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Abstract

Ongoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen
concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global
assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader
implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until
2100 and showed that the entire world’s ocean surface will be simultaneously impacted by varying intensities of ocean
warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world’s ocean
surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be
ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and
found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This
superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to
cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring
biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect
on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food,
jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry.
These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a
future following current trends in anthropogenic greenhouse gas emissions.
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Introduction

As CO2 and other greenhouse gas emissions continue to rise,

ocean biogeochemistry is being altered in ways that could

potentially impact nature and mankind. Atmospheric CO2

concentrations have already risen to ,400 ppm from

,280 ppm in pre-industrial times and could rise to between 550

and 900 ppm by 2100, depending upon the emission scenario [1–

7]. In the marine realm, the surplus of CO2 has been associated

with ocean warming from the greenhouse effect [1] and

acidification caused by the fact that approximately 25% of the

annually emitted CO2 enters the ocean, where it reacts with water

to produce carbonic acid, thereby reducing pH [6–8]. Ocean

warming and other climatic changes can trigger additional

responses in connection to ocean circulation and stratification,

which in turn reduce oxygen concentration [9,10] and primary

productivity [11] (additional responses may include sea-level rise

and extreme weather events, which we do not analyze here but

that certainly will add to the stress likely to be exerted by

greenhouse gas emissions [10]). Several analyses predict that, by

the year 2100, depending on the emission scenario, surface ocean

temperature could increase by 2 to 3uC [9], pH decline by over 0.2

units [6,7], oxygen concentration decrease by 2% to 4% [9], and

ocean productivity by 2% to 20% [11], from current values. The

magnitude of these changes would be unprecedented in the

Earth’s history during the last 20 million years [12,13].

Species are adapted to their environment, and therefore shifts in

environmental parameters can induce considerable change in

species fitness and trigger additional responses in community

composition, functioning, and overall biodiversity [2,3,9–11,14–

16]. Ocean warming, acidification, oxygen depletion, and

reduction in primary production have all been highlighted as

potentially having negative biological consequences [2,3,9–11,14–

16]. Changes in temperature, for instance, can affect metabolism,

reproduction, and survival [10,17], which is already evident in

multiple shallow and deep-sea ecosystems [2,18]. Parameters

related to food supply, such as primary productivity and sinking

organic-carbon flux, and dissolved oxygen can influence metab-

olism, body size, reproduction, and thus control, in part, the

biomass that can be sustained in any given area of the ocean [19].

Moreover, depending on the magnitude of shifts in biogeochem-

ical parameters and/or their proximity to physiological thresholds,

these changes can make entire areas essentially unsuitable for

metazoans (except for some meiofaunal organisms, as well as

viruses, prokaryotes, and certain protists [20–23]). There is already

evidence that oxygen minimum zones have increased in vertical

extent over recent decades, with important consequences for

ecosystems and coastal communities [24]. Likewise, pH can

influence rates of calcification and several other physiological

processes [10,15,25,26]. Co-occurring changes in biogeochemical

parameters could also accelerate biological responses, either

additively or synergistically [10,27–30]. Warming, for instance,

can increase metabolism but, if combined with a reduction in

dissolved oxygen and food availability, it could also lead to

considerable reductions in body size [31], survival, and synergistic

responses of ecosystems [32] and cause range expansions or

contractions [2,10,17]. Studies on marine invertebrates have also

revealed that embryos that survive exposure to warming may later

die as larvae if exposed to acidification [33]. This is not to say that

all species will be impacted negatively. Some species may expand

to new areas or thrive in areas where they were once rare. It is

certain, however, that biogeochemical changes in the ocean,

especially their co-occurrence, have considerable potential to

reorganize patterns in biodiversity, body size, and abundance

(Table 1). Additionally, the number of species within ecosystems,

variations in life histories, and susceptibility to climate change

among species suggest that ecosystem responses to ocean

biogeochemistry change are likely to be varied and highly

idiosyncratic (Table 1).

Socioeconomic systems can also be sensitive to ocean biogeo-

chemical changes, depending upon the exposure of ocean goods

and services to environmental change, human dependence on

affected services, and social adaptive capacity [34–38]. Examples

of the goods and services likely to be impacted by ocean climate

change are diverse. Ocean warming and acidification, for instance,

are causing a new set of conditions that are very close to the

tolerance thresholds of corals, making them vulnerable to massive

bleaching and mortality when long-term trends related to climate

change are ‘‘added’’ to natural variability. The decay of coral reefs

could potentially impair their ability to deliver goods and services

such as fisheries, tourism, coastal protection, and in some cases

aesthetic and spiritual values [35,37], which have been grossly

valued at over US$375 billion annually [39]. Likewise, future

changes in ocean temperature are expected to cause a redistribu-

tion in the global diversity of cetaceans [40], which in turn could

impact local economies that rely on tourism or the fishing of these

species. A similar example is the effect of ocean climate change on

the world’s fisheries, where a combination of warming, oxygen

depletion, and reduction in primary productivity can induce

changes in body size [31], abundance, and distribution of

exploited species [41,42]. These would add to the ongoing decline

of fisheries yields, which are considerable sources of food,

revenues, and jobs [36,42,43]. Shifts in the distribution and

abundance of species could also bring new opportunities for local

communities, although adaptability (e.g., flexibility and respon-

siveness) will be needed to realize any potential benefits [38].

However, the vulnerability of societies to the changes in ocean

goods and services ultimately depends on the balance among

exposure to environmental change, human dependency on

impacted goods and services, and social adaptability

Author Summary

Climate change caused by human activity could damage
biological and social systems. Here we gathered climate,
biological, and socioeconomic data to describe some of
the events by which ocean biogeochemical changes
triggered by ongoing greenhouse gas emissions could
cascade through marine habitats and organisms, eventu-
ally influencing humans. Our results suggest that the entire
world’s ocean surface will be simultaneously impacted by
varying intensities of ocean warming, acidification, oxygen
depletion, or shortfalls in productivity. Only a very small
fraction of the oceans, mostly in polar regions, will face the
opposing effects of increases in oxygen or productivity,
and almost nowhere will there be cooling or pH increase.
The biological responses to such biogeochemical changes
could be considerable since marine habitats and hotspots
for several marine taxa will be simultaneously exposed to
biogeochemical changes known to be deleterious. The
social ramifications are also likely to be massive and
challenging as some 470 to 870 million people – who can
least afford dramatic changes to their livelihoods – live in
areas where ocean goods and services could be compro-
mised by substantial changes in ocean biogeochemistry.
These results underline the need for urgent mitigation of
greenhouse gas emissions if degradation of marine
ecosystems and associated human hardship are to be
prevented.

Anthropogenic Ocean Biogeochemistry Change
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[34,35,44,45]. In that context, we are aware of two relevant studies

analyzing social vulnerability to ocean climate change over large

spatial scales: one for fisheries [34] and the other for coral reefs

[35]. Given the limited availability of ocean climate projections at

the time, the former study used projected mean surface air

temperature to 2050 as the underlying indicator of exposure to

climate change, while the latter study focused on five countries of

the Western Indian Ocean and used thermal stress on coral reefs

as a proxy of climate change. As far as we are aware, more detailed

studies connecting the exposure to several and co-occurring

stressors of climate change with a variety of ocean goods and

services at the global scale are lacking.

As indicated above, we have a relatively good understanding of

the potential changes in ocean biogeochemical parameters

expected under different greenhouse gas scenarios [7,9,11,46],

and conceptually we know some of the mechanisms through which

ecological and social systems may be impacted by such changes.

However, we lack a synthetic global quantification of the

simultaneous projection of biogeochemical changes on the ocean

and how they may pertain to marine biota and people worldwide.

To address this gap, we compiled all available data generated by

Earth Systems Models as part of the Coupled Model Intercom-

parison Project Phase 5 (CMIP5) to the Fifth Assessment Report of

the Intergovernmental Panel on Climate Change [47] to assess the

extent of co-occurrence of changes in temperature, pH, oxygen,

and primary productivity. We complemented the analysis by

assembling global distribution maps of 32 marine habitats and

biodiversity hotspots to assess the potential vulnerability of

biological systems to co-occurring biogeochemical changes in the

ocean. Finally, we used available data on human dependency on

ocean goods and services and social adaptability to quantify the

vulnerability of coastal people to projected ocean biogeochemical

change. We would like to emphasize that our results primarily

concern the vulnerability of biological and social systems resulting

from their exposure to projected anthropogenic ocean biogeo-

chemical change, while cautioning that, although biotic and social

Table 1. Likely biological responses to changes in ocean biogeochemistry.

Temperature pH Oxygen Productivity

Body size
and growth

Due to temperature control over
metabolism [60], everything else
being equal, warming should
reduce growth and body size
[31,61,62]. In some regions,
warming of extreme cold places
could enhance individual body
growth [63].

Acidification may reduce
skeletogenesis [33,64] and
increase metabolic costs
of calcification [32],
although some taxa are
resistant [65] and some
plants may benefit [66]
(but see [67]). CO2 can
increase in the blood
(i.e., hypercapnia) reducing
growth [33,68–70].

Hypoxia (reduced oxygen) should
reduce growth and body size [71–73].
Oxygen concentration also exerts a
strong control over calcification rates
of corals [74].

Growth and body size should
decline with lowered productivity
[19,31,75–79]. Changes in life-
history strategies of abyssal
macrofauna may be related to
changes in surface productivity
[80].

Survival and
abundance

In some taxa, thermal tolerance
thresholds could be surpassed by
warming leading to excessive
mortality [3,81–83], especially if in
interacting with other stressors
[29,84]. Warming thus reduces
abundance [83,85–87] and may
enhance diseases [88–93].

Acidification increases
mortality in selected adult
[94] and juvenile [95–98]
marine invertebrates [33]
and plants [67]. Abundance
can decline among
producer species [67]
(but see [66,99]).

Hypoxia causes mortality in most
large eukaryote species [23,71,84,100],
and anoxia (complete lack of oxygen)
could cause extinction in macro- and
megafauna [71,101–104]. Hypoxia
may enhance dominance by some
taxa that are hypoxia tolerant
[103,105,106] or that are released
from ecological interactions
[16,71,107,108].

Mortality of benthic invertebrates
is generally higher with reductions
in food supply [83]. Reduced
productivity could reduce
abundance [75,83,108–114] and
lead to dominance shifts from
large to small taxa [115].

Range and
distribution

Warming could cause range shifts
poleward and to deeper waters
[116–119], which in turn could
affect the strength of ecological
interactions [120], gene flow, and
rates of evolution [121]. Warming
also reduces habitat suitability for
species that do not shift ranges
[122].

Reduced calcium carbonate
saturation could prevent
calcification and growth
and thus lead to the
disappearance of calcifying
species from certain
shallow [3,123] and
deep-sea [124] areas.

Some taxa may disappear from
hypoxic waters [24,71,103,125–129]
but others may appear and thrive
[24,125,128]. Some evidence exists
for increased endemism among
benthic foraminifera in core regions
of oxygen minimum zones [130].

Certain species are unlikely to
maintain their distribution in food-
limited areas of the seafloor [131].

Species richness Theory suggests a positive
relation between richness and
temperature [132–135], which is
confirmed in several marine
studies [54,117,136,137];
although some regions and/or
taxa fail to show a relationship
[138].

Acidification will likely lead
to loss of species
[94,139,140].

Diversity declines as oxygen declines
for protists [16,23,101], meiofauna
[16], macrofauna, and megafauna
[23,24,71,101,125].

Richness shows a unimodal
[83,112,114,131] or no [137,138]
relationship with proxies of food
supply. Productivity seasonality
may negatively affect diversity
[141,142]. Eutrophication causes
diversity decline via hypoxia and
anoxia [16].

Functioning Ecosystem malfunctioning could
be extensive if key-stone species
are affected [3,55,56,120,122].
Trophic cascades (e.g., rise of
jellyfish) could also occur [105].

Acidification can affect
nutrient cycling [140,143],
while reduced calcification
can reduce sinking rates
and carbon export fluxes
to the seafloor via less
mineral ballast [144].

Carbon cycling could shift from
metazoans to benthic foraminifera
[145] and microbiota [20,145] in
suboxic and anoxic zones. Hypoxia
can reduce colonization, recovery,
and resilience [146].

Reduced food supply can reduce
carbon cycling [19,147,148],
modify food-web structures [114],
and cause shifts from macrofaunal-
to microbial-dominated nutrient
cycling [75,149,150].

doi:10.1371/journal.pbio.1001682.t001

Anthropogenic Ocean Biogeochemistry Change
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responses will certainly occur, the type and magnitude of such

responses will be difficult to predict.

Results and Discussion

Important contributions have been made to understand future

projections in the ocean biogeochemical parameters analyzed here

[9,11,15,46]. We repeated the collection of such projections for the

purposes of identifying patterns of co-occurrence in biogeochem-

ical variables and to quantify sources of error due to model

accuracy and precision. Earth Systems Models in the CMIP5

improve upon earlier models and runs by incorporating better

knowledge of the climate, improved computational capability, and

CO2 pathways that use more detailed and up-to-date data and

integrate multiple forcing agents of climate change [48]. Addi-

tionally, as noted below, multimodel averages were always more

accurate than individual models, further justifying the assembly of

biogeochemical projections based on all available Earth System

Models. Although these data on ocean biogeochemical parameters

represent an important component of our study, our main goals

are to identify how their patterns of co-occurrence may pertain to

marine biota and thereby social systems worldwide that rely on

marine biodiversity goods and services.

Earth System Models Precision and Accuracy
The reliability of climate change projections is primarily

determined by the skilfulness with which climate models are able

to predict the climate [49,50]. Climate model realism has

improved over recent years owing to increased computing power,

better scientific understanding of Earth System processes, and the

ability to integrate atmosphere, ocean, land, and sea-ice compo-

nents of the climate system [49–51]. However, our theoretical

understanding of the climate system is still incomplete and a

myriad of unresolved differences exist among models (e.g., spatial

and temporal resolution, numerical solution techniques, process

parameterizations, and complexity of atmospheric convection,

carbon cycle coupling, ocean mixing, unresolved attributes of the

biosphere, etc. [49]). As a result, one of the major motivations in

climate research has been to quantify the agreement among

models as well as between models and actual climate observations.

To address these standing concerns, we measured two proxies for

model precision and accuracy. Accuracy was defined as the

proximity of the model projections to actual data and precision as

the standard deviation among the projections of all models. Of

course, the availability of actual observations is restricted to recent

times and so we assume that a model that accurately simulates

present climate will produce better projections of future climates

[51].

We found that the average of all models was always closer to

actual observations than any model was individually (Tables S1,

S2). Thus, errors in precision were often larger than those in

accuracy (Figure 1). That is, there were often large differences

among the suite of model predictions, but their multimodel

average was often closer to actual observations (Tables S1, S2,

Figure 1). We also found that the accuracy of the multimodel

average varied by parameter and ocean domain. Specifically, there

was a stronger predictability of temperature, oxygen, and pH at

the ocean surface and a lower predictability of phytoplankton

carbon concentration and of all parameters at the seafloor

(Figure 1; complete results and details of accuracy and precision

plus Taylor diagrams are presented in Tables S1, S2). This low

predictability may emerge from the limited availability of actual

observations [this may be the case for ‘‘phytoplankton carbon

concentration’’ and ‘‘particulate organic carbon flux,’’ which are

modeled from other parameters, and there is often a significant

disagreement among available products of such parameters (Page

5 in Table S2)] [11] and the inevitable complexity of deep-water

processes, which may remain poorly modeled by Earth System

Models. With these considerations in mind, we used results based

on the upper layer of the ocean and the multimodel average,

unless otherwise indicated.

It is worth noticing that discrepancies between Earth System

Models outputs and present-day climate observation are partly due

to the fact that these models simulate their own internal climate

variability (i.e., complex, nonlinear interactions among different

components such as atmosphere, ocean, ice, physics, biogeochem-

istry, etc.) rather than those observed in reality. Thus, a perfect

match between any individual model output and observations is

unlikely for all places and times. However, these offsetting errors

between a given global model and current-day observations have

been found to be ameliorated by averaging the output of multiple

models (e.g., this study, [52]). This property of multimodel

averaging is likely to be just as useful in future climate projections,

which highlight the key reason for using the broad range of

available models in future predictions of the climate, including

those models with moderate capacity to predict current observa-

tions [50,52].

Future Projections in Ocean Biogeochemistry
In this study, we analyzed ocean biogeochemical projections

under two alternative pathways in which CO2 concentrations

could increase to 550 and 900 ppm by 2100 (as reference,

atmospheric CO2 concentrations are now at ,400 ppm from

280 ppm in pre-industrial times; see Figure S1 [1,48,53]). These

two scenarios are based on Representative Concentration Path-

ways 4.5 (RCP45) and 8.5 (RCP85) and represent alternative

mitigation efforts between a concerted rapid CO2 mitigation and a

‘‘business-as-usual’’ scenario, respectively [48]; there is a more

aggressive mitigation scenario called RCP26, which we do not use

because it was not consistently used among models and some

consider it realistically unattainable (see Figure S1).

Projections of biogeochemical parameters under RCP45 and

RCP85 were variable in magnitude among analyzed Earth System

Models (semitransparent lines in Figure 2E–H) but followed

remarkably similar trends overall (solid lines in Figure 2E–H,

Table S1). By 2100, global averages for the upper layer of the

ocean could experience a temperature increase of 1.2 to 2.6uC
(Figure 2E, Table S3), a dissolved oxygen concentration reduction

of 0.11 to 0.24 ml l21 (i.e., a ,2% to 4% reduction of current

values, Figure 2F, Table S3), a pH decline of 0.15 to 0.31

(Figure 2G, Table S3), and a diminished phytoplankton concen-

tration of 0.001 to 0.003 mg C l21 (i.e., a ,4% to 10% reduction

of current values, Figure 1H, Table S3) according to RCP45 and

RCP85, respectively. In contrast, the world’s seafloor was

projected to experience smaller changes in temperature and pH

(i.e., warming of 0.20 to 0.31uC and acidification of 0.03 to 0.04

pH units) but larger reductions in particulate carbon flux (i.e., food

supply) reaching the seafloor (i.e., particulate carbon flux will

decline 0.18 to 0.36 mg C m22 y21 or 6% to 13% reduction of

current values, Table S3); reductions in dissolved oxygen will be

similar to those observed at the sea surface (i.e., oxygen will decline

by 0.11 to 0.14 ml l21 compared to current values, Table S3); all

values are according to RCP45 and RCP85, respectively.

By 2100, projected changes in temperature, dissolved oxygen,

pH, and primary food supply vary significantly among regions

(Figure 2A–D). For the ocean surface, the smallest projected

changes for pH are in the tropics, for temperature and

productivity in temperate regions, and for oxygen in the Southern

Anthropogenic Ocean Biogeochemistry Change
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Figure 1. Accuracy and precision on future ocean biogeochemical projections. Plots A–D refer to sea-surface parameters; plots E–H to
seafloor parameters. These plots illustrate the number of 1 km2 cells by their projected change to the year 2100 under the RCP45 (blue lines), RCP85
(red lines), errors in accuracy (green lines), and precision (purple lines). Accuracy was defined as the difference between multimodel average
projections and actual data and precision as the standard deviation among the projections of all models. Comparison of these frequency distributions
illustrates that errors in accuracy and precision are insufficient to offset projected changes in surface temperature, oxygen, and pH. Note that in those
cases, accuracy (green lines) is centered to zero, meaning that for the great majority of cells the multimodel average prediction was identical to actual
observations. Errors in precision were often larger, but they are added to both sides of the projections, meaning that they will broaden expected

Anthropogenic Ocean Biogeochemistry Change
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Ocean (Antarctica). At the seafloor, all variables analyzed

experienced the largest changes along continental margins, with

decreasing oxygen being common over larger areas of the world’s

seafloor, particularly at the poles (Figure S2). In general, however,

with the exception of the Antarctic and small areas in the South

Pacific and North Atlantic, most of the world’s oceans will be

simultaneously exposed to change in all parameters (Figures 3–4,

Figure S2). With the exception of productivity and all parameters

at the seafloor, current errors in accuracy and precision of the

Earth System Models are of insufficient magnitude to offset

projected changes; that is, projected changes in temperature,

oxygen, and pH in the upper ocean layer were larger than their

errors in accuracy and precision, meaning that trends in these

three parameters are robust and are unlikely to be reversed by

current sources of model errors (Figure 1, Table S2).

To identify patterns of co-occurrence in biogeochemical

changes, we differentiate changes in biogeochemistry that are

negative (i.e., warming, acidification, oxygen depletion, and

primary food reduction) from those that are positive (i.e., cooling,

basification, oxygenation, and productivity increase). Note that the

terms ‘‘negative’’ and ‘‘positive’’ are used to indicate the direction

of biogeochemical changes, not their potential effects upon

Figure 2. Future biogeochemistry change in the world’s oceans. Plots A–D show the spatial difference between future (i.e., the average from
2091 to 2100) and contemporary (i.e., the average from years 1996 to 2005) values under the RCP85 scenario (decadal averages were chosen to
minimize aliasing by interannual variability; beside each color scale we provide the absolute change, whereas the numbers on top indicate the
rescaled values; complete results for the RCP85 and RCP45 for the ocean surface and floor are shown in Figure S2). Plots E–H show the global average
change relative to contemporary values under the RCP45 and RCP85 at the ocean surface and seafloor; semitransparent lines are the projections for
individual models.
doi:10.1371/journal.pbio.1001682.g002

Figure 3. Co-occurring ocean biogeochemical changes to the year 2100 under the RCP85. For these plots, we separated absolute changes
shown in Figure 2A–D between those that will be positive (i.e., cooling, basification, oxygenation, and productivity increase; Plots A–E) and negative
(i.e., warming, acidification, oxygen depletion, and primary food reduction; Plots F–J). Resulting absolute changes were scaled between 0 and 1 (Plots
B–E, G–J), 0 being zero absolute change and 1 being the extreme 97.5% observed value globally. The resulting scaled scores from each variable were
added to provide a global composite map of co-occurring positive (Plot A) and negative (Plot F) changes in ocean biogeochemistry. These cumulative
change maps ranged from 4 (i.e., the maximum predicted change in all four parameters occurred in that cell) to 0 (i.e., no negative or positive change
in any of the four parameters occurred in that cell). The results for the RCP45 at the ocean surface and both RCPs for the seafloor are presented in the
Supporting Information section.
doi:10.1371/journal.pbio.1001682.g003
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biodiversity or social systems. The resulting values were then

scaled from 0 to 1 (i.e., 0 meaning no change and 1 the upper

97.5% most extreme absolute change predicted in the world). The

scaled-scores for each biogeochemical parameter were added to

generate a composite global map of ‘‘negative’’ and ‘‘positive’’

changes in ocean biogeochemistry (Figure 3). The composite

global scores were differentiated between ‘‘positive’’ and ‘‘nega-

tive’’ changes to avoid neutralization of biogeochemical changes

(e.g., a cell with a warming score of 21 and a productivity increase

score of 1 will yield a composite global score of 0, which would be

confounded with no change). Additionally, separation of the global

composite scores into positive and negative changes allows a better

appreciation of the preponderance of the directions of biogeo-

chemical change in the world’s oceans.

The results of this analysis indicate that the entire ocean surface

will be impacted by warming, acidification, or reductions in

oxygen and productivity (Figure 4A,C)—over 99% by the largest

negative change in at least one full parameter (Figure 4A). In

contrast, only oxygen and productivity will experience positive

changes at the surface over a small fraction (Figure 4D) of the

polar regions (Figure 3C,E); almost no place in the world’s ocean

surface will face cooling or pH increase (Figure 3B,D). Co-

occurring negative changes will also occur extensively over the

world’s ocean seafloor (Figure 4C,D), although the magnitude of

such changes will be smaller: only about 20%–27% of the ocean’s

seafloor will be exposed to the largest negative change projected in

more than one biogeochemical parameter (Figure 4A). Patterns of

co-occurrence in biogeochemical parameters were very similar

between the RCP45 and RCP85 (Figure 4).

Biological Exposure to Ocean Biogeochemistry Change
By overlaying the global distribution of marine habitats and

hotspots of biodiversity for individual taxa with the projected

changes in temperature, oxygen, pH, and primary food supply, we

found that, to varying degrees, all projected biogeochemical

changes will occur simultaneously within all habitats and

biodiversity hotspots (Figure 5; Table S4 provides detailed statistics

for the change in each parameter at each marine habitat and

biodiversity hotspot and sources of error owing to accuracy and

precision in the Earth System Models). Among marine habitats,

the smallest absolute changes in biogeochemical parameters are

expected to occur in deep-sea habitats (e.g., soft- and hard-bottom

benthos, seamounts, and vents; Figure 5A, Table S4), whereas the

largest changes will likely occur in shallow-water habitats like coral

and rocky reefs, seagrass beds, and shallow soft-bottom benthos

(Figure 5A, Table S4). Like the biota, biodiversity hotspots (i.e.,

areas with high numbers of species of a particular taxon [54]) will

also be differentially stressed by ocean biogeochemistry change

Figure 4. Exposure of the world’s oceans to co-occurring changes in ocean biogeochemistry to the year 2100. (A–B) are the cumulative
percentage of cells globally exposed to the composite score of co-occurring ocean biogeochemistry changes (see Figure 3 for details). (A) is for
negative and (B) for the positive biogeochemistry changes. (C–D) is the discrimination of total ocean cells globally exposed to negative (C) and
positive (D) changes in each variable and the composite score.
doi:10.1371/journal.pbio.1001682.g004
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(Figure 5B). Among biodiversity hotspots analyzed in this study,

the smallest cumulative exposure to future biogeochemical change

is projected to occur in hotspots of mangrove and coral reef

species, whereas the largest exposure will occur in hotspots of

euphausiid (i.e., krill; a crucial component of food webs at mid and

high latitudes), cetacean, squid, and pinniped species (Figure 5B,

Table S4).

For the purpose of assessing the co-occurrence of biogeochem-

ical change, we considered all absolute changes in an additive

manner; however, this is not to say that biological responses will

Figure 5. Future ocean biogeochemistry change on marine habitats and biodiversity hotspots. Here we show the mean (horizontal
dashes) and standard deviation (curved lines) of the absolute change in each parameter projected to the year 2100 for each marine habitat (Plot A)
and biodiversity hotspot for individual taxa (Plot B). A hotspot is defined as the top 10% most diverse (in number of species) areas on Earth where the
given taxa are found [54]. In both plots, values for each parameter are color-coded according to the left-hand axes. Values to the left and right of each
habitat or hotspot indicate the expected results according to RCP85 and RCP45, respectively. Data on marine habitats were obtained mainly from
Halpern et al. [59]; additional sources are indicated in the Table S6; data on biodiversity hotspots were obtained from Tittensor et al. [54]. Complete
results of the exposure of each habitat and hotspots to all parameters as well as the sources of error due to accuracy and precision are presented in
Table S4. Particulate organic carbon flux (or simply carbon flux in the legend) applies only to seafloor habitats.
doi:10.1371/journal.pbio.1001682.g005
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follow an additive or linear response to such changes. Realistically,

empirical data are unavailable for a sufficient number of species to

predict the biological responses of an entire ecosystem to the

exposure of biogeochemical change in the ocean (i.e., given

variations in physiological adaptations, tolerance thresholds,

nonlinear responses, ecological interactions, and resulting cascade

effects, etc.). Even broad generalizations could be prone to

limitations. For instance, it is often argued that diverse ecosystems

can be resilient to climate change as redundancy in species

functions could allow the buffering of species lost by climate

change. This, in itself, implies a change in community structure

[55], although empirical evaluation of this idea has suggested that,

perhaps due to strong niche specialization, diverse ecosystems may

actually exhibit reduced functional redundancy and be particularly

prone to disturbances [56].

Despite our inability to predict the type and magnitude of

biological responses to ocean biogeochemistry change, existing

knowledge suggests that ocean biogeochemical changes could

exert a major selective pressure upon species and have the

capability to reorganize patterns of body size, abundance,

distribution, species richness, and ecosystem functioning

(Table 1). Biological and ecological responses are likely to be

magnified, especially if in interaction with other stressors [10,28],

as there will be a need for multiple physiological adaptations. The

expected biological response is further highlighted by the

biological changes already observed in certain monitored ecosys-

tems in response to recent environmental change. Coral reefs, in

which massive bleaching and growth reduction have been linked

to relatively minor contemporary warming and acidification

[3,57], provide an excellent example of this. Even deep-sea

ecosystems, for which the magnitude of biogeochemical shifts will

be smaller (dotted lines in Figure 2E–G), may undergo substantial

biological responses, mainly because the deep ocean is much more

stable, and thus its faunas are likely adapted to narrower ranges of

environmental variation than those in shallow marine habitats

[14,58]. We reemphasize that a standing challenge is to determine

Figure 6. Vulnerability of humans to projected ocean biogeochemistry change. This plot illustrates the total number of people likely to be
vulnerable through exposure to ocean biogeochemistry change according to RCP45 (Plot A) and RCP85 (Plot B). Numbers in the plot are in billions
(summations may not be exact owing to rounding). Categorization of people according to their levels of exposure to biogeochemical changes,
dependency on ocean goods and services, and social adaptability is described in the main text.
doi:10.1371/journal.pbio.1001682.g006
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the preponderance of taxa from different marine habitats and

ecosystems that will be sensitive to ocean biogeochemistry change.

Vulnerability of Coastal People to Ocean
Biogeochemistry Change

Here we quantified the relative vulnerability of coastal people to

ocean biogeochemistry change in the traditional sense of exposure

to environmental change, dependency of potentially impacted

ocean goods and services, and social adaptability [34,35,44,45].

We determined the level of exposure of each Exclusive

Economic Zone in the world to the cumulative negative ocean

biogeochemistry change, on a scale ranging between 0 (i.e., no

ocean biogeochemistry change) and 4 (i.e., maximum observed

biogeochemistry change in all four analyzed parameters) (data

from Figure 3B; we analyzed only negative changes given their

overwhelming coverage globally, and because those changes are

likely to have the largest impacts on the supply of ocean goods and

services). For the purpose of classification, cumulative negative

biogeochemical changes were divided into three equal bins to

classify countries with low, medium, and high exposure to ocean

biogeochemistry change.

To quantify levels of dependency, we used three different

metrics of peoples’ dependence on the ocean: jobs, revenues, and

food. Job dependency was measured as the fraction of the

countries’ work force employed by marine fishing, the marine

tourism industry, mariculture, and marine mammal watching.

Revenue dependency was measured as the fraction of a country’s

Gross Domestic Product (GDP) generated by revenues from

marine tourism, fishing, mariculture, and marine mammal

watching. Food dependency was the fraction of animal protein

consumption supplied by seafood. All three dependencies were

added and divided in three equal bins to indicate countries of low,

medium, and high dependency.

Societal adaptability to environmental change was quantified as

per capita GDP, assuming that richer countries will have more

alternatives, higher capacity, and adaptability. For the purpose of

classification, we defined low-, medium-, and high-income countries

depending on whether annual per capita GDP was smaller than

US$4,000, between US$4,000 and US$12,000 and larger than

US$12,000, respectively (sources of data are presented in Table S6).

For each country, we estimated the number of coastal people

(i.e., living within 50 km of the coast) within each category of

exposure, dependency, and adaptability (we provide global

summaries in the main text and detailed country results in the

Supporting Information section). We found that approximately 1.4

billion people live in the coastal areas of countries whose Exclusive

Economic Zones will experience medium to high ocean biogeo-

chemistry change by 2100 under the RCP45. Of those, ,690

million live in countries with a medium to high ocean dependence,

and of these ,470 million live in low-income countries (Figure 6A).

The situation will be more dramatic under the RCP85, according

to which 2.02 billion coastal people will live in countries with

medium to high ocean biogeochemistry change; of those, 1.12

billion live in countries of medium to high ocean dependence; and

of these, ,870 million live in low-income countries (Figure 6B;

detailed statistics of the change in each biochemical parameter at

each Exclusive Economic Zone and sources of error owing to

accuracy and precision in the Earth System Models are shown in

Table S5). These results highlight the considerable challenges for

human adaptability likely to emerge from ocean biogeochemistry

change. Not only does a considerable fraction of the world’s

human population constantly use resources that will be impacted

by ocean climate change, but such people are also located in

developing countries with low capacity for adaptation to climate

change. This limited socioeconomic capacity could also hamper

the ability to benefit from ‘‘positive’’ ecosystem changes, if such

new opportunities require costly adaptability [38].

Concluding Remarks
Although a mechanistic model of how ocean biogeochemical

changes alter biological and social systems will be difficult to

develop, existing knowledge suggests that the responses to the

exposure of expected ocean biogeochemical change could be

considerable. First, the array of interrelated parameters affected by

increasing CO2 emissions provide a much more worrisome picture

than consideration of single stressors alone, as most of the world’s

oceans will be influenced by changes in multiple biogeochemical

parameters, and thus adaptation will require multiple physiological

adjustments from marine species. Additionally, there is the potential

for synergistic responses to co-occurring stressors, and indirect

ecological releases and trophic cascades. Secondly, human depen-

dence on marine goods and services is also substantial in countries

that will experience considerable ocean biogeochemistry change,

particularly among low-income countries. This highlights the

looming vulnerability to climate change in developing/low-income

countries, and an unfortunate disparity between those who benefit

economically from the processes creating climate change and those

who will have to pay most of the environmental and social costs.

The kind of biogeochemical stressors identified here will be further

compounded by sea level rise, which has already been identified as a

major potential socioeconomic consequence from climate change.

These results provide a refined and synoptic numerical projection of

change in key biogeochemical parameters upon marine biota and

human societies, and indicate that if global CO2 emissions are not

reduced, substantial degradation of marine ecosystems and

associated human hardships are very likely to occur.

Methods

Our analysis builds on recent ocean physical and biochemical

projections developed as part of the Coupled Model Intercom-

parison Project Phase 5 to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change [47]. As of July

2012, there were 31 Earth System Models from 18 centers in nine

countries that modeled at least one of the ocean parameters

analyzed here (Table S1). For analysis, all parameters were

interpolated into a common 1u by 1u grid (assessment of multiple

interpolation methods is provided in the Supplement S1). In total,

over 27,000 years of data from the different models and variables

were processed. Given the number and size of the files, we used

several tools to optimize data processing, which are made available

in Supplement S2. To quantify the robustness of Earth System

Models, we compared projections among models (to measure

model precision) and with actual data (to measure model accuracy)

(data sources are indicated in Table S6). The multimodel average

projections in the different biogeochemical parameters, in

response to the analyzed CO2 scenarios, were overlapped with

the distribution of different marine habitats and biodiversity

hotspots to calculate how much individual and combined change

will occur upon each habitat and hotspot (additional details are

provide in Figure 5 and Table S4). Finally, for each Exclusive

Economic Zone in the world, we calculated the projected

cumulative change in all biogeochemical parameters analyzed

here (Figure 3B), and quantified human vulnerability to this

change by using country-level data on current social resilience (in

terms of wealth and assuming that richer countries will have more

alternatives, higher capacity, and adaptability) and human

dependence for ocean goods and services arising from food, jobs,

Anthropogenic Ocean Biogeochemistry Change
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and revenue (Results for individual countries are shown in Table

S5 and data sources in Table S6.)
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8. Quéré LC, Andres RJ, Boden T, Conway T, Houghton RA, et al. (2012)

The global carbon budget 1959–2011. Earth Syst Sci Data Discuss 5: 1107–
1157.
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