nerc.ac.uk

Monitoring spatial and temporal variations in the dayside plasmasphere using geomagnetic field line resonances

Menk, F. W.; Orr, D.; Clilverd, M. A. ORCID: https://orcid.org/0000-0002-7388-1529; Smith, A. J.; Waters, C. L.; Milling, D. K.; Fraser, B. J.. 1999 Monitoring spatial and temporal variations in the dayside plasmasphere using geomagnetic field line resonances. Journal of Geophysical Research, 104 (A9). 19955-19969. 10.1029/1999JA900205

Full text not available from this repository. (Request a copy)

Abstract/Summary

It is well known that the resonant frequency of geomagnetic field lines is determined by the magnetic field and plasma density. We used cross-phase and related methods to determine the field line resonance frequency across 2.4≤<L≤4.5 in the Northern Hemisphere at 78°–106° magnetic longitude and centered on L=2.8 in the Southern Hemisphere at 226° magnetic longitude, for several days in October and November 1990. The temporal and spatial variation in plasma mass density was thus determined and compared with VLF whistler measurements of electron densities at similar times and locations. The plasma mass loading was estimated and found to be low, corresponding to 5–10% He+ on the days examined. The plasma mass density is described by a law of the form (R/Req)−p, where p is in the range 3–6 but shows considerable temporal variation, for example, in response to changes in magnetic activity. Other features that were observed include diurnal trends such as the sunrise enhancement in plasma density at low latitudes, latitude-dependent substorm refilling effects, shelves in the plasma density versus L profile, and a longitudinal asymmetry in plasma density. We can also monitor motion of the plasmapause across the station array. Properties of the resonance were examined, including the resonance size, Q, and damping. Finally, we note the appearance of fine structure in power spectra at these latitudes, suggesting that magnetospheric waveguide or cavity modes may be important in selecting wave frequencies.

Item Type: Publication - Article
Digital Object Identifier (DOI): 10.1029/1999JA900205
Programmes: BAS Programmes > Pre 2000 programme
ISSN: 0148-0227
Date made live: 22 Oct 2013 08:53 +0 (UTC)
URI: https://nora.nerc.ac.uk/id/eprint/503592

Actions (login required)

View Item View Item

Document Downloads

Downloads for past 30 days

Downloads per month over past year

More statistics for this item...