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Summary (348 words) 26 

1. Biodiversity and ecosystem services continue to be compromised by land-use change, which 27 

is often focussed on enhancing agricultural production. Assessment of losses would be aided 28 

by analyses of temporal changes in the extent and spatial pattern of services and biodiversity. 29 

To date, no studies have mapped long-term changes in ecosystem services using historical 30 

maps. 31 

2. We mapped changes between the 1930s – before the considerable intensification of land-use 32 

in the UK starting in the 1940s – and 2000 in climate change amelioration services (carbon 33 

storage), provisioning services (agriculture and forestry) and plant species richness 34 

(biodiversity) for Dorset, a rural English county. 35 

3. We combined land-use maps (1-ha resolution) with multiple proxies of service delivery for 36 

the 10 different Broad Habitats in the region. Biodiversity was mapped using plant survey 37 

data from the two time periods. We used bootstrapping to include uncertainty due to the 38 

different proxies and Gini-coefficients to quantify statistical changes in spatial pattern.  39 

4. Overall, we found significant increases in agricultural provisioning and large losses in 40 

biodiversity over the period, which reflect widespread conversion and intensification of land-41 

use. We found no change in Dorset’s carbon store, because carbon lost through land-use 42 

intensification was balanced by increases in woodland over the 20th century. 43 

5. The carbon storage and the delivery of provisioning services both became more unequally 44 

distributed, indicating a change from relatively homogeneous delivery of services to 45 

concentration into hotspots. The maps from the year 2000 showed spatial dissociation of 46 

hotspots for carbon, provisioning and biodiversity, which suggests that, compared to the 47 

1930s, modern, intensive land use creates conflicts in delivery of multiple services and 48 

biodiversity.  49 

6. Synthesis and applications. Detailed maps of historical changes in location-specific service 50 

delivery and biodiversity provide valuable information for land-use planning, highlight trade-51 

offs and help to identify drivers. Furthermore, historical maps provide an important baseline 52 

to indicate the suitability and potential success of suggested actions, such as habitat 53 
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restoration, and their relevance to traditional land-use. Various frameworks could be informed 54 

by our approach, including the ecosystem service aims of the EU biodiversity strategy and the 55 

newly created UK Nature Improvement Areas. 56 

 57 

Keywords: 58 

Agricultural production; Biodiversity; Carbon sequestration; Ecosystem assessment; Historical maps; 59 

Landscape management; Land-use changes; Semi-natural habitats.60 
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Introduction 61 

As a consequence of worldwide land-use change, the capacity of ecosystems to provide the ecosystem 62 

services that are vital to human well-being have been undermined (MEA 2005; Tallis & Polasky 63 

2009; UKNEA 2011). Many of these consequences have been the unintended result of management 64 

actions designed to maximise particular services, such as agricultural production (Rey-Benayas & 65 

Bullock 2012). Human societies have often overlooked the fact that ecosystems may support 66 

numerous services that are interrelated in complex and dynamic ways (Chan et al. 2006; Bennett, 67 

Peterson & Gordon 2009).  68 

 69 

Policy responses to counter declines in the delivery of multiple ecosystem services – such as Defra’s 70 

Ecosystems Approach in the UK (Defra 2010) and China’s Grain for Green initiative (e.g. Feng et al. 71 

2004) – require an understanding of the impacts of land use decisions on different services and 72 

biodiversity.  At the landscape level, such an understanding necessitates the incorporation of credible 73 

estimates of ecosystem service changes into land-use maps to allow spatially-explicit planning for the 74 

delivery of bundles of ecosystem services (Chan et al. 2006; Nelson et al. 2009). Previous work has 75 

delivered methods for assessing and mapping the economic, social and ecological values of services 76 

(e.g. Kremen & Ostfeld 2005; Eigenbrod et al. 2011; Swetnam et al. 2011); identified spatial and 77 

temporal trade-offs and synergies (e.g. Anderson et al. 2009; Nelson et al. 2009; Raudsepp-Hearne, 78 

Peterson & Bennett 2010); and assessed the effects of land management decisions on the delivery of 79 

services and biodiversity (Egoh et al. 2008; Rey-Benayas et al. 2009; Birch et al. 2010; Newton et al. 80 

2012a).  81 

 82 

Both the Millennium Ecosystem Assessment (MEA 2005) and the United Kingdom National 83 

Ecosystem Assessment (UKNEA 2011) highlighted the importance of understanding trends in 84 

ecosystem services over time. However, to the best of our knowledge, no study has mapped long-term 85 

changes in the quantity and patterns of service delivery spanning a period of considerable agricultural 86 

intensification. Mapping ecosystem services at a reference point in the past will provide detailed 87 

understating of how service delivery has changed over time and indications as to where in a landscape 88 
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actions might be targeted to enhance particular services (Dearing et al. 2011). Mapping projects have 89 

located geographic hotspots with high levels of one or more service and/or biodiversity (e.g. Egoh et 90 

al. 2008; Naidoo et al. 2008; Anderson et al. 2009; Bai et al. 2011). Such studies have generally 91 

suggested these hotspots should be targeted in plans to enhance biodiversity and/or ecosystem service 92 

delivery, and that the spatial coincidence of hotspots for different services and biodiversity may allow 93 

synergies in planning for multifunctional landscapes. Little is known, however, about the changes in 94 

the prevalence and pattern of these hotspots over time. Indeed, if hotspots develop as a result of 95 

anthropogenic landscape changes, such as fragmentation, they might rather be seen as a negative 96 

indicator for delivery of services and biodiversity conservation (e.g. Boakes et al. 2010).  However, it 97 

may also be important to identify such hotspots to help prevent a further deterioration of services and 98 

biodiversity,    99 

 100 

The UKNEA (2011) considered changes over the last 60 years, identifying the 1940s as a time in 101 

which the UK entered a phase of national reconstruction to enhance production, agricultural 102 

intensification, and to build homes and infrastructure, which resulted in massive land use changes.  A 103 

snapshot of land use, services and biodiversity just before major changes occurred – as we consider 104 

here for the 1930s – provides an ideal reference for planning landscape management, and suggests to 105 

what extent and where ecosystem services might be restored. In this paper we use newly-digitized 106 

British land-use maps from the 1930s, which have allowed us to map, at a fine resolution, the extent, 107 

scale and spatial details of land-use patterns for Dorset, a typical rural English county. Comparison 108 

with the UK land cover map for 2000 showed huge losses and dramatic fragmentation in the area of 109 

semi-natural habitats as a consequence of agricultural intensification (Hooftman & Bullock 2012). 110 

Here, we use these maps combined with ecosystem service proxy data and plant surveys to map 111 

changes in ecosystem services and biodiversity between these two dates. We focus on: climate change 112 

amelioration services provided by carbon storage and net carbon change; provisioning services 113 

provided by agriculture and forestry; and plant species richness as a measure of biodiversity. By doing 114 

so we contrast changes in two services with those in biodiversity; following the argument that changes 115 

in biodiversity and in ecosystem services are not necessarily related (Bullock et al. 2011a).  116 
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We produce maps by bringing together multiple data sources for the present and past to provide 117 

estimates of ecosystem service delivery from different land-use classes in terms of UK Broad Habitat 118 

Types. We use an extended benefit transfer approach – explicitly incorporating variation in measures 119 

of services – to link habitat type (Jackson 2000) to ecosystem services. In line with general trends 120 

across the UK (UKNEA, 2011) and globally (Butchart et al. 2010; West et al. 2010), we expect this 121 

study to show that conversion of land for intensive agriculture along with advances in farming have 122 

increased agricultural outputs, but decreased biodiversity and carbon stocks in Dorset since the 1930s. 123 

However, the altered spatial patterns accompanying these changes are not understood, and we 124 

hypothesise that the fragmentation of habitats over the time period has led to increases in the 125 

prevalence of geographic hotspots for both services and biodiversity. In this way, we provide 126 

estimates of ecosystem service and biodiversity values across the landscape of Dorset, and highlight 127 

the importance of incorporating temporal changes in service delivery in land-use planning.128 
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Materials and methods 129 

Using an extended benefit transfer approach similar to, for example, the UKNEA (2011) and Newton 130 

et al. (2012a), we mapped: (i) the regulating ecosystem service of climate change amelioration in 131 

terms of carbon stock and net change, and (ii) the provisioning service of combined agricultural and 132 

timber production. We also used botanical surveys to map (iii) biodiversity in terms of plant species 133 

richness.  134 

 135 

STUDY AREA AND LANDCOVER MAPS 136 

We mapped these services and biodiversity between two periods (1930s and 2000) in the county of 137 

Dorset, southern England. Dorset (ca 2500 km2) is a rural, maritime county which had approximately 138 

400,000 residents in 2001 and roughly half this number in the 1930s. Dorset can be considered a 139 

typical rural landscape in north-western Europe, which has experienced some urbanisation, but in 140 

which most land-use change through the 20th century has been the modification of semi-natural 141 

habitats to highly intensive agriculture (Hooftman & Bullock 2012). An additional factor in our 142 

selection of Dorset is that detailed vegetation surveys were carried out here in the 1930s (see Keith et 143 

al. 2009; Newton et al. 2012b). 144 

 145 

To map changes in combined agricultural and timber production and in carbon storage, we built upon 146 

detailed land cover maps (Hooftman & Bullock 2012). We used a map of land-use in the 1930s, prior 147 

to large-scale agricultural intensification (Dallimer et al. 2009) and the Centre for Ecology and 148 

Hydrology (CEH) Land Cover Map of 2000, which reflects current, highly intensive land-use. 149 

Hooftman & Bullock (2012) focussed on calculating changes in the area of semi-natural habitats 150 

between these periods. Results include a large increase of improved grassland and arable land at the 151 

expense of semi-natural grasslands and a 25% increase in woodland area. The mapping methods are 152 

summarised in Appendix S1 in the Supporting Information and the area of land-use for both periods 153 

can be found in Table 1. For our study, the original maps, which have a resolution of 25 x 25 m, were 154 

transformed into 1-ha grid cells using ARCGIS v9.3, based on the dominant land-use. The total 155 

number of grid cells is 250,146 in both maps.156 
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AGRICULTURAL AND TIMBER PRODUCTION 157 

We conducted an extensive search for proxies of annual agricultural and timber production in both 158 

periods; to obtain, as far as possible, estimates for all land-uses and crop types. We describe the 159 

procedure in Appendix S2; searches were performed in Google, the archives of Defra, Eurostat, 160 

FAOSTAT, the UK Forestry Commission as well as historical UK Government data archives. Where 161 

no data were found for the specific period, data for a nearby year were used (e.g. Agricultural 162 

Statistics 1929). Yield data were converted to economic values (“annual monetary production”) using 163 

commodity prices for the year 2000. Hence changes in production values reflect land-use change 164 

and/or intensification but not changes in commodity prices. We will consider changes in relative 165 

values of commodities in the Discussion. The proxies per land-use type are given in the Tables S1, 166 

S2, S3 and S5.  167 

 168 

The 2000 map uses specific data about agricultural land use, often including the exact crop planted; 169 

but the 1930s map does not, and there are only data on broad land-uses, such as arable. To address 170 

this, we bootstrapped among the values of the crops listed in the 1929 for Dorset (Agricultural 171 

Statistics 1929) – i.e., barley, oats, wheat, field beans, potatoes and peas – with weighting according 172 

to the Dorset-wide cover of each crop (17%, 55%, 21%, 2%, 5% and 0.1% respectively; Tavener 173 

1937).  The bootstrapping was done over 50,000 runs and in each the value per land-use category was 174 

drawn randomly from the possible values. Furthermore, in both periods Dorset grasslands were used 175 

to support either livestock for meat (mostly beef, but also lamb and pork) or dairy cattle with the 176 

percentages of dairy to beef cows being 50% for each in 1929 (Tavener 1955) and 87% dairy to 13% 177 

beef in 2000 (Defra 2011). Per grid cell, we bootstrapped as above for grasslands among the 178 

production values for milk and meat production weighted by these ratios. For livestock meat 179 

production, different livestock generate different economic values. We addressed this by converting 180 

reported densities of each livestock type into Livestock Units (LSU; Table S4). The economic value 181 

of one LSU is the return obtained by selling the meat. For milk production from dairy cows, we 182 

multiplied the reported densities per hectare of cows with the milk production cow-1 year-1 (Tables S3 183 

and S5). Wool production had very low value in both periods and was excluded for simplicity, i.e., 184 
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wool production only accounted for 1% of the total agricultural economic output in 1925 over the UK 185 

as a whole (Cons. Archive 1940; Defra 2011). 186 

 187 

CARBON STOCK AND NET CHANGE  188 

A similar search was conducted for estimates of carbon stock (t ha-1) for the different land-uses in 189 

Dorset, across four categories (adapted from Conte et al. 2011): above-ground biomass, below ground 190 

biomass, dead carbon (i.e. litter combined with other dead organic matter), and soil carbon. The sum 191 

of these categories estimates the carbon stock per 1-ha grid cell. Net carbon change (e.g. Ostle et al. 192 

2009) was estimated as the difference per 1-ha grid cell in total carbon stock between both periods. 193 

The estimates are given in Tables S7, S8 and S9; the search procedure is described in Appendix S2. 194 

Although we used a wide variety of sources, we do not claim to include all published carbon stock 195 

figures. Our estimates represent different geographical ranges and most are not specific to the study 196 

area, although they encompass Dorset and are specific for the land-use type considered.  Furthermore, 197 

we assumed the same carbon stock values per land-use for both 1930s and 2000. Therefore, we show 198 

differences driven by land-use change but not –unknown– temporal changes within land-uses. 199 

 200 

BIODIVERSITY 201 

Two independent vascular plant species distribution datasets were used to map biodiversity change 202 

between the two periods. For the 1930s we used the “Good data” (Good 1948; Keith et al. 2009; 203 

Newton et al. 2012b), which provides plant species data for approximately 7000 survey sites in Dorset 204 

in that period (Dorset Environmental Records Centre – DERC: 205 

http://www.derc.org.uk/projects/good.htm). This dataset covers approx. 7 % of the Dorset area and 206 

describes local presence/absence of all vascular plant species. For 2000, we used Bowen (2000), who 207 

recorded the presence of all plant species in 694 2 x 2 km cells covering the whole of Dorset in the 208 

period 1985–2000. These 2000 data were supplemented with a data-set of occurrences of 162 rare and 209 

declining species on a 1-ha scale, re-gridded to the 2 x 2 km cells (data courtesy of DERC).  210 

 211 
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To allow comparison of the partial 1930s data with the complete spatial coverage for 2000, we used 212 

species–area curves to scale-up the 1930s data (see Harte et al. 2009).  From the Bowen data-set, 213 

species counts at different resolutions were calculated (from 2 km square grid to 5 km, 10 km, 20 km, 214 

¼ of Dorset and all Dorset) to fit a species–area relationship in 2000 following: 215 

 S = cAz           eqn. 1 216 

with S: number of species; A the area in km2; z the slope of the relationship in log-log space 217 

and c the scaling factor.  218 

 219 

The species count and area of each site survey in the 1930s was combined with the z value calculated 220 

from the 2000 data to obtain a c value per survey. Using these values, the number of species in each 221 

site was extrapolated to its surrounding 2 x 2 km square. Good surveys were present in all but two 222 

(which were excluded from analysis) of the 2 x 2 km squares; in cases of multiple surveys in a square, 223 

the surveys were joined and the area summed. This method assumes a change over time in α-diversity 224 

but not β-diversity; we explore this assumption in Appendix S3. 225 

 226 

STATISTICAL ANALYSES 227 

For both production (agricultural and timber) and carbon storage, our search provided multiple proxy 228 

values per habitat type, which differ in geographical scale and location. To avoid making assumptions 229 

regarding the most relevant values (Eigenbrod et al. 2010), we used bootstrap assignments in mapping 230 

these services. We performed 50,000 runs and in each the value per land-use category was drawn 231 

randomly from the possible values. The values of all grid cells per run were summed to get the overall 232 

production and storage values. The derived value per grid cell was averaged among runs for mapping. 233 

To summarise over the whole area we calculated the average sum over all grid cells and the 234 

confidence intervals (95%, 99% and 99.9%). For diversity, confidence levels for both periods were 235 

provided by 100,000 random draws of the same number of data-points (694) with re-sampling.  236 

 237 

We calculated inequalities in the distribution of values across grid cells for all three measures using 238 

the Gini-coefficient (G) following Gamboa et al. (2010),  239 
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 in which, n = number of data-points, y the original series sorted in increasing order (i); μ ̂is the 241 

 estimated mean of y. 242 

 243 

This coefficient reflects the shape of the histogram of all possible values and ranges from 0–1. A low 244 

Gini value indicates a skewed distribution, as would occur in a situation with many hotspots and areas 245 

of low service delivery or biodiversity. A high value indicates an equally heterogeneous distribution 246 

and fewer hotspots and/or low value areas. Note that this coefficient describes the distribution of the 247 

values, complementing interpretation of the mapped spatial patterns. Confidence intervals were 248 

calculated using the standard error and a z-distribution (eqn. 3). The standard error was calculated as 249 
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ଵ
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 with: 251 
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ଶ௡
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௜
௝ୀଵ ൯ቁቇ 252 

 in which yj is the cumulative value of the series in increased order and Z ̂is the average value of Zi. 253 

 254 

We performed a validation test of this procedure, showing that patterns found are caused by (changes 255 

in) land use and are not statistical artefacts (Appendix S4). All statistical calculations were done in 256 

Matlab v.7.8.0.347; the code is available as Codes S1. The maps were created in ArcGIS v 9.3.257 
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Results 258 

AGRICULTURAL AND TIMBER PRODUCTION  259 

The gross monetary production (in 2000 prices) of combined timber and agriculture in Dorset 260 

increased greatly, as expected, between 1930s and 2000 (P < 0.001; Table 1). Estimated annual 261 

agricultural production (including timber) was £219M for 2000 compared to £33M in the 1930s. 262 

Improved grassland contributed most to this increase (+ £141M; Table 1), together with a large 263 

increase in income from arable land (+ £65M). This reflects the higher income per ha caused by 264 

agricultural intensification with estimated annual production increasing from an average £141 ha-1 to 265 

£950 ha-1 (Table 1). Moreover the area of agricultural production was boosted by the large increases 266 

in area of arable land and improved grassland. The increase in woodland cover also caused a 30% 267 

greater monetary production from this land-use category compared to 1930s (Table 1).  268 

 269 

The spatial detail of these results is mapped in Fig. 1. Regions with very low or no agricultural 270 

production, such as the heathlands in the south-east and the urban areas, are similar in both periods. 271 

However, the remaining area has seen a considerable rise in annual income per ha with clear hotspots 272 

in the north-western part of Dorset. This shift in spatial pattern is illustrated by a changed Gini 273 

coefficient, which indicated a much more unequal distribution of production in 2000 (G = 0.46; 5% 274 

CI ± 0.001; P < 0.001) than in the 1930s (G =0.85; 5% CI ± 0.001).  275 

 276 

Validation of these results in terms of net profit per farm in 2000 is presented in Appendix S5. These 277 

results show that an estimate – using the figures presented here – of yearly net profit for an average 53 278 

ha farm of ca. £12,309 is likely an overestimate, but reasonably close to an independently-derived 279 

UK-wide farm estimate for 2000 (£8,700).280 
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CARBON STOCK AND NET CHANGE 281 

We found no significant difference in the total carbon stock of Dorset in the 1930s and 2000 (Table 282 

2). We calculated stocks of 24.5 million tonnes in the 1930s and 22.6 million tonnes in 2000 (Table 2; 283 

P > 0.1). However, the distribution of carbon changed greatly between both periods (Figs. 2a & 2b). 284 

The total carbon stock in semi-natural habitats, especially in unimproved grasslands, was substantially 285 

reduced; reflecting the loss in area of these habitats. Much of these habitats were converted to land-286 

uses containing lower carbon stocks, i.e. arable land and improved grassland (Hooftman & Bullock 287 

2012). However, this reduction was balanced by an increase in woodland area, which has high carbon 288 

stocks (Table 1). Consequently, the carbon stock is now concentrated in hotspots of woodland 289 

fragments, in which 11% of the area contains approximately 50% of the Dorset carbon stock.   290 

 291 

This shift into hotspots is demonstrated by a lower Gini coefficient in 2000 (G = 0.80; 5% CI ± 0.001) 292 

than in the 1930s (G =0.91; 5% CI ± 0.001). Further illustration is given by the map of the net. carbon 293 

change (Fig. 2c), which shows that the majority of land in Dorset lost carbon between the 1930s and 294 

2000 while carbon was gained in woodland hotspots.  295 

 296 

BIODIVERSITY 297 

The distribution of species and the resulting mean α-diversity changed substantially, as expected (P < 298 

0.001; Fig. 3). The average number of plant species per 2 x 2 km grid cell decreased from 393 (5% 299 

CI: 385–402) to 289 (5% CI: 284–294). This general decline is demonstrated by a slightly more equal 300 

distribution of diversity by 2000 (1930s: G = 0.825; 5% CI: 0.818 - 0.834 vs. 2000: G = 0.86 5% CI: 301 

0.853–0.869; P <0.001). In both periods there were hotspots in a background of low diversity, but 302 

these hotspots had more species in the 1930s. However, the maps (Fig. 3) show only the south-east of 303 

Dorset maintained diversity, suggesting a single, major hotspot in 2000.304 
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Discussion 305 

We studied changes in spatial patterns of two ecosystem services and biodiversity for Dorset in the 306 

1930s and 2000 using extended benefit transfer and survey data. Biodiversity decreased over this 307 

period, while agricultural and timber production (provisioning) increased. Contrary to expectations, 308 

the estimated carbon stock did not decline despite large land-use change. It appears that carbon lost 309 

through conversion of semi-natural habitats to intensive agriculture was balanced by accumulation of 310 

carbon in the increased woodland area. The spatial distributions of these measures changed markedly: 311 

both carbon and provisioning became more unequally distributed among grid cells, indicating 312 

concentration of service delivery into hotspots, while biodiversity showed more even decreases.  313 

 314 

The loss of biodiversity and increase in agricultural and timber production reflect the UK-wide trends 315 

reported in the UKNEA (2011) and global patterns (Ellis & Ramankutty 2008; Butchart et al. 2010). 316 

Indeed, the human requirement for increased provisioning is thought to be a major driver of 317 

biodiversity declines (Rey Benayas & Bullock 2012). By using 2000 commodity values for both 318 

periods we ensured that the observed spatial changes reflect land-use intensification but not changes 319 

in individual commodity prices.  The prices of milk and beef increased 16-fold, of wheat and barley 7-320 

fold and of potatoes 19-fold between 1929 and 2000 (Table S6). Since inflation over this period was 321 

37-fold [safalra.com/other/historical-uk-inflation-price-conversion/], these demonstrate decreases in 322 

market values (see also Angus et al. 2009).  Changes in the relative values of commodities may 323 

explain changes in agricultural practices, but are less relevant to our estimation of changes in the 324 

agricultural production service over the 70 year period.   325 

 326 

The UKNEA (2011) makes no general statement about 20th century changes in the UK carbon stock , 327 

but the country-wide trends of carbon gain through increasing woodland area and loss through 328 

conversion of semi-natural habitats to intensive agriculture (Smith et al. 2011) are reflected in our 329 

Dorset analysis. The outcome that the carbon gains have balanced the losses in Dorset is a chance one 330 

as, clearly, land-use change was not done with carbon in mind.  331 
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Agricultural provisioning and carbon stocks became more concentrated into hotspots and high 332 

biodiversity was maintained only in the south-east. This supports our hypothesis that land-use change 333 

creates hotspots through fragmentation, highlighting a dynamic process which should be considered in 334 

land use planning.   These results may suggest that the ‘land sparing’ approach to separating 335 

biodiversity conservation and agriculture (Phalan et al. 2011) could be extended such that different 336 

parts of the landscape are used for different ecosystem services. In Dorset, the maps for 2000 show 337 

separation of hotspots for agriculture (north of the county), carbon stocks (scattered woodland 338 

patches) and biodiversity (remaining semi-natural habitat). However, patterns of trade-offs between 339 

biodiversity and multiple ecosystem services are complex (e.g. Anderson et al. 2009; Nelson et al. 340 

2009) and management for a particular service or biodiversity target may create further trade-offs 341 

with other services or aspects of biodiversity (Bullock et al. 2011a). We can see this occurring in 342 

Dorset: much heathland has been lost to encroaching woodland (Rose et al. 2000), and woodland 343 

contains most of the carbon stock. Therefore, on-going tree-felling to restore these biodiversity 344 

hotspots could have a clear impact on carbon storage. Restoring the 4000 ha heathland that converted 345 

to woodland over this period would reduce the Dorset carbon store by 5%. Conversely, tree planting 346 

may have negative effects on other services such as water supply and soil quality (Jackson et al. 347 

2005). Furthermore, a land sparing approach is a compromise as production, carbon stocks and 348 

biodiversity were more spatially intermingled and evenly distributed in the 1930s, suggesting that a 349 

more historically-informed approach might seek to restore habitats which deliver multiple services 350 

and biodiversity. For example, species-rich grasslands may support moderate forage production, crop 351 

pollination and pest control, carbon sequestration and cultural services (Bullock et al. 2011b). 352 

 353 

CAVEATS IN MAPPING CHANGES IN SERVICES AND BIODIVERSITY 354 

A few studies have determined regional time trends in ecosystem services (e.g. Carreno et al. 2012; 355 

Dearing et al. 2012), including the UKNEA (2011), but none have created historical maps of service 356 

delivery. Making such maps using benefit transfer involves assumptions about relevant proxies 357 

(Eigenbrod et al. 2010). To mitigate any resulting biases we employed a Monte Carlo bootstrap 358 

procedure incorporating variation in proxies for carbon storage and agricultural and timber 359 
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production. However, the outcomes remain dependent on the accuracy of the underlying data. We 360 

acknowledge that employing benefit transfer per land-use type may introduce noise because of 361 

variation in service values within land cover types (Eigenbrod et al. 2010).  362 

 363 

A second caveat is that we analysed change using only two points in time. Simply, no similar maps 364 

are generally available for the 1950s or 1960s. However, Hooftman & Bullock (2012) showed that 365 

land-use change in Dorset showed a roughly linear trend over the last century. Nevertheless, patterns 366 

of production and the prices of agricultural commodities fluctuated over the study period (Edward-367 

Jones et al. 2011), and our snapshots do not capture these temporal subtleties.  368 

 369 

Lastly, we used current day estimates of carbon stock which may bias our estimates of change. We 370 

have no reason to believe that these values would have been different in the 1930s, but can speculate. 371 

As elsewhere, semi-natural habitats in Dorset are undergoing eutrophication (Keith et al. 2009; 372 

Newton et al. 2012b), which can increase carbon sequestration (de Vries et al. 2009). Conversely, 373 

arable carbon stocks may have declined since the 1930s due to factors such soil compaction and 374 

degradation, replacement of farmyard manure with inorganic fertilisers and reduced rotation with 375 

grass leys (Smith et al. 2011). 376 

 377 

APPLYING HISTORICAL SERVICE CHANGES IN LAND-USE PLANNING 378 

Our findings and approach can be applied to developing ecosystem service-based management and 379 

policy. For action 5 of the EU biodiversity strategy it is specified that maps should be valuable for 380 

prioritisation and problem identification, showing synergies and trade-off between services. 381 

Furthermore, maps can be used as visual communication tools to initiate discussions with 382 

stakeholders (Maes et al. 2012). While mapping is not a new approach we propose that it is 383 

imperative to add to this map-based information the changes that have occurred in location-specific 384 

delivery of services and their spatial patterns. For problem identification, local drivers and conflicts 385 

could thus be identified and tackled. Our maps can do this in Dorset, since land-use transitions have 386 

been identified (Hooftman & Bullock 2012). 387 
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In developing management plans, maps such as ours are valuable for framing optimisation strategies 388 

in land-use allocation and management based on synergistic and antagonistic effects among services, 389 

for example using GIS-based service modelling tools such as InVEST (Nelson et al. 2009; Goldstein 390 

et al. 2012). Such activities would be aided by understanding historical changes: the 1930s maps 391 

provide a baseline indicating the capacity of a local area for sustainable land-use change, while 392 

clarifying trade-offs such as potential production losses. Paleo-environmental methods may also 393 

provide information for such endeavours (Dearing et al. 2012). We envisage that management plans 394 

for the twelve newly-created UK Nature Improvement Areas (HM Government, 2011) would benefit 395 

from such information; indeed, our Dorset maps are being used by the Wild Purbeck NIA (Ian Rees 396 

pers. comm.; www.dorsetaonb.org.uk/our-work/wildpurbeck.html).  397 

 398 

Considering the range of other services provided by Dorset’s ecosystems – including tourism, clean 399 

water supply, flood mitigation and erosion control – a development of this study could involve 400 

mapping multiple services in the 1930s and 2000 together. This might be done using land-use based 401 

proxies for services such as recreational value (e.g. Newton et al. 2012a) or modelling using land-use, 402 

topography and other geographical variables for services such as flood mitigation (e.g. Eigenbrod et 403 

al. 2011).  404 
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Table 1. Monetary values (in British pounds) of annual agricultural and timber production for each 557 

relevant land-use type in Dorset for the 1930s and 2000, with totals and averages per hectare derived 558 

using a Monte Carlo algorithm. Production values are based on 2000 commodity prices  559 

Land-use type 1930s 2000 

 
Area 
(km2) 

Total 
(million £) 

ha-1 
(£) 

 
 

Area 
(km2) 

Total 
(million £) 

ha-1 
(£) 

Unimproved grassland 1541 23.26 151  138 2.91 211 

Improved grassland -†    809 140.6 1,737 

Arable cropland 449 7.32 163  1026 72.1 703 
Woodland  ( = timber & 
non-wood products)‡ 

205 2.34 114  268 3.05 114 

Heathland‡ 138 0.045 3  62 0.020 3 

Total 2334§ 32.93 141  2303§ 218.7 950 

95% Confidence interval  
32.01 
33.03 

   
208.3 
276.5 

 

† The area of improved grassland in the 1930s was none to negligible (Hooftman & Bullock 2012). 560 

‡ Timber and non-forest product values per hectare used are identical for the 1930s and 2000 561 

§ Area of productive land.562 
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Table 2. Total carbon stock in tonnes for each relevant land-use type in Dorset for the 1930s and 563 

2000, with totals and averages per hectare, derived using a Monte Carlo algorithm (Supporting 564 

Information). Net carbon change is calculated per grid cell as the difference between the two periods  565 

Land-use type 1930s 2000 

 
Area 
(km2) 

Total 
(million 
tonnes) 

ha-1  
Area 
(km2) 

Total 
(million 
tonnes) 

ha-1 

Unimproved grassland 1541 10.00 65  138 0.72 52 
Improved grassland -†    809 2.27 28 
Arable cropland 449 2.27 62  1026 6.32 62 
Woodland  (timber & non-

wood products) 
205 8.19 400  268 10.78 403 

Heathland 138 1.09 79  62 0.49 79 
Other land-uses 168 0.66 39  198 0.60 30 

Total 2501 24.48 98  2501 22.63 91 

95% Confidence interval  
17.10 
37.10 

   
14.73 
32.31 

 

Net carbon change‡ 
 (95% Confidence interval) 

     
-1.98 

(-14.62     7.92) 
 566 

† The area of improved grassland in the 1930s was none to negligible (Hooftman & Bullock 2012). 567 

‡ Calculated per grid cell and summed over all cells. 568 

569 
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Figures 570 

Fig 1. Combined annual agricultural and timber production in 1930s (a) and 2000 (b) in British 571 

pounds per hectare. Grid size is 100 x 100 m (1 ha). Values are the mean of 50,000 Monte 572 

Carlo runs based on the different estimates per land-use type.  573 

Fig 2. Carbon stock in 1930s (a) and 2000 (b) per hectare, being the sum of carbon in above-ground 574 

biomass, below-ground biomass, dead carbon (i.e., litter and other dead organic matter), and 575 

soil carbon. (c) The net carbon change is the difference between the two periods per grid cell. 576 

Grid size is 100 x 100 m (1 ha). Values are the mean of 50,000 Monte Carlo runs based on the 577 

different estimates per land-use type. 578 

Fig. 3 Species richness of vascular plant species in the (a) 1930s and (b) 2000 on a 2 x 2 km grid. 579 

1930s data are extrapolated from the smaller vegetation surveys using species-area curves. 2000 580 

data are collated records for 1985–2000 (Bowen 2000).   581 
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Additional supporting information may be found in the online version of this article. 589 
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