Mid-pliocene Atlantic meridional overturning circulation not unlike modern?

Zhang, Zhongshi S.; Nisancioglu, Kerim H.; Chandler, Mark A.; Haywood, Alan M.; Otto-Bliesner, Bette L.; Ramstein, Gilles; Stepanek, Christian; Abe-Ouchi, Ayako; Chan, Wing-Le; Bragg, Fran J.; Contoux, Camille; Dolan, Aisling M.; Hill, Daniel; Jost, Anne; Kamae, Youichi; Lohmann, Gerrit; Lunt, Daniel J.; Rosenbloom, Nan A,; Sohl, Linda E.; Ueda, Hiroaki. 2013 Mid-pliocene Atlantic meridional overturning circulation not unlike modern? Climate of the Past, 9. 1495-1504.

Before downloading, please read NORA policies.
cp-9-1495-2013.pdf - Published Version
Available under License Creative Commons Attribution.

Download (11MB) | Preview


In the Pliocene Model Intercomparison Project (PlioMIP), eight state-of-the-art coupled climate models have simulated the mid-Pliocene warm period (mPWP, 3.264 to 3.025 Ma). Here, we compare the Atlantic Meridional Overturning Circulation (AMOC), northward ocean heat transport and ocean stratification simulated with these models. None of the models participating in PlioMIP simulates a strong mid-Pliocene AMOC as suggested by earlier proxy studies. Rather, there is no consistent increase in AMOC maximum among the PlioMIP models. The only consistent change in AMOC is a shoaling of the overturning cell in the Atlantic, and a reduced influence of North Atlantic Deep Water (NADW) at depth in the basin. Furthermore, the simulated mid-Pliocene Atlantic northward heat transport is similar to the pre-industrial. These simulations demonstrate that the reconstructed high-latitude mid-Pliocene warming can not be explained as a direct response to an intensification of AMOC and concomitant increase in northward ocean heat transport by the Atlantic.

Item Type: Publication - Article
Digital Object Identifier (DOI):
NORA Subject Terms: Earth Sciences
Marine Sciences
Meteorology and Climatology
Date made live: 31 Oct 2013 14:58 +0 (UTC)

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...