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I. ABSTRACT 

Extreme climatic events are expected to increase in frequency and intensity under climate change. 

Climate models predict shifts in rainfall patterns that will exacerbate drought, with potentially 

devastating effects on freshwater ecosystems. Experimental approaches are now advocated to explore 

the impact of extreme events on natural systems: here we synthesise research conducted in a stream 

mesocosms experiment to simulate the effect of prolonged drought on the structure and functioning 

of complex food webs in a two-year manipulation of flow regimes. Drought triggered the losses of 

species and trophic interactions, especially among rare predators, leading to the partial collapse of the 

food webs. Drying caused marked taxonomic and functional turnover in algal primary producers, 

from encrusting greens to diatoms, whereas the total number of algal taxa in the food webs remained 

unchanged. The recurrent drying disturbances generated transient macroinvertebrate communities 

dominated by relatively few, r-selected, species and compensatory dynamics sustained total 

macroinvertebrate densities. However, the standing biomass and secondary production of the food 

webs were more than halved by the droughts. Consumer-resource biomass flux was also strongly 

suppressed by disturbance, yet several network-level properties (such as connectance and interaction 

diversity) were conserved, driven by consumer-resource fidelity and a reconfiguration of fluxes 

within the webs, as production shifted down the size spectrum towards the smaller species. Our 

research demonstrates that flow extremes could have far-reaching consequences for the structure and 

functioning of complex freshwater communities.  
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II. INTRODUCTION 

A. Extreme events and climate change 

Much of the effort related to understanding the effects of climate change has focused on incremental, 

gradual change in ‘average’ conditions: far less consideration has been given to variation and 

increases in extreme events (Jentsch et al., 2007).  Both types of change are, however, predicted under 

many climatic models, such that we are likely to see more stochastic extreme events overlain on a 

general warming trend in the future (IPCC, 2007). Unfortunately, extreme events are very difficult to 

study in natural systems because, by definition, they are very rare, and potentially unpredictable, 

occurrences. This is further compounded by the likelihood that what are today's extremes will become 

more commonplace in the future, with increases in the intensity, frequency and duration of both 

droughts and floods beyond the normal envelope of contemporary conditions. Indeed, some may be 

so extreme that there is nothing in the historical record with which to compare them, and in such cases 

we are entering uncharted waters that will require experimental manipulations and predictive models 

that can extrapolate beyond historical and contemporary conditions (Stewart et al., 2013).  

Extreme events can be characterized by their magnitude, timing and abruptness relative to the 

life cycles of the organisms. In riverine systems, changes in the magnitude and distribution of rainfall 

may exacerbate the global occurrence of extreme floods and droughts over both time and space. By 

the middle of the 21st century, annual average runoff is projected to increase by 10-40 % at higher 

latitudes, and decrease by 10-30 % over mid-latitudes (Milly et al., 2005; Kundzewicz, 2011). There 

is already clear evidence that the frequency and intensity of droughts is increasing (Kauffman and 

Vonck, 2011), particularly in the last decade (Espinoza et al., 2011). Some scenarios identify critical 

regions in Europe where the return period of 100-year droughts will decrease to between 10 and 50 

years (Lehner et al., 2006). However, cyclical global climate circulation patterns must be overlain on 

directional shifts in weather; for example, the North Atlantic Oscillation (NAO) can increase the 
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intensity of drought during high positive years (e.g. Vincente-Serrano et al., 2011), with unknown 

consequences for aquatic ecosystems.  

B. Drought in river networks 

The socio-economic impacts of drought are well-quantified in terms of water resources, agriculture 

and recreation, but less is known about their ecological effects (Lake, 2011). Droughts can occur both 

seasonally (i.e. short-term within-year water deficiencies) and supra-seasonally (i.e. multi-year water 

deficiencies), and tend to have the greatest impact where they arise unpredictably (e.g. Boulton, 

2003). Drought is usually considered a ‘ramp’ disturbance, increasing steadily in strength and spatial 

extent as habitat loss proceeds (e.g. Lake, 2008; 2011). Longitudinal connectivity may be lost as flow 

decreases, with the river bed becoming a mosaic of trickles, remnant pools and damp patches. Further 

drying may result in loss of free water within the hyporheic zone, thereby disrupting vertical 

connectivity. In severe droughts, all remnant pools and the hyporheic zone, if present, may dry up 

completely. With increased drying, water quality deteriorates; typically temperature and conductivity 

increase, dissolved oxygen declines and particulate organic matter accumulates (e.g. Lake, 2003; 

Ledger et al., 2012).  

Stream biota have a low resistance (i.e. ability to withstand disturbance) but high resilience 

(i.e. ability to recover to a former state once the disturbance has past, Townsend and Hildrew, 1994) 

to drought (Boulton, 2003; Lake, 2003; Fritz and Dodds, 2004; Bonada et al., 2007). Resilience is 

substantially mediated by the use of refuges (Boulton, 2003; Dewson et al., 2007a; Lake, 2008; Poff 

et al., 2010). Invertebrate refuges consist of remnant pools, moist areas (e.g. under boulders) 

(Fenoglio et al., 2006), the hyporheic zone (Wood et al., 2010; Stubbington, 2012), or wetted reaches 

further downstream. Larger taxa are more susceptible to drought, particularly when drying sets in, 

due to their greater requirement for wetted habitat (Dewson et al., 2007a; Ledger et al., 2011). Non-

drifting, low-motility invertebrates, like worms, molluscs and some crustaceans, have to use 

sedentary refuges (Dewson et al., 2007a), such as wet habitat under stones and woody detritus 
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(Covich et al., 2003; Golladay et al., 2004), whereas other taxa drift to escape falling water levels 

(Lake, 2011). In running waters with hyporheic zones, invertebrates may bury themselves in the wet 

sediment (Young et al., 2011), though this may eventually dry out. 

There is thus usually a change in community composition as droughts progress which is often 

contingent upon the extent and rate habitat modification and/or loss (Everard, 1996). Rapid drying 

can act as a powerful environmental filter, reducing assemblages to a small subset of tolerant species. 

Taxa with preferences for low water velocities and fine sediment can dominate during drought 

periods, whereas rheophylic taxa (i.e. those that prefer to live in fast flowing water) such as filter 

feeders are rapidly eliminated as flows decline, or confined to the few remaining riffle and cascading 

habitats (Dewson et al., 2007a). However, taxa with short life cycles may escape, or even exploit 

drought periods where their exposure to stressors is limited (Bonada et al., 2006, 2007; Dewson et 

al., 2007a). Species with a preference for shallow habitats such as riffles risk becoming stranded as 

water levels fall, especially those with limited motility (Gagnon et al., 2004; Golladay et al., 2004). 

Elevated nutrient concentrations and sedimentation favour taxa tolerant of low water quality and 

degraded habitat conditions (Boulton, 2003; Lake, 2011), suggesting that the vast volume of work 

done to identify functional traits for the biomonitoring of organic pollution could be adapted for 

assessing drought impacts (Friberg et al., 2011).  

Drought also has the potential to alter ecosystem functioning and the supply of ecological 

goods and ecosystem services, such as carbon and nutrient cycling and fish production. Organic 

matter processing by microbes and detritivores may decline during severe drought (Schlief and Mutz, 

2011), whereas primary production can at first increase greatly because of elevated temperature and 

nutrients, but then decline dramatically and even cease as drying intensifies (Ledger and Hildrew, 

2001; Wade et al., 2002; Suren et al., 2003; Ledger et al., 2008). Direct impacts on the secondary 

production of invertebrates and fish depend on drought intensity, with greatest effects occurring 

where flow cessation occurs (Matthews and Marsh-Matthews, 2003; Lake, 2011; Ledger et al., 2011). 
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Indirect impacts may also occur as a result of changes in primary production, with lower resource 

availability likely to suppress higher trophic levels (Hannesdóttir et al., 2013). 

C. Food webs in climate change research: from qualitative to quantitative approaches 

The impacts of climate change remain poorly understood at the higher multispecies levels of 

organisation (communities, food webs, ecosystems), especially for responses to components other 

than the direct effects of warming per se, such as atmospheric and hydrological changes in the 

environment (Woodward et al., 2010; Stewart et al., 2013), and to extreme events in particular.  The 

history of food-web research in the context of environmental change, and its progression from 

qualitative binary approaches to the use of more sophisticated quantitative methods, has been covered 

elsewhere in recent reviews (e.g., Ings et al., 2009; Thompson et al., 2012).  Nevertheless, a brief 

overview is instructive here, as much of the research conducted in our model mesocosm system 

mirrors these general trends (Stewart et al., 2013).   

Qualitative binary metrics that were averaged across the whole network (e.g., linkage density, 

connectance, mean food chain length) were the main focus of the initial food-web work in this system 

(Brown et al., 2011). These were followed by measures that addressed other aspects of network 

substructure, such as degree distributions and small-world properties (e.g. Woodward et al., 2012). 

With respect to networks in general, several studies have suggested that they can be highly resilient 

to random removal of nodes, but more susceptible to directed removals of highly connected nodes 

(Callaway et al., 2000; Crucitti et al., 2004). However, it remains far from clear how such disturbances 

influence ecological network properties, largely because previous studies have worked on composite 

data from several individual food webs (e.g. Dunne et al., 2002a; Krause et al., 2003; Townsend et 

al., 1998) and not produced replicate food webs from the one system but with different levels of 

disturbance. Furthermore, quantified information on biomass fluxes was generated to gain a more 

balanced view of the role of particular species and links within the context of the network, rather than 

weighting each equally (Ledger et al., 2013). At this step, there was a marked increase in the 
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ecologically meaningful information that emerged. The initial finding that drought altered the webs 

structurally, by simplifying them due to the loss of certain nodes and links, was expanded upon with 

new insights into their functional dynamism. We observed that whilst drought suppressed secondary 

production of the system as a whole by about half an order of magnitude (Ledger et al., 2011), there 

was no shift in the overall distribution of biomass fluxes across the remaining species (Ledger et al., 

2013). One obvious question that arises when exploring higher-level responses in multispecies 

systems is: are there any emergent effects that are not necessarily predicted from simple knowledge 

of the component species pairs, or is the food web simply the sum of its parts? There are several ways 

we aimed to address this, including trivariate approaches, where, for instance, the responses of the 

core community of species that are present under both ambient and perturbed conditions exhibit 

different allometric scaling relationships (see Woodward et al., 2012).  

Responses among individual taxa within the food web to low (or high) flows are well-known 

for certain species or functional groups, as highlighted by the use of LIFE Scores in biomonitoring 

(Extence et al., 1999). However, these tend to focus on performance optima within the typical 

hydrological cycle and conditions, rather than extreme events in a given locale that may exceed the 

tolerance of the resident flora and fauna. Even less is known about how floods, and especially 

droughts, affect interactions between species or the structure and dynamics of entire food webs 

(Ledger et al., 2013; McLaughlin et al., 2013; Stewart et al., 2013). We can, however, now start to 

make some reasonable predictions based on established theory and the data collected to date, as to 

how the nodes, links, and trophic network as a whole might respond. 

Perhaps one surprising consequence of both floods and droughts is an apparent tendency for 

biotic interactions to intensify, at least in the initial stages, as consumers and resources are 

concentrated into ever smaller refugia (c.f. Lancaster, 1996; Ledger et al., 2013). This should (in 

theory) lead to increased network connectance and reduced stability of the food web, as predators 

exert stronger per capita effects on prey concentrating in refugia. This burst of intense biotic 
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interactions may be short-lived though, as physiological stress starts to increase over time and/or as 

the refugia continue to shrink, as larger taxa and those high in the food web tend to suffer 

disproportionately (Raffaelli, 2004): this may be due to reduced oxygen availability and increased 

metabolic demands (e.g. due to combined effects of warming, increased respiration and 

decomposition processes during droughts), and/or simply the physical inability to access refugia.   

We should be able to extrapolate from here to predict what might happen in the food web, 

community or ecosystem as a whole. For example, in the immediate aftermath of an intense 

perturbation event, we might expect to see a short burst of intense and potentially destabilising 

predation followed by a more bottom-up dominated period, when r-selected species benefit from the 

subsequent loss of predators and the freeing-up of new habitat and food resources. This situation 

should eventually shift back to the pre-drought conditions as predator populations recover and top 

down effects start to reassert themselves, and the rate at which this state is re-established represents 

the system’s resilience.  However, if the perturbations do not cease then we might expect the system 

to persist in a transient state, akin to arrested succession in highly-disturbed, human-modified 

environments, such as heathland or fen. This is reflective of the intermediate disturbance hypothesis, 

whereby, at moderate levels of disturbance, top-down effects are offset by bottom-up effects, with 

neither one being able to completely dominate (e.g. Connell, 1978). Although the IDH was never 

proposed with an explicitly food web perspective in mind, the parallels are notable.  Thus, we might 

expect droughts to be reflected by pulses of initially high mortality due to both density-dependent 

(i.e. intense competition or predation) and density-independent (e.g. mortality due to high temperature 

or desiccation) causes, followed by a relaxation of biotic control as predators run out of food and/or 

suffer disproportionately from increased metabolic demands and fragmentation of foraging patches.  

Subsequently, as the waters return (or the flood recedes), there is a dramatic increase in habitat and 

food availability for the survivors, which is likely to favour more r-selected species that are able to 

colonise and increase population sizes more rapidly than those towards the K-selected end of the 

gradient. 
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D. Mesocosm experiments and climate change research 

Mesocosms are small experimental units that replicate aspects of the natural environment as closely 

as possible, thus typically allowing more ecological realism than is the case for microcosms, and more 

replication/control than is possible in natural systems (e.g. Ledger et al., 2009). Mesocosms have been 

used widely by ecologists to gain a mechanistic understanding of ecosystem responses to a variety of 

variables based on the assumption that these systems can replicate the key responses of natural 

assemblages. Stream mesocosms have been used for investigating the response of biotic communities 

to flow events (e.g. Taulbee et al., 2009; Villeneuve et al., 2011), biotic interactions (e.g. Wellnitz 

and Poff, 2012) and effects of sediment and contaminants (e.g. Johnson et al., 2011). Research at the 

scale of mesocosms provides the ability to make direct comparisons of responses across replicated 

communities under different flow conditions and across at least one generation of the longest-living 

organism. These intergenerational responses permit insights within and across food webs, where 

indirect effects may be prevalent (Yodzis, 1988; Ledger et al., 2013).  

Mesocosm experiments are especially important for studying extreme events, as surveys will 

be unable to replicate them: even those that are still within the current historical envelope (e.g. 1-in-

10-year or 1-in-100-year floods) are rarely captured by survey data, and if they are it is often after the 

event, with little or no meaningful prior data (but see McLaughlin et al., 2013). There are clear 

parallels with the challenges faced by ecologists studying invasive species and extreme events: in 

both cases, it is very difficult to predict when and where they will arrive, and the changes they bring 

may result in novel communities or ecosystems, whose characteristics are unknown. Correlational 

survey data are rare because of this inherent unpredictability of extreme events. Conversely, because 

we need to understand how complex multispecies systems respond across different organisational 

levels, short-term laboratory experiments have limited realism. Field-based mesocosm experiments 

therefore represent an optimal approach to study this aspect of climate change and ultimately to 

parameterise predictive models. Too frequently there are no adequate controls or pre-disturbance data 
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for comparison in survey data. To understand fully the ecosystem responses to extreme events in 

general, controlled manipulations are needed (Jentsch et al., 2007), including mesocosm experiments 

to explore community and functional responses to climate change (Benton et al., 2007). Mesocosms 

have some key advantages over laboratory based microcosm studies, despite the latter typically 

providing more extensive replication and control. Although rare, studies of food webs using an 

experimental approach are vital for untangling causative relationships between changing 

environmental conditions and food-web structure and dynamics (Ledger et al., 2013). 

The limitations and potential shortcomings of the mesocosm approach that need to be borne 

in mind are mostly related to the logistical constraints that mean they are restricted to limited 

spatiotemporal scales and levels of biological complexity (Harris et al., 2007; Ledger et al., 2009; 

Stewart et al., 2013). Although the ability to replicate treatments is a clear advantage of mesocosms, 

their ecological realism to whole freshwater systems has also been questioned (Petersen and Englund 

1995; Schindler, 1998). Ledger et al. (2009) assessed the water quality and community composition 

of four replicate stream mesocosms, reporting that acceptable levels of realism may be attained in 

large outdoor systems close to a source of colonists. Subsequent studies have also shown that these 

outdoor mesocosms can contain complex food webs with structural properties consistent with natural 

systems (Brown et al., 2011; Ledger et al., 2011).  

In this paper we synthesise the results of an experiment conducted to test the effect of extreme 

drought on riverine communities. We used a series of large stream mesocosms to manipulate flows, 

exposing biota to drying disturbances repeatedly over two years. We tested two hypotheses: (1) that 

drought disturbance would generate turnover in community structure and biomass production, with 

small r-selected species replacing larger, longer lived taxa with more K-selected traits; and (2) that 

dietary generalists would benefit over specialists, modifying network properties and biomass flux. 

 

III. METHODS 
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A. Stream mesocosms 

Research was conducted over 24 months (March 2000 – February 2002) in outdoor stream 

mesocosms fed by a chalk stream at the Freshwater Biological Association River Laboratory, UK 

(50°40’48’’N, 2°11’06’’W; Fig. 1). Each mesocosm was a linear channel (width 0.33 m, length 12 

m, depth 0.30 m) receiving water and suspended particles (including algae, detritus, and invertebrates) 

through a 110 mm diameter pipe (6 m length) from the feeder stream. Two of the mesocosms in each 

block were used in this study, with data from the third mesocosm reported elsewhere (Ledger et al., 

2008; 2012). Water flow was controlled by a valve at the closed upper end of each channel. Water 

flowed freely from mesocosms under gravity, via an open outlet positioned 10 cm above a drainage 

channel, preventing any potential transfer of biota among the mesocosms. Each channel was filled to 

20 cm depth with clean substrate dominated by chert gravel (volumetric proportions of particle sizes, 

85 % 11-25 mm, 5 % 2-11 mm, 5 % 0.35-2 mm, 5 % < 0.35 mm), matching the source stream (Harris 

et al., 2007). While the mesocosms did not have extensive hyporheic zones, conditions were 

consistent with that observed in many headwater streams, where the majority of macrofauna are 

confined to surface sediments and shallow oxygenated interstices (Trimmer et al., 2010), and 

substrata provided physical refugia for suitably adapted species during drying disturbances (Harris, 

2006).  

Physicochemical conditions were highly congruent among the mesocosms (Table 1; Harris et 

al., 2007). During the main study period, water temperature (mean 12.2 ºC) varied seasonally, with 

summer maxima (18.7 ºC in June 2000) and winter minima (6.0 ºC in December 2001) (Fig. 2). 

Inflowing water was nutrient rich (mean PO4: 56.4 μg L-1; NO3: 5.62 mg L-1 from March 2000–

February 2002) with alkaline pH (mean 8.1) and high conductivity (mean 460 µS cm-1) (Harris et al., 

2007), consistent with water quality in local chalk rivers (Casey, 1975; Bowes et al., 2005; Ledger et 

al., 2009). Outside the experimentally simulated dewatering periods, discharge in the mesocosms was 

stable (cross treatment mean 4.5 L s-1), with mean water velocity (at two-thirds depth) and depth over 

the gravel of 0.20 m s-1 and 81 mm, respectively, and water residence times were short (mean 66 s) 
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(Harris, 2006). Biota (algae and macroinvertebrates) in the mesocosms were taxonomically diverse 

and similar in composition to nearby streams (Ledger et al., 2009). 

B. Experimental design and application 

Unfiltered water from the source stream was diverted into the mesocosms to initiate colonisation and 

community development (February-March 2000). Macroinvertebrate colonisation was either passive, 

in drift from the source stream, and/or by adult oviposition (Ledger et al., 2009). Following this 

colonization period, an intermittent flow regime of substratum drying and wetting (repeating cycles 

of mean 6 dry days [i.e. flow cessation] followed by mean 27 wet days) was applied to one mesocosm 

in each block, mimicking supraseasonal drought that causes repeated patchy dewatering of river bed 

sediments over prolonged periods (see Ledger et al., 2013). These events are expected to become 

more frequent globally under most of the Intergovernmental Panel on Climate Change (IPCC) future 

scenarios (Beniston et al., 2007; IPCC 2007). Drought disturbances were applied by slowly closing 

inflow ducts and allowing water to drain from the channels, causing patchy drying over several days. 

During dewatering, surface flows ceased and drying of exposed substrata occurred in patches, 

whereas the interstices beneath the bed surface remained wet, and small pools persisted at intervals 

along the length of the dewatered channels, providing refugia for suitably adapted species (Harris, 

2006). Surfaces of exposed substrata dried at natural ambient rates, such that the stress experienced 

by organisms stranded in the mesocosms was consistent with those in adjacent drying stream reaches 

(Harris, 2006; Ledger et al., 2008). In the control mesocosms, flows were continuous throughout the 

experiment. The hydrologic and thermal conditions were highly replicable among the mesocosms, 

with drought treatments consisting of greater extremes of flow variation and temperature than controls 

(Table 2). A blocked experimental design (Zar, 1999) was used in which each treatment was 

replicated four times, with each block of channels containing a drought treatment and a control (4 

blocks x 2 treatments = 8 channels in total).  

  

C. Estimation of abundance, biomass and production of trophic elements.  
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Estimates of invertebrate abundance and biomass were made from samples (Surber sampler 0.025m2, 

300 µm mesh, n=3 per channel) collected monthly from each mesocosm between March 2000 and 

February 2002, immediately (1 hr) before disturbances were applied to the drought treatment. On 

each occasion, three Surber samples (0.0225 m2, 300 µm mesh aperture) were taken from each 

replicate mesocosm, to provide sufficiently precise estimates while limiting the extent of destructive 

sampling (Harris, 2006). Macroinvertebrates were sorted from debris, identified to the lowest 

practicable taxonomic unit (usually species), and counted. Data from each of the three samples were 

pooled to provide a single estimate of biomass (mg m-2) for each mesocosm on each sampling 

occasion (i.e. channels, not sample-units, were replicates). For secondary production (mg m-2 yr-1) 

estimation, macroinvertebrate body lengths (all individuals sampled, n = 63,092) were measured to 

the nearest 0.1 mm using an ocular graticule and dissecting microscope (Ledger and Winterbourn, 

2000; Burrell and Ledger, 2003). Individual biomass (mg dry weight) was calculated for all 

invertebrate specimens using published length-mass regressions (see Edwards et al., 2009).  

Secondary production (mg m-2 yr-1) of all invertebrates was calculated using the size-

frequency method (Hynes and Coleman, 1968), excepting rare taxa < 1 % total numbers where 

production was estimated by multiplying mean annual biomass by an annual P/B value of the most 

closely related taxon) (see Ledger et al., 2011; 2013) Production was estimated for each replicate 

control and treatment channel. Production for the first year and the second year of the experiment 

was averaged and incorporated in to biomass flux estimates as mean annual secondary production. 

At the end of the experiment, we collected the entire macroinvertebrate assemblage in each 

mesocosm, using samples to construct food webs by direct observation of feeding links and 

determined biomass of basal resources (detritus and algae) as the ash-free dry mass of material 

collected from the surfaces of mineral substrata (n=8) in each mesocosm (see Ledger et al., 2008). 

D. Food web construction: binary webs 
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Binary food webs were constructed based on the presence/absence of resources in the diet of 

consumers sampled at the end of the experiment. Feeding linkages were determined directly by gut 

contents analysis of macroinvertebrates. In total 3,643 dissected guts were examined, with consumed 

items identified to the lowest practicable taxonomic unit. The guts of invertebrates were dissected at 

x20 magnification, and the gut contents were mounted on glass slides with an aqueous agent 

(Aquamount®). To determine the percentage contribution of food particle types in the diet, five fields 

of view were examined on each slide at x 200 magnification using an ocular grid (1 cm2 divided into 

100 cells of 1 mm2). Gut contents were identified as algae, fungi, invertebrates, large plant detritus, 

and amorphous detritus (Ledger et al., 2002). Invertebrate, diatom and other algal components of diet 

were identified to genus or species, whenever possible. Diet could not be determined for suctorial 

predators using our methods, and they were excluded from our webs. Several qualitative (binary) 

food web metrics were derived from matrices of drought and control stream food webs. Metrics 

included linkage density (L/S), where L is number of consumer-resource links and S is the number of 

species in the web, directed connectance (L/S2), generality (L/Sconsumers), and vulnerability (L/Sresources) 

(Bersier et al., 2002). Mean and maximum prey-averaged trophic height was determined for each 

web, following Hudson et al. (2013). Characteristic path lengths (d), the shortest number of links 

between all pairs of species, were computed using the social network analysis package Pajek v1.2 

(Brown et al., 2011). Cumulative degree distributions were calculated as the proportion of taxa P(k) 

having k or more undirected trophic links (both predator and prey links) (Dunne et al., 2002b). Yield-

effort curves (number of food types versus number of guts examined) were drawn for each taxon to 

determine when a sufficient number of individuals had been examined to describe its diet accurately.  

 

E. Food web construction: quantitative webs 

The food web of each mesocosm community was quantified, with links expressed as flows of biomass 

from resources to consumers (see Ledger et al., 2013). The trophic basis of production method (Benke 
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& Wallace, 1997; Benke, 2012) was used to quantify directly observed feeding links, with biomass 

flux (Fij, mg m-2 yr-1) from resource i to consumer j estimated as follows: 

Determine the proportion of production derived from food type i (Bi): 

Bi = (Gi × AEi) / ƩGi=1,...,n• 

Calculate the flow of biomass via food type i to consumer j (Fij). 

Fij = (Bi × Pj) / (AEi × NPE) 

where Gi is the percentage cover of food type i, AEi is the assimilation efficiency of food type i, Pj 

is the secondary production of consumer j, and NPE is assumed net production efficiency. Values for 

AE and NPE were derived from Hall et al. (2000). To calculate Gi, the relative amount of each food 

type in gut contents mounted on slides was derived by counting the squares on the ocular grid 

dominated by that food type in each microscope field of view. The percentage of each food type for 

an individual was then calculated from five fields of view and expressed as a percentage of the total 

food particle area (Ledger et al., 2002).  

Quantitative food webs were compared using metrics derived from information theory 

(Bersier et al. 2002; Tylianakis et al., 2007; Ledger et al., 2013).  For each web, we determined the 

quantified, weighted measures of linkage density (LDq), interaction diversity (IDq), interaction 

evenness (IEq), generality (Gq, mean number of resources per consumer) and vulnerability (Vq, mean 

number of consumers per resource) (see Bersier et al., 2002). The metrics incorporate the inflow and 

outflow of biomass to each species in the food web, and the diversity of biomass flows derived from 

the resource (HN, the diversity of inflows) and going to the consumers (HP) of each taxon k was 

calculated as:  
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sum b•k and row sum bk• are the sum total biomass flux from resources, and to consumers, of taxon 

k, respectively. The reciprocals of HN•k and HP•k are: 
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Weighted quantitative linkage density (LDq) was calculated as the average of the equivalent numbers 

of resources (nN,k) and consumers (nP,k), weighted by their inflows and outflows: 
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where b•• is the total biomass flux in the web matrix. Quantified connectance was calculated as LDq/S. 

Weighted generality (Gq) and vulnerability (Vq) were calculated as: 
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The diversity and evenness of quantified links in each food web was calculated using the Shannon 

index of entropy: 
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Where pi is the proportional contribution of interaction i to the total number of interactions in the web 

(N).  
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III. RESULTS 

A. Connectance webs 

The mesocosm binary webs collectively encompassed 783 pairwise trophic interactions among 74 

trophic elements (Fig. 3). Basal resources (trophic height = 1) consisted of detritus (leaf litter, 

amorphous detritus), fungi, and benthic algae (green algae, diatoms) (Table 3). Twenty eight taxa of 

benthic algae occurred in the webs and they formed two macroscopically distinct patch types with 

contrasting taxonomic composition (algal crusts and mats, Fig. 4). Basal resources (Table 3) 

supported a diverse array of macroinvertebrate primary consumers (trophic height = 2) and predators 

(trophic height > 2; Table 4). All of the predators were macroinvertebrates, namely leeches (mainly 

Erpobdella octoculata), larval caddis (Polycentropus flavomaculatus), alderflies (Sialis lutaria) and 

tanypod midges (Table 4). Macroinvertebrate consumers were trophic generalists that tended to be 

larger than their resources, generating upper triangularity in the web matrices (Fig. 5, 6).  

Drought significantly reduced web size (by 21%, from mean 61.0 ± SE 1.6 to 48.0 ± 1.5, 

ANOVA F1,3 = 28.5, P < 0.05) and the number of feeding links (by 34%, from 376.3 ± 36.2 to 248.0 

± 23.1, ANOVA F1,3 = 21.77, P = 0.019; Fig 7). The taxon richness of basal resources in the web was 

maintained (ANOVA F1,3 = 3.50, P = 0.165), whereas 37% of invertebrate primary consumer taxa 

were eliminated by drought (ANOVA F1,3 = 29.44, P = 0.012), although local extinction was most 

severe among the predators (78% loss of taxa, ANOVA F1,3 = 46.09, P = 0.007; Fig 7). For 

macroinvertebrate consumers, local extinctions were associated strongly with rarity (logistic 

regression, χ2 = 9.398, P = 0.002). Drought eroded food webs from the top-down, reducing 

proportions of predators and primary consumers relative to basal species. The loss of predators 

reduced mean (from 1.54 ± 0.004 to 1.39 ± 0.02, ANOVA F1,3 = 31.58, P = 0.011) and maximum 

(from 2.53 ± 0.05 to 2.16 ± 0.04, ANOVA, F1,3 = 58.33, P = 0.005) prey-averaged trophic level. 

However, other properties of the binary webs were unaffected by drought, specifically linkage 

density, directed connectance, trophic generality (the number of resources per consumer) and 

vulnerability (the number of consumers per resource) (Table 5). Path length distances across the food 
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webs indicated that the majority of taxa pairs were separated by fewer than two feeding links (Fig. 

8A). On average, 19% of taxa pairs interacted directly (i.e. d = 1), 71% of taxa pairs were within two 

feeding links, and 99 % of taxa pairs were within three links of one another, irrespective of 

disturbance treatment. Cumulative degree distributions were well-described by exponential decay 

functions (R2 > 0.98) in control and disturbed webs (Fig 8B). 

 

B. Drought impact on trophic elements 

Among the basal resources, particulate detritus was especially abundant, forming dense patches on 

the surface of stones, but leaf litter was less abundant (Harris, 2006). Benthic algae coated the upper 

surface of stones and in controls, these consisted of encrusting algae, mainly Gongrosira incrustans 

(Chlorophyceae), and epiphytic diatoms (Amphora pediculus, Gomphonema olivaceum and 

Rhoicosphenia abbeviata) (Fig. 4, Table 6). However, dewatering episodes in the drought treatment 

markedly reduced algal densities (by 72%; ANOVA, F1,3 = 26.97, P = 0.014) and skewed the 

taxonomic composition of the assemblage (Table 6). Substratum drying damaged algal crusts (80 % 

reduction; ANOVA, F1,3 = 22.96, P = 0.017) whereas mat-forming diatoms were more resilient to the 

disturbances (2 % reduction; ANOVA, F1,3 = 0.01, P = 0.870; Table 6). Algal mats were a speciose 

group of unicellular and chain-forming diatoms, mainly Melosira varians, Planothidium 

lanceolatum, Navicula menisculus, Navicula lanceolata and Nitzschia perminuta, which formed 

loose, filamentous patches on stones (Fig. 4, Table 6). Nevertheless, the total biomass (mg AFDM 

cm-2) of basal resources on stones remained relatively unchanged in the face of disturbance (ANOVA, 

F1,3 = 7.59, P = 0.07; Fig. 9), in contrast to that of primary consumers and predator, reflecting the 

abundance of detrital particles associated with populations of mat-forming diatoms (Ledger et al., 

2008). 

Consumer abundance in the food webs was not significantly affected by the drought treatment 

(control 9,282 ± 350 animals m-2, disturbed 8,310 ± 567 animals m-2,, ANOVA, F1,3 = 0.89, p = 0.414, 

Fig. 10), but there was a sharp decline in both the mean annual secondary production (by 60 % to 
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3,596 ± 455 mg m-2 yr-1, ANOVA, F1,3 = 12.59, P = 0.038) and standing biomass (by 66% to 938 ± 

112 mg AFDM m-2, ANOVA, F1,3 = 86.05, P = 0.003) of the macroinvertebrate assemblage (Fig. 10, 

Table 7), reflecting turnover in assemblage taxonomic composition and a shift from large to small 

species (see Ledger et al., 2011; 2012; 2013). When primary consumers were classified according to 

their functional roles (i.e. as filter-feeders, collector-gatherers, grazer-scrapers and shredders) (see 

Table 7), it became evident that the impact of the treatment on production varied among functional 

feeding groups (Figure 11, Table 7), with statistically significant reductions in production for 

engulfing predators (by 87%, ANOVA, F1,3 = 16.36, P = 0.027), shredders (by 69%, ANOVA, F1,3 

= 38.07, P = 0.009), filterers (by 60%, ANOVA, F1,3 = 14.69, P = 0.031), and collector-gatherers (by 

57%, ANOVA, F1,3 = 12.35, P = 0.013) but not for grazers (Fig.10A, ANOVA, F1,3 = 4.26, P = 

0.131), and there were similar effects on the biomass of these groups (Fig. 10B). Responses to the 

drought also varied markedly among taxa within functional groups (Table 7). Drought excluded the 

larger predators from the webs (i.e. Erpobdella octoculata, Polycentropus flavomaculatus, Sialis 

lutaria), whereas the much smaller Tanypodinae larvae were more resilient, maintaining production 

in disturbed habitats.  

Contrasting responses were also observed within the collector-gatherers, with production by 

the snails (Potamopyrgus antipodarum) and mayflies (Ephemera danica) being strongly reduced, 

whereas production by other collectors was weakly affected (Tubificidae, Asellus aquaticus, 

chironomids) or increased (Naididae, Tipulidae) (Table 7, Appendix A). Grazer-scraper production 

was dominated by the snail Radix balthica (2,903 ± 969 mg AFDM m-2 yr-1), which was strongly 

reduced by the drought (by 50 %). Other snails (Theodoxus fluviatilis, Valvata sp.) and limpets 

(Ancylus fluviatilis) were eliminated by drought, whereas the small orthoclads were more resilient 

(Table 7, Appendix A). Production of the dominant shredders Gammarus pulex (1291 ± 464 mg 

AFDM m-2 yr-1) and Sericostoma personatum (108 ± 35 mg AFDM m-2 yr-1) was strongly suppressed 

by drought (by 64 % and 99 %, respectively, Table 7). The dominant filterers were reduced (Pisidium 

sp.) or not significantly affected (Hydropsyche siltalai) by the drought treatment (Table 7; Appendix 
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A). On average, semivoltine (< 1 year life cycle per year) and univoltine (1 cycle per year) taxa were 

more vulnerable to drought than multivoltine taxa (> 1 cycle per year; Wilcoxon test, P < 0.05) (Fig. 

12A), and, taxa with large body mass were more susceptible to drought than smaller taxa (Kruskal-

Wallis H = 11.49, P = 0.009) (Fig. 12B). 

 

C.  Quantified food webs 

The majority of macroinvertebrate secondary production in both control and drought-disturbed webs 

was attributable to particulate detritus (cross-treatment mean 89 %), with relatively small 

contributions from leaf litter (3.2 %), algae (4.4 %) and animal prey (3.2 %, Table 8, Fig. 13). Only 

a small proportion of fluxes to primary consumers were transferred to predators (2.2%). Drought 

reduced the percentage of production attributable to animal predation (from 4.6 to 1.7%), as predators 

susceptible to periodic dewatering declined, but the contribution to production of other food types 

was not affected by the treatment (P > 0.05, see Table 8). Biomass fluxes through the food webs 

conformed to an approximately log-normal distribution, with a few strong and many weak fluxes (i.e. 

90 % of biomass flux was channelled through just 5% of links, Fig. 14). The largest flows in all webs 

were from amorphous detritus to primary consumers (85% and 89 % of total fluxes in both control 

and disturbed channels, respectively), reflecting the low assimilation efficiency for this food type, 

with relatively small flows from the higher-quality algae and animal prey (Table 9).  

Ingestion varied among macroinvertebrate functional feeding groups, with greatest fluxes to 

grazers and collector-gatherers and smallest fluxes to predators in both treatments (Table 10). In both 

control and drought disturbed assemblages, ~80% of the flux flowed through just six taxa (Fig. 15, 

Table 11a,b). In controls, the strongest fluxes were to grazing snails Radix balthica (32 % total 

ingestion) and Valvata piscinalis (3%), collector-gathering snails Potamopyrgus antipodarum (25 %) 

and mayflies Ephemera danica (5%), shredding amphipods Gammarus pulex (7%) and filter-feeding 

caddis Hydropsyche sp. (4%, Fig. 15, Table 11a). Drought markedly reduced the total ingestion of 

resources (by 60 %, from mean 98,959 ± 25,451 to 39,792 ± 6,804 mg m-2 yr-1), including amorphous 
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detritus (by mean 58%), leaf detritus (75%), diatoms (60%), green algae (37%), fungi (44%) and 

animal prey (96%) (Table 9). Although the snails Radix and Potamopyrgus remained the dominant 

processers of organic matter in drought treatments, mortality caused by the disturbances strongly 

reduced the ingestion rates of their populations, by 61 % and 80 % respectively, although these 

reduced fluxes were still the greatest fluxes in the disturbed channels. Drought also caused a turnover 

in other dominant fluxes of organic matter in the food webs, with increased ingestion by chironomids 

such as Cryptochironomus sp. (by 109%, ANOVA F1,3 = 12.79, P = 0.037) Microtendipes sp. (by 

41%, ANOVA F1,3 = 11.45, P = 0.043) and Cricotopus sp. (by 106%, ANOVA F1,3 = 7.22, P = 0.043) 

among others, but these compensatory dynamics only partially replaced declining ingestion by 

drought sensitive taxa: i.e., network restructuring did not fully maintain ecosystem functioning (Table 

11a,b). Overall, biomass flux increased through 43% of links under drought, with steep reductions in 

the remaining pathways. Shifts in biomass flux (i.e. faster vs. slower) to consumers were related to 

their body mass (logistic regression, χ2 = 9.808, P = 0.002), with increasing fluxes confined to small 

taxa such as midge larvae, and profound reductions for larger species, including snails, amphipod 

shrimps, caddis and mayfly larvae (Fig. 16). This pronounced shift of production downwards through 

the size spectrum conserved the relative distribution of fluxes within the webs (Fig. 14; equivalent 

interaction evenness among treatments, Table 12). Other, quantified metrics of network structure (i.e. 

connectance, linkage density, trophic generality and vulnerability) were similarly unaffected by the 

drought treatment (Table 12). 
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V. DISCUSSION 

Climate change is expected to increase the frequency and intensity of extreme climatic events, 

including extreme droughts, with potentially severe implications for ecosystems across the globe 

(IPCC, 2007), and our data provide some of the first experimental evidence to support these 

predictions from field-based stream mesocosms. Whilst research on hydrologic drought has 

intensified in recent years, the majority of studies focus on responses of key assemblages, especially 

macroinvertebrates, whereas knowledge of impacts on ecosystem functioning and higher levels of 

biological organisation has been slower to emerge (but see e.g. Dewson et al., 2007b; Walters and 

Post, 1998; Chadwick and Huryn, 2007). Experiments have been advocated as useful tools to explore 

the impact of unpredictable extreme events in natural systems (Jentsch et al., 2007), but research on 

drought and low flows in streams has tended to be phenomenological (but see e.g. Dewson et al., 

2007b; Walters and Post, 2011) and based on field surveys that are often confounded by 

environmental gradients or which lack the pre-impact data necessary to demonstrate causation (James 

et al., 2008).  

In the present study, we simulated hydrologic drought in a series of stream mesocosms over 

two years to capture intra- and inter-generational responses to habitat loss caused by periodic 

dewatering of benthic habitat (see Ledger et al., 2008, 2011, 2012, 2013). Consistent with our first 

hypothesis, our results indicate that intensified drought could lead to heavy local extinctions, 

declining ecosystem productivity, and altered food web structure and functioning (Fig. 7, 13). On a 

larger, landscape scale this has implications for the supply of ecosystem goods and services (reviewed 

by Raffaelli and White, 2013): if we consider the different treatments as ‘habitat patches’ in a river 

basin exposed to drought, the impaired flow of energy to the higher trophic levels could have severe 

consequences for the socioeconomically and culturally valuable fish populations at the top of the food 

webs. 

 

A. Primary Producers 
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Disturbance reduced the size of the food webs (see Fig. 3, 13) and, whilst web extinctions were 

confined to the consumers, there was nevertheless both a marked decline in the abundance of algal 

primary producers, and a clear shift in dominance from encrusting green algae to filamentous diatoms 

within the assemblage, as dewatering episodes caused disturbances that reversed algal succession 

(Fig. 4, Table 6). In a related research (Ledger et al., 2006, 2008), we observed that under perennial 

flow, mat-forming diatoms rapidly colonised and exploited empty space to form filamentous mats, 

but were subsequently displaced by relatively slow-growing but longer-lived colonies of Gongrosira 

incrustans and associated epiphytes, which formed hard, calcified crusts that covered stone surfaces. 

Under drought, dewatering bleached the crusts, which disintegrated, whereas mat diatoms were more 

resilient (Ledger et al., 2008). Diatoms have r-selected traits, including high reproductive output, 

short generation times and rapid recruitment, which enable efficient recovery from disturbances such 

as substratum drying. These patch dynamics may reveal trade-offs in species’ ability to colonise and 

compete among the benthic algae, a condition of several key models of community structure (e.g. 

Petraitis et al., 1989; Tilman, 1990) in which disturbances promote the persistence of species by 

preventing the exclusion of opportunists by competitive dominants (Connell, 1978; Sousa, 1979).  

Shifts in the presence and abundance of benthic algae may have both direct and indirect effects 

on consumer populations in drought treatments (Ledger et al., 2008). Although strong reductions in 

algal abundances in the webs (by 71%) potentially triggered food limitation in algivorous consumer 

populations, we speculate this was not the case since losses were steepest for grazer-resistant crustose 

algae uncommon in consumer diets, whereas dense mats of diatoms common in the diet (e.g. Navicula 

spp) remained abundant in the drought treatments. Nevertheless, a shift from algal crusts to filaments 

may have shaped macroinvertebrate assemblages indirectly, by modifying benthic habitat 

architecture. We have shown in a related study that filamentous diatom mats provide habitat for large 

populations of midge larvae (Ledger et al., 2006) and it could be that their proliferation under drought 

is partly driven by the resilience of key producers to drought. 
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B. Qualitative webs, size structure and species traits 

Drought triggered losses of consumer species and links from the food webs, with numerically rare 

and/or larger taxa, and those with long life-cycles, being especially vulnerable. Large size and rarity 

are often correlated with one another and associated with increased extinction risk (Raffaelli, 2004). 

In a related study exploring drought impacts on size structure in the webs (Woodward et al., 2012) 

we also demonstrated a second order rarity-for-size effect in which species below the general MN-

scaling line (i.e. the log (N) versus log (M) regression for all the trophically connected species in a 

food web) were also vulnerable to extinction, being already rarer in the absence of disturbance than 

expected for their size. Such species may already be in sub-optimal conditions, with drought stress 

sufficient to exclude then from disturbed habitats. Predatory taxa at the top of the food web were 

vulnerable to drought treatments, particularly those of large size with limited access to refugia such 

as caddis, alderflies and leeches, which reduced food chain length. However, these and other losses 

from the webs only slightly steepened the MN slope, and the extent to which this reflects a weakening 

of top-down effects in the webs is unclear (Woodward et al., 2012).  Our results are consistent with 

predictions that disturbance results in the loss of upper trophic levels (e.g. Menge and Sutherland, 

1976), however, empirical tests of disturbance impacts on food chain length in streams have yielded 

contrasting results, reflecting different approaches, methodologies and focal disturbance regimes. 

Flood disturbances have reportedly increased (Marks et al., 2000), decreased (Parker and Huryn, 

2006), or not affected (Townsend et al., 1998) food chain length in streams. Drought disturbance 

studies have been slower to emerge, revealing reductions in food chain length where dewatering 

occurs (Sabo et al., 2010; Ledger et al., 2013), or no change where flow reduction is less severe 

(Walters and Post, 2008).  

Drought stripped out species and links, particularly from the top of the webs, but contrary to 

our second hypothesis several network properties, including connectance, were unaltered by the 

treatment. Connectance reflects the extent of trophic generalism or specialism of consumers in the 

webs, which in turn reflects their foraging behaviour and the energetic value and abundance of 
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resources (Warren, 1994; Beckerman et al., 2006). Consistent with the specialisation-disturbance (S-

D) hypothesis (Vazquez and Simberloff, 2002) we expected that disturbance would favour trophic 

generalists over specialists, with specialists on average more susceptible to losses of specific 

resources, but we found no evidence to support this. The S-D hypothesis assumes disturbance acts 

indirectly, by changing resource availability, rather than directly, through increased consumer 

mortality (Vazquez and Simberloff, 2002), and thus our results suggest the latter may be more 

important than the former in our experiment: drought caused physiological stress leading to high 

consumer mortality (Harris, 2006), with large species most strongly affected, probably reflecting their 

limited access to spatial refugia (Ledger et al., 2013) and relatively high metabolic demands (Brown 

et al., 2004), and food supply and diet remained stable in the face of the drought.  

Despite extinctions, we found clear evidence for compensatory dynamics within the 

remaining consumers, with abundances of several taxa increasing to offset losses of competitors 

and/or predators, thereby precluding changes in combined consumer densities in drought treatments. 

For example, among the primary consumers, recurrent dewatering produced irruptions in the 

abundance of r-selected chironomid midges and oligochaete worms and declines in more K-selected 

amphipod shrimps, caddis and mayflies, among others (Ledger et al., 2012). As with the diatoms 

among the primary producers, the primary consumer chironomids and oligochaetes also have r-

selected traits that foster rapid exploitation of space and resources freed by disturbance, including 

high fecundity small size and short generation times (e.g. Brinkhurst and Jamieson, 1971; Townsend 

and Hildrew, 1994). Such marked shifts in assemblage structure and trait composition may yield 

greater average resistance and/or resilience to future disturbances (Ives and Cardinale, 2004). 

Nevertheless, assemblage turnover could not compensate for heavy losses of consumer biomass 

stocks or production, as populations of small species replaced larger species in the food webs, and on 

average production was more than halved (57% reduction) by the drought (Ledger et al., 2011).  

Cumulative degree distributions for mesocosm webs were characterized by exponential decay 

functions both in control and drought treatments (i.e. most taxa were connected to only a small 
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number of others). As these properties are commensurate with those of natural food webs (Brown et 

al., 2011), the mesocosm webs can be considered to provide realistic insights into responses to 

perturbations similar to those observed in ‘natural’ systems (e.g. Montoya et al., 2009). Exponential 

degree distributions have been reported from other systems (Camacho et al., 2002) but the finding 

here that this property was robust in the face of perturbation is novel. It has been suggested previously 

that skewed link distributions confer structural robustness to food webs (Dunne and Williams, 2009). 

This robustness was evident in other structural measures (e.g. connectance, degree distribution, links 

per species) and likely reflects a lack of cascading secondary extinctions in these webs because the 

most highly connected ‘keystone’ species were not lost (Sole and Montoya, 2001).  

Characteristic path length (D) data remain scarce, particularly for freshwater ecosystems, but 

the ‘two degrees of separation’ small world property has been proposed observed consistently in most 

natural food webs (Williams et al., 2002). The eight new estimates for our mesocosm webs were not 

markedly different from data compiled for other terrestrial and aquatic ecosystems (see Brown et al, 

2011). More notably, our experimental manipulation of food webs has further illustrated further the 

robustness of this structural property to perturbation. Most taxa were within either two (71% taxa) or 

three (99% taxa) links of one other in both control and drought webs. The prevalence of short food 

chains has previously been considered important for the transmission of trophic cascades and other 

indirect effects through ecological networks (Berlow, 1999; Montoya et al., 2009) but these effects 

were not observed in our study. 

 

C. Secondary production and quantified food webs 

The secondary production of consumers was combined with dietary data to quantify the flow of 

organic matter from resource to consumer (Benke and Wallace, 1997; Benke, 2012). The quantified 

food webs revealed that macroinvertebrate production was based largely on amorphous detritus, with 

only small contributions from algal primary producers and other resources. These data do not 

necessarily indicate that allochthonous food sources are most important to consumers, however, 
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because unknown proportions of amorphous material may be derived from autochthonous sources, 

such as the polysaccharide matrix of epilithic biofilms (Benke and Wallace, 1997). We identified and 

counted algal cells in the guts of consumers but since we could not differentiate biofilm 

polysaccharide matrix from other detrital particles (e.g. fine particles derived from leaves and soil) 

using our methods, our estimate of the algal contribution to secondary production are undoubtedly 

conservative.  

The percentage of production derived from animal prey was low (< 5%) in our food webs 

(Table 8), with macroinvertebrate predators accounting for < 1% of total ingestion (see Table 9). 

Engulfing predators consumed only ~ 7% of secondary production in controls and <1% in disturbed 

channels. We must caution that production and ingestion by predators is underestimated in our webs, 

due to the exclusion of suctorial predators (see methods), which accounted for much (~70%) of 

predator production (see Ledger et al., 2011). Scaling ingestion to account for suctorial ingestion, we 

estimate that ~ 28% of production was consumed by the whole predator assemblage in controls, 

considerably less than was observed by Hall et al. (2000) in forested first-order streams in North 

Carolina, where 42-88% of all invertebrate secondary production was consumed by predators. The 

relatively weak impact of  engulfing predators on prey may be related to size disparities between the 

two groups, particularly in our controls where some of the most productive primary consumers were 

apparently too large (max. body mass 42 mg) for the gape-limited predators (max. body mass 32 mg) 

to handle. These disparities may to some degree decouple production of primary and secondary 

consumers in our webs, thereby lessening the potential for cascading effects of predator losses in 

drought treatments. 

 Drought strongly suppressed the processing of organic matter by consumers, but resistance 

and resilience among some core taxa, together with compensatory shifts in production, conserved the 

approximately log-normal distribution of fluxes within the disturbed food webs (Fig. 14; Table 13; 

Ledger et al., 2013). Ingestion of organic matter varied markedly among the consumers, with a few 

strong and many weak fluxes within each web, consistent with observations by Hall et al. (2000) in 



30 
 

first-order forest streams. The greatest flows through the food webs were from resources with low 

assimilation efficiencies (i.e. detritus) to highly productive consumers, most notably from amorphous 

detritus to snails (Radix and Potamopyrgus). Snails are key processors of organic matter in many 

aquatic systems and their persistence through periods of intermittency sustained, albeit at a reduced 

rate, some of the strongest fluxes thorough the food webs.  Many fluxes to small species, especially 

chironomids, increased, but ingestion by these groups neither compensated for, nor exceeded, 

declines in productive larger species (e.g. mayflies and caddis). Thus, we did not observe the 

potentially destabilising concentration of production and fluxes into fewer species that is predicted 

by theory (Bascompte et al., 2006; Sabatino et al., 2010) and has been observed elsewhere (Tylianakis 

et al., 2007).   

Our repeated disturbances had especially strong impacts on those taxa that were rare, large 

and/or high in the web, because their populations are typically slow to rebound and prone to stochastic 

local extinctions. We now have some generic species traits we can use to predict likely changes in 

the composition and abundance of the food web nodes, as well as other more species-specific 

orthogonal traits (e.g., ability to air-breathe). In addition to these fixed autecological traits, there is 

also compelling evidence that synecological traits or attributes that emerge at the system level (e.g., 

rarity-at-size and trophic height) that are associated with vulnerability to extreme events. When we 

consider in more detail what may be occurring in the food web, we would expect the structure and 

dynamic stability to fluctuate in response to drought.  In particular, during the recovery phase one 

hypothesis is that there may be a time lag or hysteresis in its trajectory, as community closure or 

ecological inertia may retard the ability of K-selected species to reassert their dominance. Priority or 

legacy effects become important here, as demonstrated by Ledger et al.  (2006). Analogous arguments 

have been put forward for the seemingly tardy and patchy biological recovery of previously acidified 

systems, which contrast with their much smoother, progressive and more monotonic chemical 

recovery (Layer et al., 2010, 2011).  This highlights how it is critical to consider the food web level 
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of organisation rather than simply its component parts, if we are to understand and predict 

multispecies systems’ responses to, and recovery from, environmental stressors. 

Within the food web, encounter rates will increase when consumers and resources are 

concentrated into shrinking refugia patches, and eventually, in extreme cases, handling time might 

conceivably become limiting, at least temporarily. This could alter network structure, as connectance 

is driven by the balance between handling time and encounter or attack rates (Petchey et al 2010). 

Given that most predators in freshwaters appear to feed far below their potential capacity this seems 

unlikely: one prediction, though, is that both interaction frequency and connectance increase, unless 

and until the predators themselves are exposed to sufficient physiological stress that they suffer local 

extinction. This winnowing effect of species loss could help explain the homogenisation of several 

aspects of network structure and various mass-abundance scaling relationships for food web patterns, 

from pairwise links, to food chains, and ultimately to the constraint space of the entire trophic 

network.  A key question that emerges from this study is: how general (and hence predictable) are 

such responses to drought in other aquatic and terrestrial systems? 
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Figure 1. Schematic representation (a) and photographic image (b) of the stream mesocosm facility 

at the Freshwater Biological Association River Laboratory, Dorset, U.K. Four blocks of three stream 

mesocosms (each channel 12 m length x 0.3 m width) were fed water through pipes (6 m length) from 

the parent stream. Water flow (direction indicated by arrows) in to each mesocosm was controlled by 

a valve. Each block contained a control channel and a disturbed channel, with the third channel in 

each block used in allied research not reported here. 
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 Figure 2. Temperature profiles of mesocosm replicates subject to continuous (a-d) and intermittent (e-

h) flow.  
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Figure 3a. Food webs from the manipulative field experiment (block 1 and 2, see Fig. 3b for block 3 and 
4), in controls (permanent flow) and drought-disturbed (intermittent drying) channels. The webs are 
ordered vertically by trophic level, from basal resources to apex predators. Open circles denote species 
that were present in both webs, open diamonds denotes species in the drought treatment but not in the 
control, and open triangles denotes species that were in the control but were lost from the webs exposed 
to drought. Numbers correspond to species identifiers (see Table 3 and 4 for codes and taxonomic 
identities). 
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Figure 3b. Food webs from the manipulative field experiment (block 3 and 4, see Fig. 3a for block 1 and 
2), in controls (permanent flow) and drought-disturbed (intermittent drying) channels. The webs are 
ordered vertically by trophic level, from basal resources to apex predators. Open circles denote species 
that were present in both webs, open diamonds denotes species in the drought treatment but not in the 
control, and open triangles denotes species that were in the control but were lost from the webs exposed 
to drought. Numbers correspond to species identifiers (see Table 3 and 4 for codes and taxonomic 
identities). 

  



48 
 

Figure 4. Physiognomy of algal patch types in stream mesocosms. Diatom crusts (a) were mainly 

Gongrosira incrustans and mats (b) were dominated by Melosira varians and. Bar = 10 mm. 

(a) Algal crust  

 

(b) Algal mat 
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Figure 5. Food webs in undisturbed controls (replicate C1) incorporating abundance and body size data. 
The central matrix indicates an observed feeding interaction between a consumer (column) and a resource 
(row) with a black dot, and thus, each column reflects the diet of a consumer taxon. Consumer columns 
and resource rows are ordered by body size, with the smallest in the top left and the largest in the bottom 
right. Thus feeding interactions in which a consumer is larger than its prey occur in the triangle above 
the diagonal dashed line. Detrital resources (i.e. amorphous detritus and plant fragments), which lack 
body size, were positioned arbitrarily in the two uppermost rows of the diet matrix. 
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Figure 6. Food webs in drought-disturbed mesocosms (replicate D1) incorporating abundance and body 
size data. The central matrix indicates an observed feeding interaction between a consumer (column) 
and a resource (row) with a black dot, and thus, each column reflects the diet of a consumer taxon. 
Consumer columns and resource rows are ordered by body size, with the smallest in the top left and the 
largest in the bottom right. Thus feeding interactions in which a consumer is larger than its prey occur 
in the triangle above the diagonal dashed line. Detrital resources (i.e. amorphous detritus and plant 
fragments), which lack body size, were positioned arbitrarily in the two uppermost rows of the diet 
matrix. 
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Figure 7. Mean (± 1 SE) taxon richness of basal resources, primary consumers and predators in drought 

and control food webs. Trophic group, drought treatment and their interaction significantly affect taxon 

richness (ANOVA, n=24, P< 0.0001 in all cases). Asterisks above individual trophic groups denote 

significant differences between treatments (ANOVA, n=8, P<0.05).  
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Figure 8. (a) Characteristic path lengths (d) and (b) degree distributions of control and drought-impacted 

food webs. 
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Figure 9. Mean (± 1 SE) biomass of basal resources, primary consumers and predators in drought and 

control food webs. Trophic group, drought treatment and their interaction significantly affect taxon 

richness (ANOVA, n=24, P< 0.0001 in all cases). Asterisks above individual trophic groups denote 

significant differences between treatments (ANOVA, n=8, P<0.05).  
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Figure 10. Mean (± 1 SE) annual secondary production (a), biomass (b) and numerical abundance (c) for 

all macroinvertebrates, and key functional feeding groups, in drought treatments and controls. 
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Figure 11. Distribution of high-frequency (approximately monthly) dewatering effects on secondary 

production of macroinvertebrate taxa in six functional feeding groups (figure redrawn after Ledger et 

al., 2011). Taxa were classified according to their statistically significant positive (+) negative (-) or 

lack of (0) response to HF drought, as revealed by one-sample t-tests.  
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Figure 12. Mean (± 1 SE) effect of high-frequency drought on secondary production of 

macroinvertebrate taxa in relation to a) the potential number of life-cycles per year and b) mean 

individual body mass (figure redrawn after Ledger et al., 2011). 
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Figure 13. Quantitative food webs in replicate control (C1-C4) and drought (D1-D4) treatments, redrawn from 
Ledger et al. 2013. For each web, lower bars are basal resources, middle bars are primary consumers and top bars 
are predators. For each consumer, the height and width of the bars is proportional to mean annual secondary 
production and biomass flux from resources (total inflows), respectively. For basal species, the relative width of 
bars on the x-axis is proportional to total consumption by invertebrates (total outflows from each resource to 
consumers), and for this trophic level production (y-axis) was not quantified. The black triangles that link trophic 
levels illustrate the relative contribution of resource flows to the production of each consumer, summing to the total 
inflows. Numbers refer to consumer identity and letters distinguish categories of basal resource, omitting rare 
species (<1% total production). Flows from individual algal taxa are grouped for display only. See Tables 3 and 4 
for full lists of resource and consumer taxa, respectively. 
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Fig. 14. Biomass fluxes from resources to consumers in control and drought-disturbed food webs as a 
mean (+ 1 SE) frequency distribution for all replicate webs. 
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Fig. 15. Biomass fluxes from resources to core consumers in controls (a) and drought-disturbed 
treatments (b). The thickness of the arrows is proportional to flux magnitude (mg m-2 yr-1). 
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Fig. 16. Mean percentage change in biomass flux to consumers for the strongest pathways (> 1 g m-2 
yr-1). Taxa are ranked from left to right in order of decreasing mean body mass (mg). 
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Table 1. Physicochemistry (outside dewatering periods) demonstrating mesocosm replicability among controls (C1-C4) and 
drought impacted (D1-D4) channels. Determinands were measured approximately monthly, excepting nitrate and soluble reactive 
phosphorus (SRP) which were both sampled once that the end of the experiment. 

  
Control Drought 

  C1 C2 C3 C4 D1 D2 D3 D4 
          
Conductivity (μS/cm) Mean 458.9 457.6 460.2 462.1 459.0 460.4 460.6 461.0 
 Range 179.0 181.0 176.0 175.0 177.0 179.0 177.0 179.0 
          
Discharge (L/s) Mean 4.0 4.8 4.3 4.9 4.9 4.3 4.8 4.3 
 Range 4.3 6.4 5.9 5.5 8.5 7.0 5.9 4.7 
          
pH Mean 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 
 Range 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 
          
Water temperature °C Mean 13.2 13.2 13.2 13.3 13.2 13.2 13.2 13.2 
 Range 12.0 12.0 12.1 12.0 12.0 12.0 12.0 12.1 
          
Nitrate (mg/L) Endpoint 6.8 6.9 6.9 7.0 6.9 7.0 6.9 7.0 
          
SRP (μg/L) Endpoint 59.2 54.3 55.5 59.2 58.0 54.8 56.0 54.1 
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Table 2. Descriptors of flow and thermal regimes in undisturbed control (C1-C4) and drought-disturbed (D1-D4) stream 
mesocosms. Temperature profiles in drought-disturbed channels include heating/cooling at the substratum surface during 
dewatering episodes. 

  Control    Drought 
  C1 C2 C3 C4 D1 D2 D3 D4 
          
Flow (L/s) Mean 4.0 4.8 4.4 4.9 2.4 2.1 2.4 2.1 
 Maximum 6.0 8.1 7.5 7.2 6.3 6.0 6.7 4.7 
 Minimum 1.7 1.7 1.7 1.7 0 0 0 0 
 Range 4.3 6.4 5.9 5.5 6.3 6.0 6.7 4.7 
          
          
Temperature (°C)  Mean 12.1 12.2 12.0 12.1 11.0 11.6 11.0 11.3 
 Maximum 21.9 22.1 21.7 21.9 30.0 33.5 35.7 34.0 
 Minimum 3.1 3.0 2.8 2.6 -2.2 -2.7 -1.1 0.4 
 Range 18.8 19.1 18.9 19.3 32.2 36.2 36.8 33.6 
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Table 3. List of basal resources in stream channel food webs.  Numerical node identifiers (Fig. 3) 

are given in brackets. 

Basal resources: detritus and fungi 
  

Amorphous detritus (FPOM) [1] 
Fungal mycelia [4] 
Fungal spores [3] 
Plant fragments (CPOM) [2] 

 
Basal resources: primary producers 

 
Algal cysts [7] 
Amphora ovalis (Kützing) Kützing [8] 
Amphora pediculus (Kützing) Grunow in Schmidt [9] 
Chroococcus minor (Kützing) Nägeli [10] 
Cocconeis placentula Ehrenberg [13] 
Cymatopleura solea (Brébisson & Godey) W. Smith [14] 
Cymbella lanceolata (Ehrenberg) Kirchner [11] 
Diatoma vulgare Bory [15] 
Encyonema minutum (Hilse in Rabenhorst) Mann [12] 
Fragilaria vaucheriae (Kützing) Petersen [18] 
Gomphonema olivaceum (Hornemann) Brébisson [20] 
Gongrosira incrustans Reinsch [19] 
Gyrosigma sp. [21] 
Melosira varians Agardh [22] 
Navicula gregaria Donkin [24] 
Navicula lanceolata (Agardh) Ehrenberg [25] 
Navicula menisculus Schumann [26] 
Navicula tripunctata (O.F. Müller) Bory [28] 
Nitzschia dissipata (Kützing) Grunow [23] 
Nitzschia perminuta (Grunow) M. Peragallo [27] 
Planothidium lanceolatum (Bréb. ex Kützing) Round & Bukhtiyarova [6] 
Psammothidium lauenburgianum (Hustedt) Bukhtiyarova & Round [5]  
Rhoicosphenia abbreviate (Agardh) Lange-Bertalot [29] 
Spirulina sp. [31] 
Staurosira elliptica (Schumann) Williams & Round [16] 
Staurosirella leptostauron (Ehrenberg) Williams & Round [17] 
Surirella brebissonii Krammer & Lange-Bertalot [32] 
Surirella minuta Brébisson in Kützing [30] 
Synedra ulna (Nitzsch) Ehrenberg [33] 
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Table 4. List of consumers in stream channel food webs.  Numerical node identifiers (Fig. 3) are 

given in brackets. 

Consumers: macroinvertebrates 
 
Ancylus fluviatilis (Müller) [52] 
Asellus aquaticus (L.) [34] 

 Athripsodes spp. [53] 
Baetidae [54] 
Brachycentrus subnubilus Curtis [55] 
Brychius elevatus (Panzer) [56] 
Cricotopus sp. [57] 
Cryptochironomus sp. [58] 
Eiseniella tetraedra [35] 
Elmis aenea (Müller) [36] 
Ephemera danica Müller [37] 
Erpobdella octoculata (L.) [67] 
Gammarus pulex (L.) [38] 

 Haliplus lineatocollis (Marsham) [68] 
Heterotrissocladius sp. [39] 

 Hydropsyche  spp. [69] 
Leuctra geniculata [40] 

 Limnius volckmari (Panzer) [41] 
Macropelopia sp. [70] 
Microtendipes sp. [60]   
Naididae [42] 
Ostracoda [43] 

 Oulimnius tuberculatus (Müller) [44] 
Pentaneura sp. [71] 

 Pisidium sp. [45] 
Platambus maculatus (L.) [72] 
Polycentropus flavomaculatus (Pictet) [73] 
Polypedilum sp. [46] 
Potamopyrgus antipodarum (J.E.Gray) [61] 

 Procladius sp. [62] 
Prodiamesa olivacea [47] 
Radix balthica (L.) [59] 
Sericostoma personatum (Spence) [48] 
Sialis lutaria (L.) [74] 
Simuliidae [49] 

  Synorthocladius ap. [63] 
  Theodoxus fluviatilis (L.) [64] 
 Tinodes waeneri (L.) [65] 

Tipula montium Egger [50] 
Tubificidae [51] 

  Valvata piscinalis (Müller) [66] 
 

  



65 
 

Table 5. Qualitative (binary) food web metrics for drought and control stream food webs. Metrics 
were linkage density (L/S) where L is number of consumer-resource links and S is the number of 
species in the web, directed connectance (L/S2), generality (L/Sconsumers), vulnerability (L/Sresources). 
ANOVA tested for the effect of drought (below) and block (P >0.05, not shown).  

 Control  Drought ANOVA 

Metric Mean SE Mean SE F1,3 P 

Linkage density 5.96 0.53 4.94 0.38 2.20 0.212 
Directed connectance 0.09 0.01 0.10 0.01 0.17 0.706 
Generality 11.68 1.11 12.84 0.55 1.42 0.390 
Vulnerability 6.63 0.63 5.26 0.40 3.37 0.164 
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Table 6. Mean densities (103 cells cm-2) of benthic algae in mesocosm food webs. Algae formed 
hard calcite-impregnated crusts or loosely-attached filamentous mats on the surfaces of stones.  

   
 Control  Drought  
 Mean SE Mean SE 
     
Crust flora     
Gongrosira incrustans   7610.8 1258.1 1364.4 112.4 
Amphora pediculus 469 45 213 33 
Gomphonema olivaceum 58.2 4.3 43.3 13.6 
Navicula tripunctata 13.9 2.4 12.0 33.6 
Rhoicosphenia abbreviata 32.0 1.5 12.4 4.1 
Total 8183.7 1310.9 1645.2 196.8 
     
Mat flora     
Amphora ovalis 5.9 1.4 2.7 0.7 
Cocconeis placentula 65.3 9.1 44.3 16.3 
Cymatopleura solea 0.9 0.4 1.1 0.2 
Cymbella lanceolata 0.2 0.0 0.5 0.0 
Diatoma vulgaris 7.7 2.5 5.7 1.5 
Encyonema minutum  2.2 0.7 2.1 0.4 
Fragilaria vaucheriae 27.1 15.6 16.8 10.7 
Gyrosigma sp. 1.9 0.8 3.0 4.4 
Melosira varians 193.8 72.2 175.5 74.5 
Navicula gregaria 4.9 0.8 7.7 0.9 
Navicula lanceolata 82.6 17.8 102.5 33.6 
Navicula menisculus 157.4 12.8 206.2 29.4 
Nitzschia dissipata 65.3 11.4 50.0 2.8 
Nitzschia perminuta 10.8 2.6 22.0 5.9 
Planothidium lanceolatum  221.0 23.3 181.6 16.9 
Psammothidium lauenburgianum 21.5 5.4 16.5 2.4 
Staurosira elliptica 4.0 0.9 10.3 2.4 
Staurosirella leptostauron 2.8 0.7 3.4 1.4 
Surirella brebissonii 1.1 0.4 0.6 0.2 
Surirella minuta 7.7 2.3 13.7 5.9 
Synedra ulna 8.6 2.1 6.6 4.5 
Spirulina sp. 1.1 0.1 1.1 0.0 
Total 892.6 183.1 872.6 215.0 
     
Grand total 9076.3 1494.0 2517.8 411.8 
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Table 7. Biomass, secondary production and numerical abundance of macroinvertebrates in 
control and drought disturbed food webs. B mean annual biomass (mg AFDM m-2), P mean 
annual secondary production (mg AFDM m-2 year-1) and N mean abundance (numbers m-2). B - 
Bivalvia, C - Coleoptera, D - Diptera, E - Ephemeroptera, G - Gastropoda, H - Hirudinea, He - 
Hemiptera, M - Megaloptera, O - Oligochaeta, T - Trichoptera, Cr - Crustacea, Od - Odonata, P 
- Plecoptera. Taxa within functional feeding groups (totals in bold) are ranked alphabetically. “-
“ denotes a taxon absent in each replicate web in a treatment. 

Taxa Contro
l   Droug

ht  
 

 

 B P N B P N 

Predators 271 271 431 2 34 100 
Erpobdella octoculata  (H) 215 143 45 - - - 
Macropelopia sp. (D) 3 18 124 2 34 100 
Pentaneura sp. (D) <1 4 28 - - - 
Platambus maculatus (C) 10 6 17 - - - 
Polycentropus 
flavomaculatus (T) 19 74 196 - - - 

Procladius sp. (D) <1 4 25 - - - 
Sialis lutaria (M) 23 23 10 - - - 
Filter feeders 461 1183 456 138 474 95 
Bithynia sp. (G) 2 9 2 - - - 
Brachycentrus subnubilus 
(T) 1 2 4 2 3 10 

Hydropsyche siltalai (T) 448 1120 67 135 461 37 
Pisidium sp. (B) 9 46 360 2 7 64 
Simulium sp. (D) <1 6 35 <1 4 22 
Collector-gatherers 825 2886 4633 295 1226 4893 
Asellus aquaticus (Cr)  30 89 116 9 25 43 
Athripsodes sp. (T) 1 3 11 - - - 
Brychius elevatus (C) 10 17 21 2 2 4 
Cryptochironomus sp. (D) 5 58 140 10 115 340 
Eiseniella tetraedra (O) - - - 2 3 6 
Elmis aenea (C) 1 3 33 - - - 
Ephemera danica (E) 239 380 93 13 7 5 
Haliplus lineatocollis (C) 54 225 67 14 59 20 
Leuctra geniculata (P) 3 10 36 - - - 
Limnius volckmari (C) 2 4 77 1 2 6 
Microtendipes sp. (D) 17 195 459 22 268 796 
Naididae (O) 6 21 976 10 39 2035 
Ostracoda  <1 <1 371 <1 <1 49 
Oulimnius sp. (C) 5 22 133 1 2 24 
Polypedilum sp. (D) 3 32 79 2 27 74 
Potamopyrgus 
antipodarum (G) 403 1631 562 128 414 127 

Prodiamesinae (D) <1 3 39 <1 3 42 
Tipula (Yamatotipula) 
montium (D) 29 91 3 63 153 42 

Tubificidae (O) 17 104 1844 17 105 1506 
Grazer-scrapers 948 3359 2214 396 1736 2687 
Ancylus fluviatilis (G) 25 60 43 - - - 
Baetis sp. (E) 7 22 115 7 20 115 
Cricotopus sp. (D) 6 73 658 8 106 995 
Heterotrissocladius sp. (D) 6 74 659 8 110 1029 
Radix balthica (G) 744 2903 363 368 1449 151 
Synorthocladius sp.(D) 2 28 242 3 49 413 
Theodoxus fluviatilis (G)  22 22 4 - - - 
Tinodes waeneri (T) 4 25 149 1 1 14 
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Valvata sp. (G) 132 154 63 - - - 
Shredders 277 1398 1178 107 433 408 
Gammarus pulex (Cr)  248 1291 1165 107 432 406 
Sericostoma personatum 
(T) 29 108 17 1 1 2 

       
Total /Mean 2783 9098 9282 938 3904 8360 
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Table 8. Percentage of mean annual secondary production attributed to each resource type (Bi). ANOVA 
tested for the effect of treatment (below) and block (P >0.05, results not shown). 

 Control  Drought  ANOVA  
 Mean SE Mean SE F1,3 P 
Amorphous 
detritus 87.3 0.8 90.4 0.5 9.41 0.055 

Leaf detritus 3.3 0.4 3.0 0.5 1.94 0.258 
Diatoms 3.3 0.7 3.4 0.4 0.01 0.948 
Green algae 0.8 0.3 0.6 0.2 0.30 0.624 
Cyanobacteria 0.3 0.1 0.4 0.1 1.17 0.358 
Fungi 0.3 0.1 0.4 0.1 0.71 0.460 
Animal 4.6 1.1 1.7 0.3 9.77 0.049 
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Table 9. Total ingestion of each food type (mg AFDM m-2 yr-1) and ANOVA results testing the 
effect of treatment. 

 Control  Drought  ANOVA  
 Mean SE Mean SE F1,3 P 
Amorphous detritus 84386 22480 35515 5783 26.68 0.002 
Leaf detritus 10381 2718 2603 586 21.81 0.003 
Diatoms 2487 553 1009 216 34.63 0.001 
Green algae 862 324 541 308 9.83 0.020 
Fungi 170 55 96 55 11.91 0.014 
Animal 673 231 28 10 9.18 0.032 
Total 98959 25451 39792 6804 16.39 0.004 
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Table 10. Mean annual secondary production and ingestion of resources by consumers for key functional feeding groups 

 Control Drought 
 Predator Filterer Collectors Grazers Shredders Total Predator Filterer Collectors Grazers Shredders Total 

Production 271 1183 2886 3359 1398 9098 45 474 1028 1614 433 3596 

             
Ingestion:             
Amorphous 
detritus 1774 2701 35434 38347 6131 84386 316 789 12572 18292 3546 35515 
Leaf detritus 103 1632 3896 2071 2679 10381 10 193 796 851 753 2603 
Diatoms 22 336 416 1513 198 2487 3 53 328 482 143 1009 
Green algae 8 9 144 613 88 862 9 10 142 328 52 541 
Fungi 1 2 38 91 38 170 <1 2 18 57 18 96 
Animal 671 <1 <1 0 2 673 28 0 0 0 0 28 
             
Total  2578 4680 39929 42635 9136 98959 366 1048 13855 20011 4512 39792 
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Table. 11a. Ingestion (mean mg m-2 yr-1) by core taxa in undisturbed control mesocosms.  

 

 

  

Taxon Amorphous 
detritus 

Leaf detritus Diatoms Green algae Fungi Total 
ingestion 

% total web 
ingestion 

        
Radix balthica 32107 1754 1255 365 81 35562 36 
Potamopyrgus antipodarum 21376 2720 252 60 0 24409 25 
Gammarus pulex 5123 1336 100 2 <1 6562 7 
Ephemera danica 4463 715 42 1 <1 5221 5 
Hydropsyche sp. 1949 1610 323 8 4 3894 4 
Valvata piscinalis 2335 131 158 0 0 2624 3 
        
Total 67353 8267 2131 436 85 78271 79 
        



73 
 

Table 11b. Ingestion (mean mg m-2 yr-1) by core taxa in drought-disturbed mesocosms.  

 

 

 

Taxon Amorphous 
detritus 

Leaf detritus Diatoms Green algae Fungi Total 
ingestion 

% total web 
ingestion 

        
Radix balthica 12813 714 301 95 41 13965 35 
Potamopyrgus antipodarum 4342 365 133 76 9 4924 12 
Gammarus pulex 3357 604 107 0 16 4084 10 
Cryptochironomus sp. 3387 151 10 <1 1 3549 9 
Microtendipes sp. 3250 142 132 0 4 3527 9 
Cricotopus sp. 1763 76 141 21 4 2006 5 
        
Total 28912 2051 825 192 75 32056 81 
        



74 
 

Table 12. Quantitative weighted network properties for drought-disturbed treatments and controls.  

 

 

 

 

 

 

 

  

 Control  Drought ANOVA 

Metric Mean SE Mean SE  F1,3 P  

Connectance (LDq/S) 0.09 0.02 0.08 0.01 0.39 0.575 
Generality (Gq) 1.82 0.11 1.59 0.08 3.89 0.143 
Interaction diversity (IDq) 3.98 0.35 3.41 0.32 3.36 0.173 
Interaction evenness (IE) 0.47 0.03 0.43 0.03 1.90 0.262 
Linkage density (LDq) 5.94 1.16 4.20 0.64 3.33 0.165 
Vulnerability (Vq) 10.06 2.23 6.81 1.21 3.29 0.167 



75 
 

Appendix A. Two-way ANOVA testing the effect of drought treatment (results below) and 
mesocosm block (P > 0.05, results not shown) on secondary production of key taxa. 

Taxon ANOVA 
 F1,3 P 
Asellus aquaticus 5.20 0.107 
Cricotopus sp. 1.66 0.288 
Cryptochironomus sp. 5.97 0.092 
Ephemera danica 49.39 0.006 
Gammarus pulex 7.36 0.024 
Heterotrissocladius sp. 2.87 0.189 
Hydropsyche sp. 3.10 0.177 
Macropelopia sp. 1.49 0.310 
Microtendipes sp. 3.848 0.145 
Naididae 25.65 0.015 
Pisidium sp. 11.06 0.045 
Polypedilum sp. 0.311 0.616 
Potamopyrgus antipodarum 6.73 0.041 
Radix balthica 9.38 0.014 
Sericostoma personatum 10.04 0.050 
Synorthocladius sp. 0.824 0.431 
Tipulidae 3.27 0.168 
Tubificidae 0.01 0.915 
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