rise in New Jersey is broadly synchronous with similar studies from the 533 

U.S. Atlantic coast.  From a salt-marsh reconstruction in Nova Scotia, the transition to modern rates of 534 

rise was subjectively identified between 1930AD and 1940AD from the intersection of two linear 535 

regressions without formal consideration of temporal and vertical uncertainties in the sea-level 536 

reconstruction (Gehrels et al., 2005; Gehrels and Woodworth, 2012).  Using the same approach, sea-level 537 

reconstructions from the southern hemisphere (Tasmania and New Zealand) placed the inflection in the 538 

rate of sea-level rise between 1895AD and 1925AD (Gehrels et al., 2012; Gehrels et al., 2008; Gehrels 539 

and Woodworth, 2012).  This difference in timings may reflect a real global pattern or be a consequence 540 

of the methods used to estimate timing and rates. 541 

 542 

The reconstructed rate of sea-level rise in New Jersey since the inflection between 1865AD and 1892AD 543 

is 3.1mm/yr (95% confidence interval of 2.8mm/yr to 3.5mm/yr; Figure 9a, Table 2) and is unprecedented 544 

for at least 2500 years.  This rate exceeds the global average estimated for the 20th century of 1.7mm/yr 545 

(Church and White, 2006; Church and White, 2011) as well as the U.S. Atlantic average of 1.8mm/yr 546 

(Engelhart et al., 2009).  It also exceeds the reconstructed rate for this period from regions to the south 547 

(North Carolina, 2.1mm/yr) and north of New Jersey (Nova Scotia, 1.4mm/yr) on the Atlantic coast of 548 

North America.  Processes causing exaggerated rates of land subsidence such as ground water withdrawal 549 

are often invoked for explaining the high rate of sea-level rise at the New Jersey coast (Davis, 1987; Sun 550 

et al., 1999).  Local and sub-regional scale factors such as these are not captured by the database of 551 

sea-level index points used to estimate land-level change, particularly if the process(es) began in the 552 

historical period (e.g. ground-water pumping).  However, the high degree of coherence among New 553 

Jersey tide gauges (Figure 8a) suggests that a regional rather than local process is the driving mechanism.  554 

Regional land-level changes in addition to GIA (e.g. long term subsidence of the coastal plain) cannot be 555 

invoked as the cause of the high rate of sea-level rise since these are inherently included in the regional 556 

database of sea-level index points.  Similarly a methodological effect (e.g. change in dating methods) 557 

cannot be invoked since the reconstructions are in agreement with regional tide-gauge data (Figure 8) and 558 

the same approach used elsewhere (e.g. Nova Scotia, North Carolina) did not generate such high rates of 559 

rise.  Therefore the high rate of regional sea-level rise in New Jersey since ~1850AD is attributed to 560 

oceanographic, ocean mass, or ocean volume effects.  New Jersey is located in the region between Cape 561 

Hatteras and Cape Cod where tide gauges recorded rates of rise considerably greater than the global mean 562 

during the 20th century (Boon, 2012; Sallenger et al., 2012).  Model results predict that changes in ocean 563 

circulation in the 21st century would result in excess sea-level rise (up to ~0.3m) along the northeastern 564 
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coast of the United States (Yin et al., 2009).  The high rate of sea-level rise reconstructed in New Jersey is 565 

in agreement with instrumental measurements and indicates that regional processes began to cause this 566 

spatial pattern of excess sea-level rise around 1850AD. 567 

 568 

Prior to the onset of increased rates of sea-level rise around 1850AD, New Jersey experienced three 569 

additional periods of persistent sea-level trends (Figure 9a).  Phases of late Holocene sea-level rise 570 

representing departures from a linear trend have also been reconstructed in Connecticut (Thomas and 571 

Varekamp, 1991; van de Plassche, 2000; van de Plassche et al., 1998), but in some cases were 572 

reinterpreted as sedimentary features caused by erosion of salt marshes during hurricanes or large storms 573 

followed by rapid infilling of accommodation space (van de Plassche et al., 2006).  Salt-marsh 574 

reconstructions from Massachusetts (Kemp et al., 2011), Maine (Gehrels, 2000), and the Gulf of Mexico 575 

(González and Törnqvist, 2009) show evidence of late Holocene sea-level changes but lack the resolution 576 

necessary to definitively identify these features within the limitations of age and sea-level uncertainties.  577 

The late Holocene reconstruction from North Carolina included four phases of sea-level change after 578 

adjustment for land-level changes that could not be accommodated by a linear rate of change (Kemp et 579 

al., 2011).  To ensure compatibility with the New Jersey reconstruction, the same error-in-variables 580 

change point model was applied to the North Carolina dataset.  A model with three change points best 581 

described the reconstruction as evidenced by the lowest DIC, resulting in four persistent sea-level trends 582 

that are slightly different to those reported in (Kemp et al., 2011).  In North Carolina, sea level was stable 583 

from at least 100BC to 968AD.  It then increased for ~400 years at a rate of 0.5 mm/yr, followed by a 584 

further period of stable, or slightly falling, sea level until the late 19th century. After 1877AD, sea level 585 

rose at an average rate of 2.0 mm/yr (Figure 9b).  These changes were attributed to climate variability, 586 

with sea-level rise being caused by Medieval warmth, stable or slightly falling sea level as a consequence 587 

of the cooler Little Ice Age, and the sharp rise since the end of the 19th century driven by contemporary 588 

warming (Kemp et al., 2011). With the exception of the historic onset of more rapid sea-level rise (1862-589 

1873AD is the period of mutual overlap) these phases are asynchronous, with changes in New Jersey 590 

predating those in North Carolina.   591 

 592 

Gehrels et al. (2005) recognized that calibrating radiocarbon ages from salt marshes can generate apparent 593 

sea-level changes that are artifacts of calibration.  Using simulated radiocarbon dates spaced at regular 594 

temporal intervals, they generated stacked calibrated ages (more rapid “sea-level rise”) at times when the 595 

calibration curve is relatively flat (plateaus) and multiple calibrated ranges are generated for a single date.  596 
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Of interest to understanding the pattern of sea-level rise reconstructed in New Jersey are examples of 597 

these periods at around 800AD and 1600AD.  The asynchroneity and timing of Medieval sea-level rise in 598 

New Jersey (250AD to 750AD) and North Carolina (950AD to 1375AD) indicates that these 599 

reconstructed trends are not artifacts of radiocarbon calibration.  Since the two, independent, sea-level 600 

reconstructions span a similar period of time, with a similar concentration of radiocarbon dates, they 601 

would be expected to experience simultaneous changes in sea level if they were an artifact of calibration.  602 

Therefore radiocarbon calibration is unlikely to be the cause of the reconstructed sea-level rise and a 603 

physical explanation must be sought. Alternatively, the differences between the North Carolina and New 604 

Jersey could potentially be explained by relaxing the assumption of constant, linear rates of vertical 605 

land-level change to allow a more complex spatio-temporal contribution to RSL from crustal motion.  606 

However, Earth-Ice models suggest that a linear rate of GIA is appropriate for the time scale under 607 

consideration and this assertion is supported by compilations of RSL contributions from the U.S. Atlantic 608 

coast (e.g. Engelhart et al., 2011a). 609 

 610 

Although the first period of sea-level rise in New Jersey and North Carolina was asynchronous in timing, 611 

the rates of change (following correction of the land-level contribution) are similar.  In both regions the 612 

rate of rise was 0.5mm/yr to 0.6mm/yr, preceded by an interval of stable or slightly falling sea level (0.0 613 

to -0.1mm/yr) and followed by a second period of stable sea level (Figure 9).  This agreement could 614 

indicate a common driving mechanism with a spatial lag time.  The rise in North Carolina was attributed 615 

to a warmer global climate during the Medieval Climate Anomaly (Kemp et al., 2011).  The 616 

reconstruction from New Jersey suggests a complex response of sea level to paleo-climate change that 617 

results in spatial variability.  On decadal timescales instrumental measurements of historic sea level 618 

indicate that steric expansion (e.g. Cazenave and Llovel, 2010) and ocean circulation (e.g. Bingham and 619 

Hughes, 2009; Ezer et al., 2013; Kienert and Rahmstorf, 2012) cause spatial variability in sea level along 620 

the U.S. Atlantic coast.  It is currently unclear if these processes can be invoked as a plausible mechanism 621 

for explaining spatial variability on centennial timescales.  However, the New Jersey and North Carolina 622 

reconstructions are currently the only two studies to cover the entire late Holocene with the resolution 623 

needed to identify this level of variability and test hypotheses about mechanisms for pre instrumental sea-624 

level changes.  Reconstructions from other locations that encompass this interval of sea-level variability 625 

rather than focusing exclusively on the transition to modern rates of rise are needed to elucidate a 626 

coherent evolution of late Holocene sea-level change.  Understanding the origin and causes of these 627 

phases of late Holocene sea-level change will help to predict the future response of sea level to projected 628 

changes in global climate. 629 
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 630 

6. Conclusions 631 

Relative sea level (RSL) was reconstructed at two sites in New Jersey from sequences of salt-marsh 632 

sediment.  A multi-proxy approach combining a transfer function trained on the modern distribution of 633 

foraminifera and bulk sediment δ13C values as sea-level indicators estimated the elevation at which 634 

samples formed in one of three ways.  (i) For samples with a δ13C value more depleted than -22‰, the 635 

transfer function estimate was trimmed to retain only the range above MHHW; (ii) For samples with a 636 

δ13C value less depleted than -18.9‰, the transfer function estimate was trimmed to retain only the range 637 

below MHHW; and (iii) For samples with intermediate δ13C values (-22.0‰ to -18.9‰), and/or transfer 638 

function estimates that did not encompass MHHW, the full range of the original transfer function was 639 

retained.  Sample ages were estimated using an age-depth model developed from a composite chronology 640 

of radiocarbon dates and chrono-horizons recognized by changes in elemental concentration, 137Cs 641 

activity, ratios of lead isotopes and pollen abundance that were related to historical trends.  The RSL 642 

reconstructions span the last 2500 years with an average vertical uncertainty of ±0.12m and average age 643 

uncertainty of ±32 years.   644 

 645 

To test if sea level was stable during the late Holocene and identify positive and negative departures from 646 

background rates of change, an estimated rate of land subsidence (1.4 mm/yr) was removed.  Change 647 

point analysis identified four periods of persistent (multi-centennial) sea-level trends in the resulting 648 

record. These deviations confirm that late Holocene sea level in New Jersey was not stable.  From at least 649 

500BC to 250AD sea level fell at 0.11mm/yr.  Sea-level rose at 0.62mm/yr from 250AD to 733AD.  650 

Between 733AD and 1850AD sea level fell at 0.12mm/yr.  Since 1850AD the reconstructed rate of 651 

sea-level rise was 3.1mm/yr, which is greater than any other persistent trend in at least the preceding 2500 652 

years.  The onset of modern rates of rise in the late 19th century is synchronous with reconstructions from 653 

other locations on the U.S. east coast. The modern rate of rise is in agreement with regional tide-gauge 654 

records and exceeds the global average estimate for the 20th  century.  The asynchroneity of Medieval sea 655 

level rise between New Jersey and North Carolina suggests that the reconstructed sea-level variability is 656 

not an artifact of radiocarbon calibration and therefore requires a physical explanation. 657 

 658 
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Table 1: Radiocarbon dates from cores LP-10 and CMC-8 672 

Core – Depth (cm) Sample ID Radiocarbon Age 
(14C years) 

Radiocarbon 
Error (14C years) 

δ13C (‰, 
VPDB) 

Dated 
Material 

LP10 – 127cm* OS-70446 319 13 -12.41 Sp 

LP10 – 135cm OS-79171 415 25 -12.48 Ds 

LP10 – 146cm OS-79172 625 25 -12.77 Sp 

LP10 – 184cm OS-66518 950 30 -13.78 Sp 

LP10 – 188cm OS-79174 1090 25 -13.42 Sp 

LP10 – 198cm OS-70444 1188 30 -13.13 Sp 

LP10 – 218cm* OS-70442 1249 13 -13.89 Sp 

LP10 – 226cm OS-79175 1290 25 -13.88 Ds 

LP10 – 237cm OS-79176 1320 25 -13.86 Sp 

LP10 – 245cm*‡ OS-70443 1502 14 -13.24 Sp

LP10 – 268cm*‡ OS-70445 1541 14 -14.57 Sp

LP10 – 282cm‡ OS-66514 1550 25 -14.4 Sp

LP10 – 295cm OS-94847 1700 30 -23.99 Sa 

LP10 – 300cm OS-94846 1720 25 -26.82 Seed 

LP10 – 307cm OS-79177 1810 30 -24.66 Sa 

LP10 – 314cm‡ OS-79178 1750 30 -26.47 Sa 

LP10 – 327cm‡ OS-87528 1880 30 -12.69 HW 

LP10 – 355cm OS-94848 2190 25 -24.95 Pa 

LP10 – 365cm OS-87446 2230 25 -25.02 Sa 

LP10 – 386cm OS-94849 2210 35 -26.26 Pa 

LP10 – 393cm OS-87524 2450 25 -27.23 HW 

CMC8 – 76cm OS-94468 120 30 -11.15 Ds 

CMC8 – 82cm OS-94470 230 25 -10.97 Ds 

CMC8 – 86cm OS-88617 250 40 -10.07 Ds 

CMC8 – 94cm OS-94469 285 30 -10.47 Ds 

CMC8 – 111cm OS-88725 400 25 -24.92 Sp 

CMC8 – 122cm OS-88618 520 40 -13.82 Ds 

CMC8 – 135cm OS-79179 770 30 -13.45 Ds 

CMC8 – 145cm OS-79180 865 25 -13.61 Ds 

CMC8 – 160cm OS-88619 960 40 -13.94 Ds 

CMC8 – 171cm OS-79181 1100 30 -13.50 Ds 

CMC8 – 180cm OS-94471 1120 25 -12.60 Ds 

CMC8 – 194cm OS-88620 1190 35 -11.40 Sp 

CMC8 – 208cm OS-88726 1350 30 -27.73 Sa 

 673 

All samples were dated by the National Oceanic Sciences Accelerator Mass Spectrometry facility, sample 674 

identifiers correspond to this lab.  * denote dates that are not reported following standard rounding of 675 

radiocarbon age and error. Samples marked with ‡ were previously published in (Kemp et al., 2012c).  Ds 676 

= Distichlis spicata; Spt = Spartina patens; HW = fragment of wood lying horizontal in core, Pa = 677 
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Phragmites australis; Sa = Schoenoplectus americanus. Reported δ13C values are from an aliquot of CO2 678 

collected during sample combustion and refer only to the dated macrofossil and not the bulk sediment 679 

matrix from which it was isolated. 680 

681 
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Table 2: Change Point Analysis 682 

No. of Change 

Points 
Converged? 

Deviance Information 

Criterion (DIC) 

Timing of 

Changes (AD) 

0 Yes -1843.9  

1 Yes -1859.5 1922 

2 Yes -1886.3 897 and 1855 

3 Yes -1938.7 246, 733, and 1850 

4 No No convergence  

3 Change Point 

Model 
   

Interval 
Rate (mm/yr; 

95% confidence) 

Timing of Change (AD; 

95% confidence) 
 

i -0.22 to -0.01   

ii 0.44 to 0.90 131-335  

iii -0.18 to -0.07 633-825  

iv 2.81 to 3.47 1830-1873  

 683 

Results of change point analysis applied to the New Jersey sea-level reconstruction after 1.4mm/yr of 684 

estimated subsidence was removed.  Models with 0, 1, 2, 3, and 4 change points were developed and 685 

checked for convergence, where the regression was forced to meet zero sea level in 2010AD.  The 686 

Deviance Information Criterion (DIC) is a measure of model fit, where a lower value indicates a more 687 

robust fit to the data.  The model with three change points was the best for describing sea-level changes in 688 

New Jersey.  The 95% confidence interval for the four periods of persistent sea-level trends and timing of 689 

three change points is provided for the selected model.690 
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Figure Captions 691 

 692 

Figure 1:  Location of study sites in New Jersey, USA (A).  Distribution of modern foraminifera was 693 

documented at 12 sites (open circles (Kemp et al., 2013)), including five around Great Egg Harbor. 694 

Location of tide gauges at Cape May, NJ, Atlantic City, NJ, and Lewes, DE is denoted by T symbols.  695 

RMS = Rutgers Marine Station.  Cores for sea-level reconstruction (filled circles) were collected at Leeds 696 

Point in the Edwin Forsythe National Wildlife Refuge (B) and at Cape May Courthouse (C). 697 

 698 

Figure 2: Leeds Point Core 10 (LP-10).  The abundance of the three most common species of 699 

foraminifera is represented by horizontal bars; Miliammina petila abundance is also shown.  Stable 700 

carbon isotope concentrations (δ13C) for bulk sediment are parts per thousand (‰) relative to the Vienna 701 

Pee Dee Belemnite (VPDB) standard.  Values corresponding to modern salt marsh (less depleted than 702 

-18.9‰) and highest salt marsh (more depleted than -22.0‰) environments dominated in New Jersey by 703 

C4 and C3 plants respectively are denoted by grey shading.  Paleomarsh elevation (PME) was 704 

reconstructed using a transfer function applied to foraminifera preserved in core samples, SWLI = 705 

Standardized Water Level Index.  Filled circles and error bars are sample-specific reconstructions of PME 706 

and uncertainty from the transfer function.  Dashed lines display the error that was trimmed from the final 707 

reconstruction on the basis of δ13C values.  Minimum dissimilarity was measured using the Bray Curtis 708 

metric between each sample in the core and its single closest analogue in a training set of modern 709 

salt-marsh foraminifera from New Jersey.  Vertical dashed lines mark thresholds for interpreting 710 

dissimilarity and were derived from pairwise analysis of the modern training set.  The site of the closest 711 

analogue is shown by symbol shading.  GB = Great Bay sites, EH = Egg Harbor Sites, BB = Brigantine 712 

Barrier, CMC = Cape May Courthouse. Goodness-of-fit to tidal elevation was measured as the squared 713 

residual fit of core samples in comparison to thresholds (vertical dashed lines) established from the 714 

modern dataset. 715 

 716 

Figure 3: Cape May Courthouse Core 8 (CMC-8).  The abundance of the three most common species of 717 

foraminifera is represented by grey horizontal bars.  Stable carbon isotope concentrations (δ13C) for bulk 718 

sediment are parts per thousand (‰) relative to the Vienna Pee Dee Belemnite (VPDB) standard.  Values 719 

corresponding to modern salt marsh (less depleted than -18.9‰) and highest salt marsh (more depleted 720 

than -22.0‰) environments dominated in New Jersey by C4 and C3 plants respectively are denoted by 721 
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grey shading.  Paleomarsh elevation (PME) was reconstructed using a transfer function applied to 722 

foraminifera preserved in core samples, SWLI = Standardized Water Level Index.  Filled circles and error 723 

bars are sample-specific reconstructions of PME and uncertainty from the transfer function.  Dashed lines 724 

display the error that was trimmed from the final reconstruction on the basis of δ13C values.  Minimum 725 

dissimilarity was measured using the Bray Curtis metric between each sample in the core and its single 726 

closest analogue in a training set of modern salt-marsh foraminifera from New Jersey.  Vertical dashed 727 

lines mark thresholds for interpreting dissimilarity and were derived from pairwise analysis of the modern 728 

training set. The site of the closest analogue is shown by symbol shading.  GB = Great Bay sites, EH = 729 

Egg Harbor Sites, BB = Brigantine Barrier, CSG = Cold Spring. Goodness-of-fit to tidal elevation was 730 

measured as the squared residual fit of core samples in comparison to thresholds (vertical dashed lines) 731 

established from the modern dataset. 732 

 733 

Figure 4: Chronology developed for core LP-10.  Twenty one, identifiable plant macrofossils were 734 

radiocarbon dated and constrained the Bchron age model (shaded grey envelope).  Solid horizontal bars 735 

represent the full range of calibrated ages rather than their probability distribution. 736 

 737 

Figure 5: Chronohorizons in core CMC-8. (A) Downcore concentrations of elements (zinc, cadmium, 738 

copper, nickel and lead) and ratios of lead isotopes from bulk sediment (1cm thick) measured by mass 739 

spectrometry.  Analytical errors are smaller than symbols.  137Cs activity was calculated from gamma 740 

emission measurements.  Ambrosia pollen is a marker for land clearance during European settlement.  741 

Grey bands with ages represent core intervals recognized as corresponding to prominent features in U.S. 742 

national production records (B). 743 

 744 

Figure 6: Chronology developed for core CMC-8.  Thirteen, identifiable plant macrofossils were 745 

radiocarbon dated and constrained the Bchron age model (shaded grey envelope).  Solid horizontal bars 746 

represent the full range of calibrated ages rather than their probability distribution.  Pollution 747 

chronohorizons were recognized by downcore changes in elemental concentration, lead isotopic ratios 748 

and 137Cs activity that could be related to features in historic production statistics.  An increase in 749 

Ambrosia pollen was interpreted as being caused by land clearance during European settlement in the 750 

study region.  751 
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 752 

Figure 7: Relative sea-level reconstruction from southern New Jersey. (A) New index points from Leeds 753 

Point and Cape May Courthouse with vertical and age error reported following the same conventions as 754 

those from a database of radiocarbon dated index points in New Jersey.  Relative sea-level predictions for 755 

Cape May Couthouse from the ICE6G-VM5b model are shown at 250 year time steps in as open circles 756 

(B) Relative sea level reconstructed from Leeds Point core 10 and Cape May Courthouse core 8 using 757 

foraminifera with stable carbon isotopes as sea level indicators and a composite chronology developed 758 

with Bchron age depth models to estimate sample age and uncertainty.  Data points are represented by 759 

boxes that incorporate the vertical and temporal uncertainty from these two sources, but do not show 760 

associated probability distributions within each box. 761 

 762 

Figure 8: (A) Tide-gauge records of relative sea level from sites in New Jersey and Delaware.  Annual 763 

data computed from monthly means and plotted against the average for 2000-2010AD for each gauge.  A 764 

single record was compiled by averaging annual data from the four gauges.  A linear regression of the 765 

averaged record shows that relative sea level rose at average rate of 4.03mm/yr between 1911AD and 766 

2012AD.  (B) Comparison of the relative sea level reconstruction from Cape May Courthouse (dashed 767 

line) and a tide-gauge record produced by averaging annual data from Atlantic City, Sandy Hook, Cape 768 

May and Lewes (solid line).  Tide-gauge data is relative to 2010AD (year of core collection).  Age and 769 

vertical uncertainties from the sea-level reconstruction are represented by grey boxes. 770 

 771 

Figure 9: New Jersey (A) and North Carolina (B) sea-level reconstructions with the estimated 772 

contribution of land-level change removed (1.4mm/yr for New Jersey and 0.9mm/yr or 1.0mm/yr for 773 

North Carolina).  Data points previously represented by rectangles have been distorted into 774 

parallelograms by subtraction of a rate that has a larger effect on the older edge of each box than it does 775 

on the younger edge.  Average rates of sea-level change for four persistent phases are listed and the 95% 776 

confidence interval for the timing of rate changes are represented by probability distributions.  The shaded 777 

bands are the best-fit change point regressions.  The same change point model was applied to both 778 

records, causing marginally different results for North Carolina than those originally reported by (Kemp 779 

et al., 2011).780 
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