nerc.ac.uk

Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms

Vancoppenolle, Martin; Bopp, Laurent; Madec, Gurvan; Dunne, John; Ilyina, Tatiana; Halloran, Paul R.; Steiner, Nadja. 2013 Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms. Global Biogeochemical Cycles, 27 (3). 605-619. https://doi.org/10.1002/gbc.20055

Before downloading, please read NORA policies.
[img]
Preview
Text
gbc20055.pdf

Download (1MB) | Preview

Abstract/Summary

Net Arctic Ocean primary production (PP) is expected to increase over this century, due to less perennial sea ice and more available light, but could decrease depending on changes in nitrate (NO3) supply. Here Coupled Model Intercomparison Project Phase 5 simulations performed with 11 Earth System Models are analyzed in terms of PP, surface NO3, and sea ice coverage over 1900–2100. Whereas the mean model simulates reasonably well Arctic-integrated PP (511 TgC/yr, 1998–2005) and projects a mild 58 TgC/yr increase by 2080–2099 for the strongest climate change scenario, models do not agree on the sign of future PP change. However, similar mechanisms operate in all models. The perennial ice loss-driven increase in PP is in most models NO3-limited. The Arctic surface NO3 is decreasing over the 21st century (−2.3 ± 1 mmol/m3), associated with shoaling mixed layer and with decreasing NO3 in the nearby North Atlantic and Pacific waters. However, the intermodel spread in the degree of NO3 limitation is initially high, resulting from >1000 year spin-up simulations. This initial NO3 spread, combined with the trend, causes a large variation in the timing of oligotrophy onset—which directly controls the sign of future PP change. Virtually all models agree in the open ocean zones on more spatially integrated PP and less PP per unit area. The source of model uncertainty is located in the sea ice zone, where a subtle balance between light and nutrient limitations determines the PP change. Hence, it is argued that reducing uncertainty on present Arctic NO3 in the sea ice zone would render Arctic PP projections much more consistent.

Item Type: Publication - Article
Digital Object Identifier (DOI): https://doi.org/10.1002/gbc.20055
ISSN: 08866236
Additional Keywords: Arctic; primary production; nitrate; sea ice
Date made live: 04 Nov 2013 12:09 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/503685

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...