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 26 

Summary 27 

The rulAB operon of Pseudomonas spp. confers fitness traits on the host and has been 28 

suggested to be a hotspot for insertion of mobile elements that carry avirulence genes. 29 

Here, for the first time, we show that rulB on plasmid pWW0 is a hotspot for the 30 

active site-specific integration of related integron-like elements (ILEs) found in 6 31 

environmental pseudomonads (strains FH1-6). Integration into rulB on pWW0 32 

occurred at position 6488 generating a 3 bp direct repeat. ILEs from FH1 and FH5 33 

were 9403 in length and contained 8 ORFs whilst the ILE from FH4 was 16233 bp in 34 

length and contained 16 ORFs. In all three ILEs the first 5.1 kb (containing ORFs 1-4) 35 

were structurally conserved and contained 3 predicted site-specific 36 

recombinases/integrases and a tetR homologue.Downstream of these resided ORFs of 37 

the ‘variable side’ with structural and sequence similarity to those encoding survival 38 

traits on the fitness enhancing plasmid pGRT1 (ILEFH1 and ILEFH5) and the NR-II 39 

virulence region of genomic island PAGI-5 (ILEFH4). Collectively, these ILEs share 40 

features with the previously described type III protein  secretion system effector 41 

(T3SE) integron-like elements and are considered important to host survival and 42 

transfer of fitness enhancing and (a)virulence genes between bacteria. 43 

44 
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Introduction 45 

 46 

Bacteria within the Genus Pseudomonas are found in a wide range of 47 

terrestrial and aquatic natural and clinical environments and demonstrate remarkable 48 

metabolic and physiological versatility including the potential for pathogenicity 49 

(Morris et al., 2000; Morris et al., 2007; Morris et al., 2008; Riffaud and Morris, 50 

2002). This has been particularly illustrated by sequenced genomes (Ortet et al., 2011; 51 

Patel et al., 2012; Ramírez-Díaz et al., 2011; Rodríguez‐Palenzuela et al., 2010; 52 

Winsor et al., 2011; Yu et al., 2011). These have revealed the extent of the horizontal 53 

transfer of mobile genetic elements (MGEs) such as phage, transposons and insertion 54 

sequences and genomic and pathogenicity islands (Roy et al., 2010; Martinez et al., 55 

2012; Morales-Espinosa et al., 2012; Tang et al., 2012, Wu et al., 2012), and the 56 

mosaic nature of bacterial genomes in general (Marttinen et al., 2012; Hall, 2012).  57 

The rulAB operon in Pseudomonas spp. has been shown to confer fitness traits 58 

including UV tolerance on its host (Sundin et al., 1996; Gibbon et al., 1999) and to be 59 

involved in the SOS response and the growth advantage in stationary phase (GASP) 60 

phenotype (Tark et al., 2005; Kivisaar, 2010). The operon is common to both the 61 

chromosomes and plasmids of pseudomonads (Cazorla et al., 2008, Zhao et al., 2005, 62 

Sundin et al., 2000). In the latter it is usually located close to transfer or mating pair 63 

formation encoding regions in the core backbone, ensuring it is one of the first regions 64 

transferred during conjugation (Gibbon et al., 1999).  65 

Analysis of Pseudomonas genomes demonstrated that rulAB is common in an 66 

intact or an interrupted form.  Its function and benefit to bacterial hosts is still 67 

relatively poorly understood (Jackson et al., 2011). Arnold et al. (2001) found that the 68 

avirulence gene avrPpiA1 resided in a 4.3 kb region that interrupted the rulB gene in 69 A
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P. syringae pv. pisi and concluded that the rulB gene may be a hotspot for insertion of 70 

mobile regions of DNA. Interruption of the rulB gene by integration of integron-like 71 

elements led to the postulation that the rulAB promoter controls the expression of 72 

integrase under the regulation of LexA repressor protein (a LexA binding site can be 73 

found upstream of rulAB) (Jackson et al., 2011). This association is broad, with 74 

similar disruptions of rulAB-related DNA repair genes rumAB, umuDC, impAB, 75 

mucAB, samAB and ruvAB in a range of bacteria including the insertion of the SXT 76 

conjugative element that confers pathogenicity and is embedded in rumB of V. 77 

cholera (Hochhut et al., 2001). 78 

The 117 kb plasmid pWW0 is the archetypal plasmid of the IncP-9 group, a 79 

family of large self-transmissible plasmids found mainly in pseudomonads, that 80 

harbour genes for antibiotic and heavy metal resistance and the biodegradation of 81 

mono- and polyaromatic compounds (toluene/xylenes and naphthalene) (see 82 

Sevastsyanovich et al., 2008). In pWW0 these genes are harboured within the 70kb 83 

transposon Tn4653, with the remainder of the plasmid containing the core backbone 84 

functions. Although classed as a narrow host range plasmid, pWW0 can transfer at 85 

frequencies as high as 10
-1

 to 1 transconjugant per recipient cell between 86 

pseudomonads (Nakazawa, 1978, Ramos et al., 1987) and can transfer to 87 

enterobacteriaceae at lower frequencies (see Ramos et al., 1997). It also has the 88 

capability for retrotransfer (Ronchel et al. 2000). Carriage of pWW0 has been shown 89 

to be beneficial to host bacteria not only through traits encoded by the accessory 90 

genes within Tn4653 but also from those encoded by the rulAB-homologue genes 91 

(termed ruvAB; Greated et al., 2002) within the core backbone. In pWW0 these genes 92 

are located between positions 5405-7034 and have been shown to encode a DNA 93 A
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polymerase Pol V homologue that significantly increases the evolutionary fitness of 94 

the P. putida host bacteria during prolonged nutritional starvation (Tark et al., 2005). 95 

In the present study we report for the first time the active integration of a 96 

group of related integron-like elements (ILEs) from environmental Pseudomonas spp 97 

isolates into plasmid pWW0 and show that insertion into rulAB operon and its 98 

homologues in other genera is potentially of key importance to the adaptation and 99 

survival of these bacteria.   100 

 101 

RESULTS  102 

 103 

Discovery of a novel integron-like element 104 

 105 

During an investigation of plasmid-encoded copper resistance in environmental 106 

pseudomonads recovered in a previous study (Pickup 1989), we attempted to cure 107 

native plasmids from these strains by incompatibility using the IncP-9 toluene-108 

degrading plasmid pWW0. After conjugation between Pseudomonas putida PaW340 109 

(pWW0) and environmental isolate FH1 (Table 1), and subsequent verification of 110 

FH1 (pWW0) transconjugants by restriction digest analysis of pWW0FH1, we 111 

observed that plasmid pWW0 had acquired an extra region of DNA and that this 112 

process was repeatable. Restriction mapping showed the insert to be around 10 kb in 113 

size and the region was subsequently cloned on a PstI fragment into vector pBR325, 114 

and the recombinant plasmid designated pFBA1001 (not shown). This region was 115 

subsequently shown by DNA hybridization against genomic DNA from plasmid-116 

cured FH1 to be chromosomally located (not shown).  117 A
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 The 10 kb region of pWW0FH1 in pFBA1001 was sequenced and a complete 118 

assembly was constructed. Putative open reading frames (ORFs) were identified and 119 

the DNA and protein sequences within this region were aligned with sequences in the 120 

databases. The PstI fragment was 10165 bp in length and was flanked on either side 121 

by 480 bp and 282 bp of a disrupted rulB gene. The rulB-flanked region was therefore 122 

9403 bp in length and contained 8 ORFs (Table 2). Alignments revealed that all 8 123 

ORFs had the closest nucleotide and protein identity with ORFs 26-35 in plasmid 124 

pGRT1 of P. putida DOT-T1E which is tolerant to high concentrations of toluene via 125 

efflux pumping (Molina et al., 2011) (Table 2). Notably, ORFs 1-3 were phage 126 

integrases/site-specific recombinases. The predicted protein of ORF1 possessed the C-127 

terminal R-H-R-Y motif of tyrosine recombinases and multi-domains of XerC and 128 

XerD recombinases and was therefore designated xerD (supplementary Figure S1). 129 

ORF2 and ORF3 were also putative site-specific recombinases that possessed the 130 

INT_REC_C conserved domain (not shown). 131 

 The only significant difference between the pFBA1001 element and its 132 

counterpart region on pGRT1 was the presence in pGRT1 of an IS4-like transposase 133 

(ORF29) which is absent from pFBA1001. In pGRT1 this transposase divides ORF28 134 

and ORF30 (also both predicted to encode site-specific recombinases) and its in silico 135 

deletion from pGRT1 results in the same sequence found in ORF3 (int/rec) on 136 

pFBA1001, suggesting the possibility of an insertion event (not shown). As in 137 

pFBA1001, ORFs 26-35 in pGRT1 are flanked by ruvAB (rulAB) genes (ORFs 25 and 138 

36) homologous with rulAB of pWW0. In addition, the region is oriented in the same 139 

way as in pFBA1001.  140 

 The sequence of the ORF5 predicted protein shares 96% identity with that 141 

encoded by ORF32 on pGRT1 and was predicted to be an SdiA-regulated motif 142 A
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protein involved in modulation of the TtgGHI efflux pump (Molina et al., 2011). 143 

Similarly, ORF7 which shares 96% protein sequence identity with pGRT1 ORF34, 144 

was predicted to encode a universal stress response protein UspA, which in the latter 145 

conferred a 2-order of magnitude survival advantage to toluene shock after moderate 146 

exposure to toluene stress (Molina et al., 2011). ORF 8 was homologous to ORF35 on 147 

pGRT1 and was predicted to encode a sulphate permease that has been shown to be 148 

involved in siderophore production (possibly via the release of a pseudobactin-like 149 

siderophore (see Molina et al., 2011). Collectively, the presence of a xerD integrase, 150 

tetR gene and other possible fitness enhancing traits in the mobile region from FH1 151 

were suggestive of an integron-like structure. For this reason the FH1 element was 152 

designated an integron-like element (ILE). 153 

 154 

The FH1 integron-like element is diverse and associated with UV-resistance gene 155 

rulB 156 

 157 

The distribution of ILEs in the environment was assessed in naturally occurring 158 

pseudomonads recovered from Copper Mines Valley in the English Lake District 159 

(Cumbria UK). From hundreds of CFU initially isolated on Pseudomonas selective 160 

agar, 800 presumptive pseudomonad isolates were purified. Isolates were not 161 

characterised further and due to the isolation media used are not guaranteed to be 162 

independent isolates. Purified isolates were screened for similar ILEs by colony 163 

hybridization using the entire pFBA1001 10 kb PstI restriction fragment as a DNA 164 

probe. This resulted in 11 positive signals (1.4%; not shown). Conjugation of 165 

hybridisation positive strains with P. putida PaW340 (pWW0) resulted in the 166 

insertion of regions of approximately 9-16 kb in size into pWW0 in 5 of the 11 167 A
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isolates. In each case the frequency of plasmid transfer ranged between 10
-4

 and 10
-2

 168 

per recipient. Restriction fragment length polymorphism (RFLP) profiling showed 169 

that all altered pWW0 plasmids were different and it was therefore assumed that all 6 170 

ILEs were different (Fig. 1). The original bacterial isolates containing these ILEs were 171 

designated strains FH1-FH6 (Table 1), and the altered pWW0 plasmids that arose 172 

after mating with P. putida PaW340 (pWW0) were named pWW0::ILEFH1-6. 173 

Restriction mapping of plasmids pWW0FH2-6 using the published sequence of 174 

pWW0 as a reference (Greated et al., 2002) suggested that as for pWW0FH1, insertion 175 

of the ILE in each case was also most likely into the rulAB operon. Based upon the 176 

position of ILEFH1 (from pWW0::ILEFH1), insertion into pWW0 at this point would 177 

result in an unaltered rulA gene, but with an interruption 123 bp into the rulB gene 178 

(herein referred to as rulB’). However, interruption at this point created an alternative 179 

ORF (rulB(2)) encoding a predicted protein of 345 aa with a start codon at original 180 

position 6440 (Fig. 2). Fine mapping and sequencing of the region in pWW0::ILEFH1 181 

revealed the insertion of ILEFH1 into pWW0 occurred between positions 6488-6490 in 182 

the ruvB (rulB) gene generating a target repeat of 5’-GAT-3’ at the insertion site (Fig. 183 

2).  184 

 185 

Specificity of ILE insertion into pWW0 186 

  187 

The specificity of the integration was investigated by assessing insertion sites in 188 

plasmids pWW0::ILEFH1-6 by PCR amplification using the primers described in Table 189 

3. DNA from plasmids pWW0::ILEFH1-6 and the genomes of original strains FH1-FH6 190 

and P. putida PaW340 (pWW0) was extracted and amplification performed (Table 4). 191 

Amplification of the intact rulAB region was successful from pWW0 DNA but not 192 A
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from FH1-6 genomic DNA or plasmids pWW0::ILEFH1-6. This confirmed that an 193 

intact pWW0-like rulAB was not carried in the genomes or in pWW0 transconjugants. 194 

Amplification of the region spanning the rulAB-xerD (590 bp) was positive for 195 

plasmids pWW0::ILEFH1-6 but negative for the genomes of original isolates and P. 196 

putida PaW340. This indicated that in each case the rulAB operon had been 197 

interrupted by insertion and that a region found in ORF1 (xerD) on the integrating 198 

region was common to all transconjugants. This was confirmed with the amplification 199 

of a region of the xerD gene from plasmids pWW0::ILEFH1-6. These findings also 200 

showed that the six ILEs had interrupted rulAB in the same orientation (see Fig. 2). 201 

However, at the right hand end of the ILEs there was variability as primers that 202 

spanned the intergenic rulB-sulP junction amplified from plasmids pWW0::ILEFH1 203 

and pWW0::ILEFH5 only.  204 

 PCR products obtained from the rulAB-xerD and rulB-sulP primer pair 205 

amplifications were sequenced resulting in sequences for each end of the region 206 

inserted into pWW0::ILEFH1 and pWW0::ILEFH5.  In each case it was demonstrated 207 

that insertion occurred at exactly the same position on pWW0 and generated a 5’-208 

GAT-3’ direct repeat at the insertion point (Fig. 2).  209 

 The importance of this insertion site to the movement and integration of ILEs 210 

was tested by conjugation between strains FH1, FH4 and FH5 and P. putida PaW340 211 

(pWW0ΔrulAB::Km
R
) by filter matings. From each of these matings twenty 212 

transconjugants were screened for insertion into pWW0 by carrying out the xerD PCR 213 

on extracted plasmids (since the more specific rulAB-xerD PCR assay could not be 214 

used due to loss of the forward primer locus). Amplification did not occur (positive 215 

control DNA amplified as expected) suggesting that integration did not take place 216 

either at this original site or elsewhere on pWW0 (not shown).  In  matings between 217 A
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FH1 FH4 and FH5 and P. putida PaW340 with the intact rulAB carrying  plasmid 218 

(pWW0::Km
R
) this frequency of integration of ILEs was between 20% and 85 % (not 219 

shown).  220 

   221 

The sequence and location of the ILEs in the genomes of FH1, FH4 and FH5  222 

 223 

 The sequence of the ILE on pWW0::ILEFH1 ascertained from pFBA1001 224 

elucidated the structure and location on pWW0 but did not confirm its location or 225 

structure in the genome of strain FH1. To better understand this we obtained the draft 226 

genome sequences of strains FH1, FH4 and FH5, which based upon RFLP profile 227 

data represented three different ILEs. The ILEs within strains FH1, FH4 and FH5 228 

were located in the draft sequences by alignment using the ILE sequences inserted 229 

into rulB on pWW0 in each strain. Interestingly, in the case of all three strains, ILEs 230 

were located inside a chromosomal rulB gene within a disrupted rulAB-like operon 231 

that differed to rulAB on pWW0 (see Fig. 3).  232 

It was as shown that the DNA sequence of ILEFH5 shared 97 % nucleotide 233 

identity with that of ILEFH1, was also 9403 bp in length and contained ORFs 1-8 that 234 

shared at least 93% protein sequence identity with those of ILEFH1 (Fig. 3).  235 

 In contrast, the ILEFH4 differed in that it was 16233 bp in length and carried 16 236 

predicted ORFs (Fig. 3 and Table 5). The first 4 ORFs encoded predicted proteins 237 

identical with those from ORFs 1-4 in ILEFH1 and ILEFH5 (xerD to tetR). This was 238 

reflected in the fact there was 99 % identity at the nucleotide level over the first 5.1 kb 239 

between ILEFH1 and ILEFH5 and 84 % with that of ILEFH4. However, immediately 240 

downstream of the tetR gene the sequences diverged and in ILEFH4 the remaining 11.1 241 

kb contained 12 predicted ORFs unrelated to those in the right hand side of ILEFH1 242 A
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and ILEFH5. This region contained ORFs homologous to those of the ubiquitous 243 

mercury-resistance mer operons (merR, merT, merP, merC, merA, merD and merE) 244 

with closest nucleotide identity (92% across the 4.3 kb in which these genes were 245 

located) to the same genes in Tn5041 (not shown) (Kholodii et al., 2002). 246 

Downstream of the mer genes was ORF15, predicted to encode an integral membrane 247 

protein (TerC family), associated with tellurium resistance. Interestingly, ORF16 was 248 

predicted to encode another RulB-like protein, however, it was orientated in the 249 

opposite direction to the chromosomal rulAB operon interrupted by ILEFH4 itself (Fig. 250 

3).  251 

 252 

Effect of insertion of ILEs into pWW0rulB on UV tolerance 253 

 254 

The effect of ILE insertion into pWW0rulB on host strain tolerance to UV was assessed 255 

in P. putida PaW340 hosts. In three independent experiments, the growth of strains P. 256 

putida PaW340 (pWW0::Km
R
) and P. putida PaW340 (pWW0::Km

R
::ILEFH1) and P. 257 

putida PaW340 (pWW0::Km
R
::ILEFH4) showed a 3 log reduction in growth after 30 258 

seconds exposure to UV (302nm) compared to controls not exposed to UV (Fig. S2). 259 

Plasmid free PaW340 and PaW340 (pWW0ΔrulAB::Km
R
) both suffered 5 log 260 

reductions in cfu numbers after the same UV exposure (Fig. S2). This suggested that 261 

insertion into rulB on pWW0 had no adverse effect on UV tolerance. 262 

 263 

ILEs associated with rulB-like genes are present in plant and animal pathogens and 264 

encode known virulence and fitness factors 265 

 266 A
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As ILEFH1 was shown to contain similar ORFs associated with fitness-conferring traits 267 

on pGRT1, we determined whether these ILEs have a wider significance by screening 268 

the genomes of other bacteria deposited in databases for their presence. Noteworthy 269 

was the homology and structural similarities that ILEFH4 shared with regions in the 75 270 

kb P. aeruginosa PA7 genomic island RGP63 (Roy et al., 2010) and the 99 kb P. 271 

aeruginosa genomic island PAGI-5 (Battle et al., 2008). In each of these cases the 272 

general structure of a truncated rulAB’ operon flanking int/rec genes and tetR 273 

followed by mer genes was observed (Fig 3). A similar structure, but lacking the tetR 274 

gene, was observed in the 123 kb P. aeruginosa plasmid pUM505 (Ramírez-Díaz et 275 

al., 2011). In pUM505 the overall structure differed due to interruption of the mer 276 

operon by a tnpA gene (Ramírez-Díaz et al., 2011). In the genomic island RGP63 the 277 

ILEFH4-like structure was located in a region spanning 10 kb between ORF88 278 

(designated umuC) and ORF99 (designated ruvB). This 10 kb region has been shown 279 

previously to share homology with a 9.8 kb region in genomic island PAGI-5 (Roy et 280 

al., 2010). Further analysis of this relationship in the present study has shown that the 281 

homology in this region between RGP63 and PAGI-5 is 99% over a 9.9 kb region and 282 

that in PAGI-5 the region is also bound by flanking rulB-like sequences. 283 

Significantly, on PAGI-5 this 9.9 kb is located in NR-II which has been shown to 284 

contribute to the highly virulent phenotype of host strain P. aeruginosa PSE9 (Battle 285 

et al., 2008). 286 

 Comparison of the sequences of ILEFH1, ILEFH4 and ILEFH5 with proposed 287 

ILEs in pGRT1, PAGI-5, RGP63, pUM505 and another candidate region on the 288 

chromosome of P. syringae pv. tomato DC3000 showed that all share structural 289 

features with the recently proposed T3SE integron-like elements (Jackson et al., 290 

2011). T3SE integron-like elements have T3SE gene(s) orientated so that the 291 A
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transcription is towards the 3’ end of the integrase gene and therefore not under the 292 

influence of the integrase Pc promoter. Although we have not identified T3SE genes 293 

on the ILEs here, this feature is shared with the integrated genes downstream of tetR 294 

in the ILEFH1 and ILEFH5 and on pGRT1, but not with all sequences downstream of 295 

tetR in FH4, pUMU505, PAGI-5 and RGP63 (Fig. 3). In addition, we have been 296 

unable to demonstrate the presence of a Pc promoter in the upstream integrase gene. 297 

However, even if present, its influence would not be exerted on rulA or disrupted 298 

rulB’ that flank the element since they are transcribed in the opposite direction. In 299 

T3SE integron-like elements, insertion into the rulAB operon is considered likely to 300 

be under the influence of the LexA repressor due to a LexA binding region in the 301 

rulAB promoter (Jackson et al., 2011). Consistent with this, we found LexA1 binding 302 

sites with the characteristic CTG-N10-CAG motif upstream of rulA in each of the 303 

chromosomally located ILEs of FH1, FH4 and FH5 as well in plasmids pWW0, 304 

pGRT1 and genomic islands PAGI-5, RGP63 and pUM505 (Fig. 4A).  305 

 In T3SE-integrons it was also observed that the integrase gene was situated 306 

less than 100 nucleotides downstream of the 5’ end of the truncated rulB’ gene and 307 

each case lacked its own upstream LexA or RpoD binding site (Jackson et al., 2011). 308 

In P. syringae pv. tomato DC3000 plasmid A and P. syringae pv. pisi avrPpiA 309 

chromosome site, both of which were described as carrying ‘complete’ T3SE 310 

integron-like elements, the integrase gene was 60 bp from the end of rulB (Jackson et 311 

al 2011). More significantly, in the present study, we observed that the start codon of 312 

the xerD integrase gene was either 118 nt (ILEFH4) or 119 nt (ILEFH1 and ILEFH5) 313 

from the GAT point of insertion at the end of truncated rulB (rulB’; Fig. 4B). For the 314 

avrPpiA1-containing element and that on DC3000 plasmid A, both of which 315 

contained a predicted rulB’ ORF, this GAT triad is also found 118 bp upstream of the 316 A
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integrase start codon ATG (Fig. 4B). This was also the case for the putative ILEs in 317 

PAGI-5, RGP63 and plasmid pUM505 (Fig. 4B). In pGRT1, the relationship with 318 

ILEFH1/FH5 was strengthened with the distance also being 119 nt (Fig. 4B). Whilst we 319 

have no evidence regarding the specific site of integration in each of these other 320 

putative ILEs we cannot rule out the potential importance of this observation to the 321 

integration of this family of ILEs in general. 322 

 323 

Analysis of the ILE insertion site in different genomes.  324 

 325 

To investigate the potential for insertion into rulB-like regions and the extent to which 326 

it may have already occurred in the genomes of other bacteria we performed DNA 327 

alignments using 123 bp regions that spanned 60 bp on either side of the insertion site 328 

of both the intact and interrupted pWW0 rulB gene (Figure S3). The intact region of 329 

pWW0-rulB aligned with 5 sequences originating in catabolic plasmids (pND6-2, 330 

pDTG1, pNAH7, pNAH20 and KOPRI126573) from Pseudomonas spp. (Fig S3A). 331 

Five sequences of different origin to those above were identified with homology to 332 

the two 123 bp rulB-ILE junctions, of which 4 aligned with both ends. As previously, 333 

these 4 aligning sequences were from plasmids pGRT1, pUM505 and genomic islands 334 

PAGI-5 and RGP63. In each case the pWW0 insertion point was preserved at the 335 

xerD side, and the 60 bp in the intergenic region between the insertion point and xerD 336 

contained three highly conserved regions including a 7 bp sequence (CTGAGGG) 337 

immediately inside the insertion point (Fig Fig S3B). However, these conserved 338 

regions were not found in the proposed ILEs in pDC3000A or in that harbouring the 339 

avrPpiA gene (Fig. 4B). At the right hand side of the element the 60 bp of the 340 

intergenic region was similarly conserved despite ORFs on this side being variable 341 A
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(Fig. S3C). In each of the aligning DNAs the 60 bp on the outside of each of these 342 

intergenic regions was shown to be a rulB-like sequence indicative of an insertion 343 

event having already taken place.  344 

 Despite the sequence conservation at each end of the mobile regions, repeat 345 

regions that might be involved in movement of the element were not found and the 346 

significance of each of these conserved regions is not presently understood. 347 

 348 

Phylogenetic analysis of the ILEs and their host strains 349 

 350 

Strains FH1- FH6 were identified as Pseudomonas fluorescens by API20E 351 

biochemical tests (not shown). Alignment of 797 bp of the gyrB gene obtained from 352 

the draft genomes of FH1, FH4 and FH5 with their closest relatives is shown in 353 

Fig.S4. All three strains were placed within the P. fluorescens species complex, with 354 

FH1 and FH5 being located in the P. fluorescens subgroup with closest relatives being 355 

P. extremorientalis LMG 1965
T
 (FH1) and P. libaniensis CIP 105460

T
 (FH5). Strain 356 

FH4 was placed within the P. gessardi subgroup with P. brenneri DSM 15294
T
 as its 357 

closest relative (Mulet et al., 2010). This phylogenetic grouping corresponded well to 358 

the relationship of the ILEs characterised here, whereby ILEFH1 and ILEFH5 were very 359 

closely related, but different to ILEFH4. Further analysis of the 3 phage integrase/site 360 

specific recombinase genes and comparison with those of other ILEs confirmed this 361 

(Fig. S5) and suggested that ILEs may have been associated with different clades of 362 

P. fluorescens group bacteria for some time. 363 

364 
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 365 

Discussion 366 

 A key objective in understanding bacterial evolution is to gain insight to the 367 

various mechanisms underpinning genotypic and phenotypic changes. By examining 368 

the outcome of plasmid conjugation events between environmental Pseudomonas 369 

bacteria, we have discovered a new set of genetic elements, reporting for the first time 370 

the observation of active site-specific integration of a novel and related group of 371 

integron like elements (ILEs) into the rulAB operon on plasmid pWW0. The 372 

environmental pseudomonads described here were isolated between 18 and 28 years 373 

ago and from a relatively small sample of cultured pseudomonads. The frequency of 374 

confirmed ILEs within this sample group (n = 800) was 0.75%, which suggests that 375 

the number of this family of ILEs alone in the environment is likely to be large and of 376 

significance to the transfer of fitness or virulence/avirulence traits between bacteria. 377 

Based upon DNA and protein homology and similar structural features we have 378 

proposed that other members of this group exist in genomes and plasmids integrated 379 

into rulB-like genes. 380 

 The site-specific insertion of ILEs carrying adaptive traits into the rulB locus 381 

is key to the overall significance of this study as it signifies a potential hotspot for 382 

integration of what appear to be atypical integrons that are not primarily associated 383 

with acquisition and carriage of antibiotic resistance cassettes (see Cambray et al., 384 

2010). Typically, integrons are gene capture systems that comprise a core stable 385 

platform of an intI gene (a tyrosine recombinase) with its own promoter (Pint), and an 386 

outward facing promoter (Pc) that can express captured cassettes, and an adjacent 387 

upstream attI recombination site (Cambray et al., 2010) into which cassettes are 388 

captured by recombination with the cassette attC site). The ILEs described here differ 389 A
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to this typical structure. Firstly, the intI-like gene (ORF1; xerD), does not appear to 390 

contain promoters Pint or Pc and even if they were present the gene is oriented in the 391 

opposite direction to typical integrons so that Pc would have no effect on expression 392 

of the genes in the ‘variable side’ of the ILE. Secondly, the orientation of the xerD in 393 

ILEs suggests that the attI site would be in the region where integration into rulB 394 

occurs. However, we could not find any such attI recombination site adjacent to xerD 395 

or elsewhere in these ILEs.  396 

 ILEs described here are of two types based upon the small sequence 397 

differences in the left hand ‘conserved side’ and different ORFs present in the right 398 

hand ‘variable side’. This variation also appears to reflect the bacterial lineages from 399 

which they were derived. ILEFH1 and ILEFH5 share closest homology with each other 400 

and both originated in host bacteria within the P. fluorescens subgroup, whilst ILEFH4 401 

had a different variable side and originated in a P. gessardi subgroup host. In ILEFH1-402 

FH5 the variation in ORFs carried downstream ORF1-3 (the 3 recombinase family 403 

ORFs) was akin to the variation in cassettes carried by typical integrons (see Cambray 404 

et al., 2010). ORFs downstream of the recombinases in ILEFH1 and ILEFH5 (ORFs 1-3) 405 

shared >96 % homology with counterparts on plasmid pGRT1, whereas ORFs in 406 

ILEFH4 shared homology with those on P. aeruginosa genomic islands PAGI-5 and 407 

RGP63 and plasmid pUM505. We have not determined the effects on host fitness 408 

resulting from insertion of ILEs into rulB on pWW0 beyond UV tolerance 409 

assessments as a more encompassing assessment of the wider environmental 410 

distribution and traits conferred by ILEs is planned. However, based upon evidence in 411 

the literature it is likely that traits conferred by ILEs are of major significance to plant 412 

and animal health. In their report on plasmid pGRT1, Molina et al. (2011), assessed 413 

traits conferred by several of the ORFs located between ORF25-36 (the region nearly 414 A
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identical to the ILEFH1) and showed that some conferred a selective advantage on the 415 

host bacterium including the modulation of toluene efflux pump genes located on the 416 

chromosome of the host bacterium P. putida DOT-1E (see Table 2).  417 

 In the genomic island PAGI-5, the region that shared homology with ILEFH4 418 

resided within NR-II, which has been shown to make a substantial contribution to the 419 

virulence of the host bacterium P. aeruginosa PSE9 (Battle et al., 2008). In PAGI-5, 420 

NR-II spans ORFs 40-62 (approximately 17.5 kb) of which ORFs 49-60 share 421 

homology and structural similarities with ILEFH4 ORFs 1-11. It is unknown whether 422 

the whole 17.5 kb NR-II sequence is required for virulence or whether it is due to a 423 

smaller region such as ORFs 49-62 or the ORFs of unknown function (encoding 424 

hypothetical proteins) (ORFs 40-48). However, the independent movement and 425 

integration of a region with close homology to a key virulence region in animals is 426 

extremely significant. This is particularly pertinent when it is considered that similar 427 

regions to NR-II were present in 6 other P. aeruginosa PSE strains (PSE11, 15, 17, 30 428 

35 and 39) (Battle et al., 2008).  429 

 Whilst in the present study interruption of rulB by ILEs in pWW0 was 430 

observed in laboratory experiments only, there is evidence that an almost identical 431 

rulB (ruvB) gene on an IncP-9 pWW0-like plasmid, pDTG1, has previously served as 432 

an insertion hotspot in the natural environment. Plasmid pDTG1 contains a disrupted 433 

rulB gene and shares considerable structural and sequence similarity with pWW0 and 434 

both are thought to have had a common predecessor (Dennis and Zylstra, 2004). In 435 

pDTG1 the rulB gene has been disrupted by insertion of a 6 kb region thought to be 436 

derived from plasmid pCAR1 and prior to further insertion of genes encoding 437 

naphthalene degradation (Dennis and Zylstra, 2004). From sequence analysis of the 438 

present newly discovered ILEs and of genomes deposited in databases, we have found 439 A
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no evidence of interruption of the rulA gene (or rulA-like genes) by insertion. 440 

However, rulB, or its homologous gene in other bacteria, is frequently seen to be 441 

disrupted in other bacterial genomes.  442 

The rulAB operon (either intact or interrupted) is often situated close to 443 

integrase genes and other fitness/effector/ (a)virulence genes in the genomes of 444 

pseudomonads. This association extends to rulAB relatives such as rumAB, mucAB, 445 

umuDC and samAB  in other genera  (see Stavrinides and Guttman, 2004; Dennis and 446 

Zylstra, 2004; Li et al., 2004; Sundin et al., 2004; Zhao et al., 2005; Böltner et al., 447 

2002; Seth-Smith et al., 2012; Wozniak et al., 2009; Wozniak and Waldor, 2010). In 448 

several of these cases a rulB-like gene (umuC, mucB, impB and rumB) is interrupted 449 

by a region containing an integrase family gene. Perhaps most noteworthy of these is 450 

the SXT-R391 family of integrative and conjugative elements (ICEs) which share 52 451 

core genes as well as five intergenic hotspots for insertion (known as HS1-HS5; see 452 

Wozniak et al., 2009). Outside of these hotspots are other regions that contain 453 

variable DNA. In the cases of the element SXT and the ISCR2-like elements, 454 

ICEpdaSpa1, ICEPalBan1, ICEVchInd5, ICEVchBan5, ICEVchBan9/ICEVchMoz10 455 

and ICEVflInd1, the variable regions are inserted into rumB (Wozniak et al., 2009). 456 

None of these elements have relationships with those described here other than that 457 

significantly, they re-iterate a feature of the umuC-encoding sub-family locus in being 458 

a hotspot for the insertion of mobile DNAs.  459 

 Possible reasons as to why insertion of these ILEs is specific to the rulB gene 460 

in this case and possibly widespread in nature in rulB-like homologues remain 461 

unclear. Proteins RulA and RulB are members of the UmuC-like sub-family of lesion-462 

replicating Y-family DNA polymerases (alongside UmuDC, MucAB, ImpAB and 463 

RumAB ) that are encoded in the chromosomes and plasmids of numerous bacteria. In 464 A
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Pseudomonas spp. the role of the rulAB operon in the SOS response and the general 465 

adaptational traits of the host (Tark et al., 2005; Sundin and Weigand, 2007) would 466 

suggest that disruption of rulB by an insertion event might be detrimental to the host. 467 

However, if this interruption did not significantly alter the functionality of RulA or 468 

RulB or the traits acquired by insertion provided a greater fitness benefit than encoded 469 

by an intact rulAB operon alone then perhaps selection would be favoured. 470 

Interruption of rulB at position 6488 on pWW0, as occurred in the present study, did 471 

not result in a reduction in UV tolerance (Fig S2). This may suggest that ORF rulB(2) 472 

encodes a functional protein RulB(2) similar in function to the original RulB (see Fig 473 

3)  474 

 It appears that insertion into rulB guarantees some measure of vertical 475 

mobility (from chromosome to plasmid within the same host) and this may be 476 

extended to horizontal mobility as more often than not in plasmids (including pWW0) 477 

the rulAB operon is found close by replication and transfer functions (Gibbon et al., 478 

1999). 479 

 The presence of conserved features in the left hand side of the ILEs such as an 480 

interrupted rulB, a downstream conserved 118-119 bp intergenic region and a 481 

conserved xerD-like integrase/recombinase followed by two other site specific 482 

recombinase genes may be indicative of a minimum requirement for this integration 483 

and resolution. As these ILEs can move from an interrupted chromosomally located 484 

rulB-like gene into another it suggests that the rulB gene may form part of this 485 

minimum region and that homologous recombination may be involved. However, to 486 

date we have been unable to locate regions sequences at the ends or within ILEs that 487 

might be evidence of the usual means of insertion such as homologous recombination, 488 

transposition and site-specific recombination. 489 A
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 It is important for future studies to determine the mechanisms and driving 490 

force behind this movement of ILEs into pWW0 and possibly other loci. We are 491 

presently investigating the mechanisms for the movement of ILEs based upon 492 

evidence that antibiotics (Guérin et al., 2009, Guerin et al., 2011) and mechanisms of 493 

horizontal gene transfer such as conjugation and transformation  may trigger the 494 

integration of ILEs into rulB through induction of the integron integrase (Baharoglu et 495 

al, 2010; Baharoglu et al., 2012; Cambray et al., 2011).  496 

 497 

Concluding Remarks 498 

 499 

 The demonstration here of the active and repeatable integration of related 500 

fitness-gene carrying ILEs into rulB on pWW0 and the presence of intact rulAB (and 501 

other UmuC sub-family protein encoding genes) on plasmids and chromosomes 502 

suggests that there exists a candidate region in bacteria that can be used to monitor the 503 

acquisition and movement of fitness-conferring traits. Additionally, this region might 504 

offer a means of capture of novel ecologically, and perhaps clinically, significant 505 

fitness-related elements and allow an understanding of potential virulence, avirulence 506 

and fitness related traits that could impact on plant and animal health. An excellent 507 

example of a candidate group with which to test this idea are the pPT23A family 508 

plasmids (PFPs) (see Ma et al. 2007). This large family contains plasmids harbouring 509 

a range of fitness-related genes. In a study of 31 plasmids from this family in 510 

pathovars of Pseudomonas syringae (Zhao et al., 2005), the full sequence of 6 PFP 511 

plasmids and microarray analysis of 161 genes from the remaining 25 showed that 19 512 

of the 31 contained both rulA and rulB and that a further 7 contained rulB alone (Zhao 513 A
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et al., 2005). This study of plasmids from this family and other sources will form the 514 

basis of future studies. 515 

516 
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Experimental procedures 517 

 518 

Bacterial strains, plasmids and sampling.  519 

Bacterial strains and plasmids are described in Table 1. E. coli strains and 520 

Pseudomonas putida PaW340 were maintained on nutrient agar (NA, Oxoid, 521 

Basingstoke, UK). Antibiotics used in media were either made up fresh on the day of 522 

use or stored at -20 
o
C as 1000 x concentration stock solutions. 523 

Environmental isolate FH1 was recovered in 1985 from a laboratory facility in 524 

the grounds of the Freshwater Biological Association (Far Sawrey, Cumbria) that 525 

received freshwater from Windermere in the English Lake District. Environmental 526 

pseudomonads were recovered from sediment/water samples collected in sterile 500 527 

ml bottles in 1995 from Deep Adit, a horizontal drainage shaft which flows into Red 528 

Dell Beck from the disused copper mine in Copper Mines Valley (Coniston, Cumbria 529 

U.K; National Grid Reference SD290987) (Pickup, 1989). Samples were stored at 4 530 

o
C for up to 2 days before processing. Pseudomonads were isolated on Pseudomonas 531 

selective agar (Oxoid, UK) 20 
o
C for up to 5 days and were purified and maintained 532 

on nutrient agar. 533 

 534 

Identification of isolates 535 

 536 

All ILE-containing isolates were initially confirmed within the genus Pseudomonas 537 

by using API 20 NE test strips (Biomerieux). Deeper phylogenetic placement of 538 

selected isolates was carried out based upon alignment the gyrB gene (Mulet et al., 539 

2010) obtained from genome sequencing (see below). 540 

 541 A
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Colony blotting and DNA hybridization 542 

 543 

Colony blots were carried out using the method described by Kobayashi and 544 

Bailey (1994).  545 

A 10 kb DNA probe was constructed via digestion of pFBA1001 with Pst1 546 

and purification of the restriction fragment after gel electrophoresis using QIAEX II 547 

Gel Extraction Kit (Qiagen UK). The probe was labelled with 
32

P-dCTP (GE 548 

Healthcare Life Sciences, UK) according to the protocols and using the reagents in the 549 

random-primed hexanucleotide labelling kit (Roche, UK).  550 

DNA hybridization was preceded by a pre-hybridization step carried out in 551 

100 ml (per membrane) pre-warmed (68°C) 5x SSPE (1x SSPE is 0.18 M NaCl, 10 552 

mM NaH2PO4, and 1 mM EDTA [pH 7.7]) containing 5x Denhardt’s solution, 0.5% 553 

(wt/vol) sodium dodecyl sulfate (SDS), and 0.25% (wt/vol) N-lauryl sarcosine and 20 554 

µg ml
-1

 denatured sheared calf thymus DNA for 5 h at 68
o
C. DNA hybridization was 555 

performed in freshly pre-warmed hybridization solution (pre-hybridization solution 556 

without the addition of Denhardt’s solution) at 68°C for 18 to 20 h. Unbound 557 

radioactive probe DNA was removed by washing membranes twice for 10 min (each 558 

time) in 2x SSPE–0.1% (wt/vol) SDS at room temperature (20 to 25°C), followed by 559 

15 min at 68°C in 1x SSPE–0.1% SDS (w/v) and two washes of 15 min (each) in 0.1x 560 

SSPE–0.1% SDS (w/v)  at 68°C. The membranes were then wrapped in Clingfilm and 561 

exposed to X-ray film (Hyperfilm-MP; GE Healthcare Life Sciences, UK) at -70°C 562 

for up to 3 days.  563 
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 565 

Conjugation experiments 566 

 567 

Filter matings were performed by separately re-suspending a loop full of freshly 568 

cultured donor and recipient cells in 300 l 1 x PBS (pH 7.4) followed by overlaying 569 

10 l of each suspension on to a 0.22 m pore size membrane filter (Supor-200, Pall 570 

Life sciences, UK) on nutrient agar medium and incubation at 28 
o
C (0.5 

o
C) for 24 571 

h. Controls (unmixed donors and recipient cells) were treated in the same manner. 572 

After incubation, cells and controls were re-suspended in 450 l PBS and 573 

transconjugants were selected by spreading onto M9 agar supplemented with the 574 

required amino acids and antibiotics to select for transconjugants and against donors 575 

and recipients (see Table 1). All transconjugants were confirmed by conferring the 576 

required plasmid phenotype in addition to resistance or sensitivity to streptomycin and 577 

the requirement for the addition of tryptophan to M9 minimal medium. 578 

 Plasmid transfer frequency was determined by growth on M9 medium 579 

supplemented with glucose (10 mM) and kanamycin (25 µg ml
-1

) and without the 580 

addition of tryptophan (to select against PaW340). Briefly, donor and recipients were 581 

cultured in NB with antibiotics as required followed by serial dilution in sterile 1 x 582 

phosphate buffered saline (PBS). From these dilutions spread plating was carried out 583 

on non-selective NA to determine cell concentrations of donor and recipients.  584 

Serially diluted donor and recipient cultures were also mixed (50 µl of each) and 585 

spread plated on to selective M9 agar as above. Transfer frequency of pWW0 was 586 

expressed as transconjugants per recipient cell. 20 transconjugants from each mating 587 

were screened by PCR for the presence of the inserted element using the rulAB-588 A
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xerDFP and rulAB-xerDRP primer set (see Table 3) and the transfer was expressed as 589 

integrations per transconjugant. 590 

 591 

ILE insertion specificity 592 

 ILE insertion specificity into rulB on pWW0 was investigated by filter 593 

matings between strains FH1, FH4 and FH5 and P. Putida PaW340 host harbouring a 594 

plasmid (pWW0ΔrulAB::Km
R
) from which 963 bp of rulAB (position 6072 to 7034) 595 

had been replaced by a kanamycin resistance gene (Tark et al., 2005). Strain PaW340 596 

(pWW0ΔrulAB::Km
R
) was constructed by conjugation from original host P. putida 597 

PaW85 (trp+, Sm
S
) to P. putida PaW340 (trp- Sm

R
). 598 

 599 

ILE insertion frequency 600 

 The frequency of ILE integration into rulB was assessed by PCR amplification 601 

of the rulB-xerD (Table 3) region in 20 confirmed transconjugants after cell lysis at 602 

95 
o
C in sterile 1 x PBS. Cell lysis was confirmed in each case by amplification of the 603 

xerD region from transconjugants. Frequency of integration was expressed as 604 

percentage of rulB-xerD positives to xerD positives. 605 

 606 

UV tolerance assessments 607 

UV tolerance experiments were carried out using a similar method to that of 608 

Molina et al. (2011). The strains P. putida PaW340, P. putida PaW340 609 

(pWW0::Km
R
) P. putida PaW340 (pWW0::Km

R
::ILEFH1 and P. putida PaW340 610 

(pWW0::Km
R
::ILEFH4) were inoculated into iso-sensitest broth (supplemented with 611 

25 µg ml
-1

 kanamycin where required for plasmid selection) and cultured at 30
o
C with 612 

shaking overnight. The concentration of cultures was normalised with sterile 1x PBS 613 A
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after absorbance measurements at 280 nm using the Nanodrop ND-1000 and 3 ul of 614 

serially diluted suspension (to 10
-5

) were spotted directly onto iso-sensitest agar 615 

plates. Drops were allowed to dry (within 30 minutes) before direct exposure to 616 

ultraviolet light. Exposure was carried out using UVP High Performance 617 

transilluminator with a 302 nm light source. Prior to incubation at 30
o
C plates were 618 

inverted and directly exposed to UV at a distance of 1 cm at 15 second intervals up to 619 

1 minute. Control plates were not exposed to UV. Three independent assays were 620 

carried out with duplicate plates in each.  621 

 622 

Plasmid extraction.  623 

Plasmid DNA was extracted from control strains and transconjugants after 624 

growth in the required selective media at 30 
o
C with shaking at 150 x rpm for 18 h 625 

using QIAGEN mini and midi columns (Qiagen, UK).  626 

 627 

PCR amplifications 628 

PCR amplifications were carried out in individual thin-walled 0.2 ml tubes on 629 

a Veriti thermal cycler (Life Technologies, UK). PCR primers were designed using 630 

the Primer 3 software (http://primer3.wi.mit.edu/) (Untergasser et al., 2012) (Table 3). 631 

Amplified DNA was visualised by agarose gel electrophoresis in gels stained with 632 

ethidium bromide and excised from the gel using the Qiagen gel extraction kit II 633 

(Qiagen, UK).  634 
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 636 

DNA sequencing, annotation and analysis 637 

PCR products were purified using QIAquick PCR purification kit (Qiagen, 638 

UK) and sequenced on the top strand directly from the forward primer of the reaction 639 

using Qiagen genomic services (Qiagen, Germany).  640 

The 10 kb region of pWW0::ILEFH1 in pFBA1001 was sequenced 641 

commercially (Qiagen Genomic Services, Germany) by Dye Terminator cycle 642 

sequencing (using a Model 3730XL automated DNA Analyser; Life Technologies) of 643 

pUC19-based shotgun clones to at least 6 times coverage and accuracy assured to at 644 

least 99.995%. 645 

The draft genomes of strains FH1, FH4 and FH5 were sequenced using the 646 

Illumina HiSeq platform (Illumina). De novo assembly was performed using Velvet 647 

with settings selected using VelvetOptimiser 648 

(www.vicbioinformatics.com/software.velvetoptimiser.shtml). DNA (BLASTn) and 649 

protein (BLASTp) alignments and open reading frames analysis (ORF Finder) were 650 

carried out using NCBI suite of facilities (www.ncbi.nlm.nih.gov). Multiple sequence 651 

alignments were performed and annotated using CLUSTALW (Thompson et al., 652 

2002). Phylogenetic tree construction was carried out using the ‘One Click’ mode 653 

within the facilities found at  www.phylogeny.fr (Dereeper et al., 2008, Dereeper et 654 

al., 2010). Graphical representations of DNA were performed manually or using 655 

SnapGene V1.4 software (www.snapgene.com). 656 

 657 

Nucleotide sequence accession numbers. 658 

The DNA sequence of the 10.1 kb region of plasmid pFBA1001 has been 659 

deposited at DDBJ/EMBL/GenBank under the accession number KC581795. The 660 A
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Whole Genome Shotgun project data for strains FH1, FH4 and FH5 have been 661 

deposited at DDBJ/EMBL/GenBank under the accession numbers AOHM00000000, 662 

AOHN00000000 and AOJA00000000, respectively. The versions described in this 663 

paper are versions AOHM01000000, AOHN01000000 and AOJA01000000, 664 

respectively. 665 
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 875 

FIGURE LEGENDS 876 

 877 

Figure. 1. RFLP profiles of HindIII digested pWW0 plasmid variants from strains 878 

FH1-FH6. Lanes 1-6 = pWW0FH1-FH6. Lane 7 = pWW0. The size of fragments 879 

generated from in silico digestion of pWW0 are shown for comparison. 880 

 881 

Figure 2. Insertion point and orientation of ILEs in pWW0. ILEs (orange) inserted 882 

into the rulB gene (blue) at position 6488 on pWW0, generating the truncated rulB’ 883 

and a new predicted ORF rulB(2). The direct repeat created by insertion is illustrated. 884 

 885 

Figure 3. The structure of ILEs from FH1/FH5 and FH4 aligned with regions of 886 

closest similarity. (A) The general structure of ILEs inserted into rulB on pWW0 with 887 

ORFs flanking the insertion point on pWW0 is illustrated. (B) The detailed structure 888 

of chromosomally located ILEFH1-FH5 alongside predicted ILEs in P. putida DOT-1E 889 

plasmid pGRT1 and P. aeruginosa genomic islands PAGI-5 and RGP63. ILEs are 890 

shown inside black rectangles with interrupted flanking rulB-like regions (light blue). 891 

Related regions are linked by adjoining black lines.  When not specifically indicated 892 

other colours indicate the following: Blue, rulB-like regions; purple, rulA-like gene; 893 

red, site specific recombinase/phage integrase; pink, transposase, dark green, fitness-894 

related; pale green, helicase; orange, mercury resistance genes; grey, hypothetical 895 

proteins (HP); yellow, hypothetical proteins with domains of unknown function. 896 

Predicted ORFs for ILEFH1/5 and ILEFH4 are numbered inside arrows whereas those of 897 

relatives are shown above the sequence and are numbered in accordance with 898 

deposited sequences. ORFs 87a and b and ORF 88a in RGP63 are predicted in the 899 A
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present study and not in the original genome sequence. The sequences of pGRT1, 900 

PA7 (RGP63) and PAGI-5 are HM626202, CP000744, and EF611301, respectively. 901 

 902 

Figure 4. Alignment of intergenic regions found immediately upstream and 903 

downstream of rulAB’ on integron-like elements. (A) Alignment of the predicted 904 

promoter region and LexA binding site upstream of rulA. The conserved CTG-N10-905 

CAG LexA binding site motif (yellow), the -35 box (bold and underlined) and the -10 906 

box (underlined bold italics) are highlighted. (B) The 118-119 bp intergenic region 907 

between the known 5’-GAT-3’ insertion point in pWW0 and the predicted ATG start 908 

codon of ORF1 (xerC/xerD) aligned with chromosomal locations in strains FH1, FH4 909 

and FH5, and other close relatives. 
a
 No ATG start codon for rulA in FH5 910 

chromosome. 911 
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 915 

Table 1. Bacterial strains and plasmids 916 

Strain Relevant characteristics Source / Reference 

 

   

Environmental pseudomonads:   

   

FH1 (isolated in 1985) chromosomally located  ILEFH1; KmS, SmS This study 

FH2 (isolated in 1995) chromosomally located  ILEFH2; KmS SmS This study 

FH3 (isolated in 1995) chromosomally located  ILEFH3; KmS SmS This study 

FH4 (isolated in 1995) chromosomally located  ILEFH4; KmS SmS This study 

FH5 (isolated in 1995) chromosomally located  ILEFH5; KmS SmS This study 

FH6 (isolated in 1995) chromosomally located  ILEFH6; KmS SmS This study 

   

Control strains/constructs:   

   

Pseudomonas putida PaW340  SmR; trp- DSM 2112  

P. putida PaW340 (pWW0) SmR; TOL; trp- Franklin and Williams, 

(1980) 

P. putida EEZ15 (pWW0::KmR) SmS; KmR Ramos-Gonzalez et al 

(1994) 

P. putida PaW340 (pWW0::KmR) SmR; TOL, KmR; trp- This study 

P. putida PaW85 (pWW0ΔrulAB::KmR) SmS; TOL; KmR  Tark et al., (2005) 

P. putida PaW340 (pWW0ΔrulAB::KmR) SmR; TOL; KmR; trp- This study 

   

Escherichia coli HB101 (pFBA1001) PstI fragment containing  ILEFH1 and truncated 

rulAB ends cloned into pBR325; SmR, TcR, pro-, 

leu-, thy-.  

This study 

   

P. putida PaW340 (pWW0::KmR::ILEFH1) pWW0 located ILEFH1 SmR; TOL, KmR; trp- This study 

P. putida PaW340 (pWW0::KmR::ILEFH4) pWW0 located ILEFH4 SmR; TOL, KmR; trp- This study 

   

FH1 (pWW0::KmR::ILEFH1) pWW0 located ILEFH1 SmR; TOL, KmR; trp- This study 

FH2 (pWW0::KmR::ILEFH2) pWW0 located ILEFH2 SmR; TOL, KmR; trp- This study 

FH3 (pWW0::KmR::ILEFH3) pWW0 located ILEFH3 SmR; TOL, KmR; trp- This study 

FH4 (pWW0::KmR::ILEFH4) pWW0 located ILEFH4 SmR; TOL, KmR; trp- This study 

FH5 (pWW0::KmR::ILEFH5) pWW0 located ILEFH5 SmR; TOL, KmR; trp- This study 

FH6 (pWW0::KmR::ILEFH6) pWW0 located ILEFH6 SmR; TOL, KmR; trp- This study 

   

Km = kanamycin 917 

Sm = streptomycin 918 
R
 = resistant 919 

S
 = sensitive 920 

 921 

 922 

 923 
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Table 2. Predicted ORFs on FH1 integron-like element in relation to plasmid pGRT1 in P. putida DOT-T1E  925 

 926 

ORF Name Protein 

length (aa) 

direction amino acid  (aa) identity  

to ORFs on pGRT1* 

Predicted protein function  

      

1 xerD 385 ← ORF26; 99% in 385 aa   XerD-like phage integrase  

2 int/ rec 525 ← ORF27; 99% in 525 aa   Hypothetical protein with INT_REC_C conserved domain  

3 int /rec 535 ← ORF30; 99% in 452 aa   Site specific recombinase/phage integrase family protein with INT_REC_C 

conserved domain  

4 tetR 138 ← ORF31; 99% in 138 aa   TetR family transcriptional regulator-like protein  

5 sdiA 320 → ORF32; 96% in 320 aa   SdiA-regulated motif containing protein on plasmid pGRT1 shown to be a 

modulator of the TtgGHI efflux pump in host P. putida DOT-T1E  

6 dksA 117 → ORF33; 98% in 117 aa   hypothetical protein, DnaK suppressor-like (signal transduction mechanisms)  

7 uspA 283 → ORF34; 96% in 283 aa   UspA protein (universal stress response protein) on plasmid pGRT1 shown to be 

involved in UV response and after mild induction to increase tolerance to toluene 

in P. putida DOT-T1E  

8 sulP 495 → ORF35; 99% in 495 aa  sulphate permease with STAS domain (sulphate transporter and anti-sigma factor) 

to be involved in siderophore production in P. putida DOT-T1E  

* Accession number HM626202 927 
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 932 

Table 3. PCR primers and assay details 933 

Primer name amplifies Sequence 5’-3’ Expected 

product size 

    

rulABFP intact rulAB 

region 

TGGCGTATGTCGATAACCAG  

423 bp 

 

rulABRP  CAATTCCCCGTACAAGGTGT 

xerDFP xerD region AGCAGCGCAACCTGATAACT  

501 bp 

 

xerDRP GCCTGCCTTCATTAGTCAGC 

rulAB-xerDFP rulAB-xerD 

flank 

TGGCGTATGTCGATAACCAG  

590 bp 

 

rulAB-xerDRP GTACAGACGCCGTCCATAGG 

rulB-sulPFP rulB’-sulP 

flank 

TTATTTTGCTGTGCGCTTTG  

513 bp rulB-sulPRP CAATTCCCCGTACAAGGTGT 

 934 

 935 

 936 

 937 

 938 

 939 

Table 4. Assessment of the specificity of ILE integration by PCR amplification of 940 

ILE-specific regions in original host genomes and on pWW0 in transconjugants 941 

 942 

Strain/DNA  Amplification product (primer set) 

 rulAB xerD rulAB-xerD rulB’-sulP 

pWW0 + - - - 

FH1 - 

- 

+ - - 

+ pWW0::ILEFH1 + + 

FH2 - 

- 

+ - - 

- pWW0::ILEFH2 + + 

FH3 - 

- 

+ - - 

- pWW0::ILEFH3 + + 

FH4 - + - - 

pWW0::ILEFH4 - + + - 

FH5 - + - - 

pWW0::ILEFH5 - + + + 

FH6 - + - - 

pWW0::ILEFH6 - + + - 

 943 

 944 
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 946 

Table 5. Predicted ORFs on the FH4 integron-like element 947 

ORF Name Protein 

length 

(aa) 

Direction Amino acid  (aa) identity to informative database match (accession number) 

      

1 xerD 385 → 99% in 385 aa;  ORF26 in plasmid pGRT1, XerD-like phage integrase (HM626202).  

2 int/ rec 525 → 99% in 525 aa ; ORF27 in plasmid pGRT1, hypothetical protein with INT_REC_C conserved domain (HM626202). 

3 int /rec 535 → 99% in 452 aa ; ORF30 in plasmid pGRT1, site-specific recombinase/phage integrase family protein with INT_REC_C 

conserved domain (HM626202). 

4 tetR 138 → 99% in 138 aa ; ORF31 in plasmid pGRT1, TetR family transcriptional regulator-like protein (HM626202). 

5 PRDX 360 → 89% in 360 aa; peroxiredoxin in Pseudomonas sp. GM49 (ZP_10658778). 

6 HP 229 ← 90% in 41 aa; hypothetical protein with sequence similarity to a region of Tn5041 in Pseudomonas sp. (CAC80074). 

7 merR 139 ← 97% in 139 aa; putative transcriptional regulator MerR in P. aeruginosa (NCGM1179). 

8 merT 134 → 78% in 104 aa; mercuric transport protein MerT in P. aeruginosa PA7 (ABR82023) 

9 merP 134 → 99% in 91 aa; putative MerP protein component of transporter in Pseudomonas mandelii JR-1 (ZP_11114267) 

19 merC 144 → 90% in 143 aa; putative MerC superfamily protein in P. mandelii JR-1 (ZP_11114268) and P. aeruginosa ATCC 700888 

(ZP_15625973) 

11 merA 581 → 95% in 560 aa: mercuric reductase protein MerA in P. mandelii JR-1 (ZP_11114269) 

12 HP 139 → 83% in 138 aa; Hypothetical protein in Pseudomonas sp. (CAC80080) 

13 merD 120 → 100% in 120 aa: mercuric resistance transcriptional repressor MerD, MerR family in P. mandelii JR-1 (ZP_11114271) 

14 merE 79 → 96% in 77 aa; MerE superfamily mercury resistance protein in P. mandelii JR-1 (ZP_11114272) 

15 terC 515 ← 96% in 515 aa; TerC superfamily integral membrane protein in Pseudomonas sp. UW4 (YP_007029200) 

16 rulB-like 160 ← 60% in 104 aa; putative ImpB/MucB/SamB/RulB family protein of DUF4113 superfamily in Pseudomonas stutzeri TS44 

(ZP_1447253) 
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A            

     -35 BOX                 -10 BOX     

pWW0      TCCTTTTGTCCAGGCG--GCTCTAGCCGTGTC--GT-ACGGCGTGC-ATTA CTGTATATGCAAACAG TA---------TTAA--CCGGT----GCCCC-ATG 

FH1       ---ATTCGGTCGGATCGAATTGACGTGGCATCA-AGCAAACAGTTA----A CTGGCTATCCATACAG TTAAAT-----TCAGGCCAGGTT---------ATG 

FH5a      --CATCCCGTCACGCACGATTGACGGCTCAC----CCACGCTTCGCAAATA CTGTCTATACATCCAG TA---------TCCA----GGTAT--AGCCC-GTG 

FH4       -----TTTCCTACAGAAAATTGACCGCAAGCTG-CCTATAACATTA----A CTGTGCATCCATACAG T----TCA--TGTAAA--AGGCTT--CGCC--ATG 

pGRT1     --CATTTGTCTAACCG--ACGCTAGTCGTGCA--GCGATTGC-TGC-ATTA CTGTATATGCAAACAG TA---------TCAAA-TCGGT----GCCACCATG 

PAGI-5    --CTTGGC-CTACCTGC-ATTGTAGGCAAATCCTGTCAGCGTCT------A CTGTATAAACAGACAG TA---------TACA--GAGGTTTTCATCCC-ATG 

RGP63     --TGCCCC-CCGCCTGTTGTCGTTGCCAAG----GTTGGGGTTTGATAATA CTGTATTAATATACAG TA---------TTCGT-GAGGTT---ATCT--ATG 

pUM505    --CTTGGC-CTACCTGC-ATTGTAGGCAAATCCTGTTAGCGTCT------A CTGTATAAACAGACAG TA---------TACA--GAGGTTTTCATCCC-ATG  

pDC3000A  ---------------TGAGTTGACGGGTGATGGCAGCGCGCCGTTA----A CTGTACGTCTATACAG TTAACTCTGTTTCCAGTTAGGTTC--GCCTC-ATG 

avrPpiA   -------GCCTATACGA--TTGACCGCACGCGG-GCTGAAGAGTTA----A CTGTATATGCATACAG CAATCCCA--ATCGAA--AGGTTT--CCCC--ATG 

                                                                   

                                                                           

                                                                          

          

 

 

 
                                                         GAT             ATG                                                         

B     
 
FH1             1 GATCTGAGGGGTGG-GAATCGTTAGTAAATCCTGTAGAGTCCGCGCCA--------CCTTC-TGAACCCC 

FH5             1 GATCTGAGGGGTGG-GAATCGTTAGTAAATCCTGTAGAGTCCGCGCCA--------CCTTC-TGAACCCC 

pGRT1           1 GATCTGAGGGGTGG-GAATCGTTAGTAAATCCTGTAGAGTCCGCGCCA--------CCTTC-TGAACCCC 

FH4             1 GATCTGAGGGGGGG-AAATCGTTAGTAAATCCTGTAGAGTCCGCGCCA--------CCTTC-TGAACTCC 

pUM505          1 GATCTGAGGGGGGG-AAATCGTTAGTAAATCCTGTAGAGTCCGCGCCA--------CCTTC-TGAACTCC 

PAGI-5          1 GATCTGAGGGATTG-CTTCCGTTAGTAAATGAATTACAGTCCGCACCA--------CCTTGATAGAAGCC 

PA7 (RGP63)     1 GATCTGAGGGATTG-CTTCCGTTAGTAAATGAATTACAGTCCGCACCA--------CCTTGATAGAAGCC 

pDC3000A        1 GATCAAAGATGTTTTGCGTCGCTATGGAATTCAGT-CGTTCAGCAGCAATTTTGGGCTTTAGT-AAGTTA 

avrPpiA         1 GATCAAAGAGGTGCTGCGCCGCAATGGCATCAAGG-TGTTCAGCAGCAACTACGCGCTTTAGT-AAGTTA 

consensus       1 ****..**...... ....**..*....**.. ......**.**..**        *.**..*..*.... 

 

FH1            58 TCTGGAACAGCAGTTTCCAGGCTTCATAAGGCAATC-CATTGGAAGTGTTTTAGGGCAGCGGC-ATG 119 

FH5            58 TCTGGAACAGCAGTTTCCAGGCTTCATAAGGCAATC-CATTGGAAGTGTTTTAGGGCAGCGGC-ATG 119 

pGRT1          58 TCTGGAGCAGCAGTTTCCAGGCTTCATAAGGCAATC-CATTGGAAGTGGTTTAGGGCAGCGGC-ATG 119 

FH4            58 TCTGGAACAGCCGTTTCCAG-CTTCAAAAGGCAATC-CTTAGGTGATGGTTTAGGGCAGCGGC-ATG 118 

pUM505         58 TCTGGAACAGCCGTTTCCAG-CTTCAAAAGGCAATC-CTTAGGTGATGGTTTAGGGCAGCGGC-ATG 118 

PAGI-5         59 TGAGAAATTACA--TTCCAGCCTCTGAAGGGGAGTCATCTGGATGGTG-TTTAAGGCTGTGAA-ATG 118 

PA7 (RGP63)    59 TGAGAAATTACA--TTCCAGCCTCTGAAGGGGAGTCATCTGGATGGTG-TTTAAGGCTGTGAA-ATG 118 

pDC3000A       66 AGTGGAAT-GC---TTTTGGGCT----ACGCTGATT---CTGTCGACGTTCTGGGGGATTGCCCATG 118 

avrPpiA        66 GGTGGAAT-GC---TTCTGGGCT----ACGCTGATT---CTGTCGACGTTCTGGGGGATCGCCCATG 118 

consensus         . .*.** ..*...**...*.**....*.*....*. . ..*.....*.*.*..**....*.. *** 
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