
INSTITUTE OF OCEANOGRAPHIC SCIENCES
DEACON LABORATORY

INTERNAL DOCUMENT No. 342

SWALES Sonic Buoy - meteorological
data report

WormJey
Godalming
Surrey GU8 5UB UK
Tel +44-(0)428 684141
Telex 858833 OCEANS G
Telefax +44-(0)428 683066

CHClayson

1994

• • • • • • • • •
I
I
I
I
I
I
I
I
I
I
I

DOCUMENT DATA SHEET

AUTHOR PUBLICATION
DATE

CLAYSON, CH 1994

TITLE

SWALES Sonic Buoy - meteorological data report.

REFERENCE

Institute of Oceanographic Sciences Deacon Laboratory, Internal Document, No. 342, 42pp.
(Unpublished manuscript)

ABSTRACT

During the SWALES experiment in the autumn of 1993, the Sonic Buoy was deployed twice as part
of an array of moored instrumentation. On the Sonic Buoy, meteorological data were acquired by
the Formatter Processor from the Sonic and Multimet Processors' output data streams. These data
were combined and logged as 10 minute means on the Formatter F1ashcard memory; a selection of
the data was also telemetered in near real time via the polar orbiting ARGOS and geostationary
ME'I'EOSAT satellite data collection systems.

This data report briefly describes the processes employed in acquisition of the data. It then
describes the processes for the recovery of the data from the various source media, the quality
control procedures applied and, finally, the resulting output data files.

Appendices include comprehensive details of the software developed for the above processes and of
the formats used for the input and output data.

KEYWORDS

ISSUING ORGANISATION

Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, GOdalming
Surrey GU8 SUB. UK.

Director: Colin Summerhayes DSc

Copies of this report are available from: The Library,

Telephone Wonnley (0428) 684141
Telex868833 OCEANS G.
FaCSUnile(0428) 683066

PRICE £0.00

Rl

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-5-

Index

SWALES SONIC BVOY - METEOROLOGICAL DATA REPORT

Equipment

Data SOUl'Ces and Processing
ARGOSData
Meteosat Data
PCMCIA Flash Card Data

Data Quality Checking
Figures 2, 3
Figures 4,5
Figures 6,7
Figures 8,9
Figures 10,11
Figures 12,13
Figure 14
Figures 15,16
Figures 17,18

Summary of Data Produced
Raw Data Piles
CricketGraph Data

Data Time Stamping

Acknowledgements

References

APPENDIX A SOF'l'WARE LISTINGS

A.I ARGSONFILE

A.2 SORT RECS

A.3 METEO SORT

A.44MTOIM.C

A.5 FORMDECODE

A.6S0NDIRN

APPENDIX B DATAFORMA.TS

Appendix B.I Raw Data Files

Appendix B.2 ARGSONFILE and SORT RECS Output Files

Appendix B.3 CricketGraph Data

7

7

7
8
9
9

11
13
14
15
16
17
18
19
20
21

22
22
22

22

23

23

24

24

28

30

33

35

37

39

39

43

43

• •
I

• • • • • • •
'."
,,-

I
I
I

-I
i

-7-

SWALES Sonic Buoy - Meteorological Data Report

Equipment

The Fonnatter operation is fully described in ref. 1. The Fonnatter consists of a single board
PC-compatible processing system, with 4 additional serial ports, a 4 Mbyte PCMCIA series 1
Flash EEPROM card and software embedded in EPROM.

Briefly, the Fonnatter asynchronously accepts quarter-hourly processed data messages from
the Sonic Processor and one-minute-mean data messages from the Multimet Processor. Upon
receipt of a Sonic message, or on the quarter-hour if no Sonic message is received, the
Fonnatter averages the Multimet data lying within a 10 minute window corresponding to the
Sonic data acquisition period (having corrected the received message time stamps for clock
drift relative to its own real time clock).

The Fonnatter then converts Sonic data to a concise binary fonnat, with parity checks, for

transmission via the ARGOS polar-orbiting satellite system; the ARGOS data is sent cyclically
as 4 x 32 byte messages, comprising 5 hours of Sonic data.

The Fonnatter also converts Sonic and averaged Multimet data, converted to engineering
units, to a 288 byte ASCII fonnat message for transmission via the Meteosat geostationary
satellite at hourly intervals.

The 128 bytes of ARGOS data and the 288 bytes of Meteosat data were written to a Flash
EEPROM data card at quarter-hourly intervals as a back up. The Fonnatter data were
originally envisaged mainly as a real time source of quick-look data, with the secondary
function of providing back up of an abbreviated data set by telemetry and a separate storage
medium. Due to the failure of the Multimet EPROM logger on both deployments, this back up
became invaluable as a source of Met data, but this necessitated the expenditure of
considerable additional effort to produce the required fonn of data products.

Data Sources and Processing

For an overall view of the data sources and processing, see Figure 1. The Sonic Buoy was
deployed for two separate periods:

Day 293.59 (1st deployed)

Day 326.60 (re-deployed)

to Day 315 (recovered inverted)

to Day 355 (recovered from rocks)

During the 1st deployment, the buoy overturned at day 313.58. During the 2nd deployment,
the buoy systems progressively failed due to battery exhaustion from approximately day
338.53.

RR60S
Satellite

Link:

ClS RRIiOS
Toulouse
Oatabase

uia PSS network

~

r:SSionDump(
-> OS File at

\... JRC \....

1 ..
Decode using
RRIiSONFILE

~ Ir

Sort using
SORT RECS

~ Ir
[plot quality
control (QC)

datal

-8-

Sonic Buoy
Formatter

Meteosat
Satellite Link:

ESOC
Darmstadt

Meteosat Satellite Link: ...
IOSDL Receiuing

Station

~ ..
j/lndiUidual /

message j
'- files '-

• ..
[plot quality
control (QC)

datal

Figure I Data Sources and processing

ARGOSData

Replay to Raw
Oata File using
Thincard Driue

Raw PC File
TEST

Split to 4 K 1
Mbyte files

EKtract
Meteosat data,

apply QC

Deploy­
ment C6

During the deployments, data were received from the Sonic Buoy via the ARGOS system,

which was regularly interrogated during the experiment to allow checks on both buoy position

• •
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-9-

and data quality. The ARGOS messages, downloaded from the CLS ARGOS computer at
Toulouse via the Public Switched System were decoded and sorted by the QuickBasic
applications ARGSONFILE and SORT RECS (Appendices A.l, A.2). The former decoded all
Sonic Buoy ARGOS messages within an ARGOS dump into wind data; the latter sorted the data
into chronolOgical order, selecting the best choice from duplicated data, and produced
chronolOgically ordered tabular files of the parameters PSD, MWS, Fit-A, Vertical MWS and N2.
File formats are given in Appendix B.

The ARGOS data naturally terminated with the capsize of the buoy in the first deployment and
with exhaustion of the batteries in the second deployment.

Meteosat Data

Due to a battery charger failure, Meteosat telemetry was not possible during the first
deployment. During the second deployment, the buoy messages were transmitted via a
transponder on Meteosat to the European Space Operations Centre at Darmstadt. They were
then retransmitted via Meteosat (interleaved with the WEFAX transmissions) and received by a
local Meteosat DCS message recovery unit (MRU) at IOSDL, Wormley. The MRU decoded the
DCS transmissions and filtered out the Sonic Buoy messages; these were then passed via
RS232 to a Macintosh Classic running the compiled application LOGSWl APL

The Macintosh further decoded the messages and stored them in daily numbered folders,
which were transferred at intervals to Macintosh IIvx for examination and further processing.
A QuickBasic program MEI'EO SORT (Appendix A.3) was written to combine the individual
messages into day files and to produce a report file, flagging errors, since the messages were
not error free. Manual editing was used to correct the message files for the flagged errors (or
to substitute 999 default data, if appropriate); the program MEI'EO SORT was then re-run to
produce an error free tabular file suitable for importation into CricketGraph.

PCMClA Flash Card Data

The complete data set was recovered from the 4 Mbyte Flash Memory Card after each

deployment. The card contents were dumped to a PC disk file, using a Databook ThinCard
drive and associated software. The resulting 4 Mbyte file was then split into 4 x I Mbyte files
by the C program 4MTOIM.C (Appendix A.4) to allow easier handling and transfer to other
machines; the resulting PC files were named FORMSWAL.IMG, FORMSWAL.2MG,
FORMSWAL.3MG, FORMSWAL.4MG

The directory information in the first 256 kbytes of the card memory gave the Formatter
dateltime and memory location for the start of each 128 + 288 byte "record". Since the 128
byte ARGOS data was duplicated (with the exception of the N2 values) over a number of the
288 byte Meteosat data sets in the records, attention was focussed primarily on processing the
Meteosat data. However, the QuickBasic program FORMDECODE (Appendix A.5) was
written to decode the Flash file ARGOS data into a similar format to that produced by
ARGSONFILE, but incorporating the Meteosat ASCII data. This gave additional useful

----- -----------------

il
H

cl

~I
~i

-10-

diagnostic information when it was necessary to correct for timing errors of the Sonic
Processor during the second deployment.

The required data products were tabular ASCII files of all the quarter-hourly data, for the two
deployments. The Meteosat header data includes aJulian day number, JJJ. It also contains the

most recent four quarter-hourly sets of the Sonic and Multimet data

i.e. QQ,+PSD,MWS,+NWS,+EWS,+VWS,+F_A,+ATI,+AT2,+STI,+ST2,YWS,YDR<CR>

plus a housekeeping line of data containing:

BAT,HDG,HSD,+TMET,+TSON<CR>

where QQ = Quarter -hours since midnight (range 00 - 96)

+PSD = 100 * log I O(Power Spectral Density * fA 5/3

MWS = 10 * (Mean Wmd Speed in m/s)

NWS = 10 * (North Mean component of Wind Speed in m/s)

EWS = 10 * (East Mean component of Wind Speed in m/s)

VWS = 10 * (Vertical Mean component of Wind Speed in mls)

F _A = 100 * Coefficient 'a', for linear regression fit of PSD vs log I O(frequency)

(over the frequency range 2 - 4Hz, PSD = a + b.logIO(frequency))

ATI = 10 * (Mean Air Temperature from sensor I in oc)

AT2 = 10 * (Mean Air Temperature from sensor 2in oc)

STI = 10 * (Mean Sea Temperature from sensor I in oc)

STI = 10 * (Mean Sea Temperature from sensor 2 in °C)

YWS= 10 * (Mean Young AQI Wmd Speed in mls)

YDR = Mean Young AQ I Wmd Direction in degrees.

BAT = 10 * Mean BatteryVoltageon the 24V bus

HDG = Mean Buoy Heading in degrees magnetic

HSD = Standard Deviation of Heading in degrees

+TMET = Time difference between Multimet and Formatter Real Time Clocks

(+ve for Multimet clock ahead of Formatter clock)

+TSON = Time difference between Sonic and Formatter Real Time Clocks

(+ve for Sonic clock ahead ofFormatter clock)

<CR> = Carriage Return

The Julian day number and Quarter normally originate from the Sonic Processor but, in the

absence of a Sonic message, originates from the Formatter clock. Latch up of the COM3 port

interrupt occasionally resulted in loss of Sonic messages, resulting in a temporary reversion to

Formatter date/time; fortuitously, this assisted in correction for timing errors of the Sonic
Processor during the second deployment.

The production of a tabular data set for the first buoy deployment was relatively
stralghtforward. The ARGOS (binary) data were stripped out of the Flash files, together with

I
I
I
I
I
I
I
-
~
I

• --
•
~ •
• -I
-I
I

-ll-

the redundant part of the header. For each remallring Meteosat "record" the housekeeping
data were then appended to the most recent set of the four quarter-hourly sets of Sonic and

Multimet data. The other three sets were stripped out, leaving two lines per record of the
format:

ID<CR>

QQ,+PSD,NNV'S,+NWS,+EWS,+VWS,+F_A,+ATI,+AT2,+STI,+ST2,YWS,YDR,BAT,HO

G,HSD,+TMET,+TSON<CR>

A simple program then converted these data to a tabular file with lines of the format:

ID·JJ]J<tab>+P.SD<tab>NNV'.S<tab>+NW.S<tab>+EWS<tab>+VW.S<tab>+F._A<tab>

+AT.l <tab>+AT.2<tab>+ST.I <tab>+ST.2<tab> YW.S<tab> YDR<tab>BA. T<tab>HOG

<tab>HSD<tab>+TMET<tab>+TSON<CR>

as described in Appendix B.3

The production of a tabular data set for the second buoy deployment was made more difficult

by jumps in the Sonic Processor clock; these occurred at a Sonic Processor clock time of just

before midnight due to incorrect functioning of the RI'CN.EXE application in the Sonic software.
This application was intended to reset the system clock (computed time) from the Real Time

Clock just before midnight each day. However, on a number of occasions, the operation of
the application caused an incorrect time to be set in, resulting in a time slip as indicated by

+TSON.

The time slip +TSON (in minutes) was used in conjunction with the (Formatter clock) quarter­

hours from the ARGOS data to correct the Sonic date and quarter-hours in the Meteosat data.

Otherwise, the method used to extract the data into tabular form was similar to that used for the

first deployment data.

Due to latch up of the Sonic UART interrupt on a few occasions, some Sonic data were missing

from the F1ashCard data; after the Sonic Processor EPROM logger data had been processed to
tabular parameter files by SONPARAMS.BAS (see ref. 2), it was possible to paste the missing

data from these files into the CricketGraph data. At the same time, it was possible to correct
some minor timing errors. This resulted in the files 1st Deplyment CG final and 2nd

Deployment CG final.

Data Quality Checking

The tabular data sets were separately imported into Crick:etGraph; they were then edited to

remove duplicated sonic data arising from the COM3 latch-up problem mentioned above.
Values ofF_A of -9.99 were left unaltered; this value occurs when the least squares fit ofPSD

against frequency gives a negative intercept.

The value of Young Direction is normally zero in the first deployment, due to an incorrect

channel allocation to the Young 2 wind direction channel in the Multimet message (Young 2
was connected to the Buoy Motion Package and ll!21 to Multimet). However, it is interesting to

note that Young Direction shows non-zero values after the buoy overturned. The channel

allocation fault was corrected for the second deployment.

-
-12-

In order to give a wind direction for the first deployment, the (relative wind direction + 1800),

referred to as Sonic Heading, was calculated from the Sonic +NWS and +EWS values, using
the QuickBasic application SONDIRN (Appendix A.6). The 1800 was added to make the

direction comparable to the Young Direction for the second. deployment, the Young sensors
being aligned at 1800 to the Sonic North, to prevent the 3600 /00 discontinuity problem.

Quadrant direction averaging was not incorporated in the Multimet Wind Direction channels,

although it was used for Buoy Heading. Examination of the calculated relative wind direction,

figure 2, showed the buoy North to be heading into the wind for the majority of the
deployment; exceptions were during spells of low wind and were probably due to

combinations of wind and tidal aligning moments. It may be considered desirable to omit

Sonic data for such instances. In contrast, during the second deployment (figure 3), the buoy

did not maintain such good alignment with the wind; this was probably due in part to the
stronger tidal currents, but may also have been due to the modified mooring. Again, it may be

considered desirable to omit Sonic data when the relative wind direction was more than about

±900 .

The wind direction relative to magnetic North, 'Wmd Direction {to)", was calculated from Sonic
Heading + Buoy (magnetic) Heading; figures 4 and 6 show Sonic MWS and Wind Direction (to)

for the two deployments. Examination of the data shows quite large cyclical variations in Wmd
Direction (to), especially during the second deployment; these are correlated to periods of

high values of Heading Standard Deviation (figures 17, 18). Due to a misinterpretation,
quadrant heading averaging in the Formatter was carried out on the basis of the Multimet data

being in degrees (O - 369) and not in digital units (0 - 266). This results in incorrect averaging

when the 3600 /00 discontinuity occurs. However, it would appear from inspection of the data

that this is flagged by very large values of Heading Standard Deviation (100 degrees or more).

The above-mentioned cases of cyclical variations in Wind Direction (to) occurred with

maximum Heading Standard Deviation values of about 10 degrees and with Buoy Heading

nowhere near the 3600 /00 discontinuity. Examination of the data shows that the Buoy Heading

swung through a greater angle than Sonic Direction. This could be due to magnetic materials
within the buoy canisterlhull. Sonic Direction is generally close to Young Heading and is

considered to be correct. To resolve this anomaly, it would be necessary to do a compass

calibration with the buoy in its full working configuration.

Air and Sea Temperatures were plotted; the plot for the first deployment (figure 6) clearly

shows the capsize, afier which the air temperatures were underwater and may give a good
measure of sea temperature at a depth of about 1.6 metres. The sea temperature sensors
could not be expected to measure air temperature correctly afier the capsize. The plot for the

second deployment (figure 7) shows an interesting transient oscillatory sea temperature
change starting at day 329.6

Plots of the differences between the sensor pairs (figures 8 - 11) show that ATl was reading on

average between 0.2 and 0.3 0c higher than AT2 whilst STI was reading on average
approximately 0.2 °c lower than ST2 during the first deployment and 0.1 0c higher than ST2

during the second deployment. Any possiblecorrelation between the temperature differences
and meteorological conditions has yet to be demonstrated.

Scatter plots (figures 12 and 13) of Young wind speed CfWS) against Sonic wind speed (MWS)
showed low scatter, with slopes of 1.037 and 1.026, for the two deployments.

,

-13-

Figure 2. Sonic Direction vs. Day for 1st Deployment

270

Cl
.!:
"to
IV

" 180 ::J:

.!!
c
0

Ul

90

296 299 302 305 308 311 314

Day

Figure 3. Sonic Direction vs. Day for 2nd Deployment

270

Cl
C

"to
IV

" 180 ::J:

.!!
c
0

Ul

90

329 332 335 338 341 344 347

Day

-

-14-

Figure 4. Sonic MWS and Wind Direction (to)
vs. Day for 1st Deployment

40 360

270

30 Wind Direction (to) 180

0
90 ::::. .. <: 0 E :;:: - 20 0 0

Cl)

If)
~

;: Cl
:; -90 ."

<:

~
10 -180

-270

MWS

0 -360
293 296 299 302 305 308 311 314

Day

Figure 5. Sonic MWS and Wind Direction (to)
vs. Day for 2nd Deployment

40 360

270

30 180

0
90 --~ ., <:

E .2 - 20 0 -0
Wind Direction (to) Cl)

If) ~

;: a
:; -90 ."

<:

;:
10 -180

·270

0 ·360
~26 329 332 335 338 341 344 341

• •
I

VI
~

'" ..
~ 10
VI
l!!
:I -E ..
Q.

E
.!
VI ..,
I:
IV

5

-15-

Figure 6. Air and Sea Temperatures
vs. Day for 1 st Deployment

ST1
k"'..................... ST2

AT1
..................... AT2

oll-~~~~-L~~~~~~~~~~~~~~

(j
VI
~

'" ..
~

VI
l!!
:I -E ..
Q.

E ..
I-

IV ..
VI ..,
I: ..

293

10

5

296 299 302 305 308 311

Day

Figure 7. Air and Sea Temperatures
vs. Day for 2nd Deployment

ST1

ST2

AT1

.................... AT2

329 332 335 338 341 344

Day

314

347

-16-

Figure 8. Air Temperature Differences
vs. Day for 1 st Deployment

15 2.5

ATl
.................... AT1-AT2

10 1.5

1.0

0.5

o -0.5
293 296 299 302 305 308 311 314

Day

Figure 9. Air Temperature Differences
vs. Day for 2nd Deployment

ATl

----.---.-- AT1-AT2 2.0

10 1.5

1.0

5 0.5

0.0

o -0.5
326 329 332 335 338 341 344 347

Day

'" I-
et
•
~

I-
et

'" I-
et
•
~

I­
et

~ ...
1/1

Figure 10. Sea
vs. Day for 1 st

-17-

Temperature difference
Deployment

ST1

ITf~~rwv iP,/I,,"'tII;'··~····=·····:··········· ST1-ST2 2.0

1.5

;: 10 1.0
1/1

0.5

0.0

5 "'-i-J.-'-....................L.."'-.o....I1-...... -L.o....I -0.5
293 296 299 302 305 308 311 314

Day

Figure 11. Sea
vs. Day for 2nd

Temperature Difference
Deployment

2.0

ST1
.................... ST1-ST2 1.5

10 1.0

0.5

0.0

5 -0.5
326 329 332 335 338 341 344 347

Day

I
(

'" ...
1/1
•
~ ...
1/1

'" ...
1/1
•
~ ...
1/1

----,_.-----

~
.§.
III

==
Cl
I:
:::J
0
>

~ .. -E -
III

==
Cl
I:
:::J
0
>

-18-

Figure 12. Young WS vs. Sonic MWS
for 1st Deployment

20,-------------------------------------~70

y = 1.9853e-2 + 1.0374x RA2 = 0.996

10

0~--------T---------r_--------~------_4
o 10

MWS (m/s)

. Figure 13. Young WS vs. Sonic WS
for 2nd .Deployment

20

20,---------------------------------------70

10

o

y = 6.2113e-2 + 1.0247x RA2 = 0.997

10

MWS (m/s)
20

Figure 14_
Differences

270

180

'" 90 <:
"U
01

~ 0

.2
<:
o -90
III

-180

.
-270

-19-

Young and Sonic Wind Direction
vs. Day for 2nd Deployment

........... ,..
Sonic Heading

Young Dir - Sonic Dir

....
300 C

o

u
';:
o
III

....
C

'" <:
::J
o
>-

-360 -300
326 329 332 335 338 341 344 347

Day

-20-

Figure 15. Sonic Vertical WS/MWS and Direction
vs. Day for 1 st Deployment

Cl
C

"Cl .. .,
:r

" ." o
If)

Cl
C

"Cl .. .,
:r

.2
c
o

If)

270

180

90

o

-90

-180

-270

Sonic Heading

VertWS/MWS

0.2

0.1

-360 ·0.1
293 296 299 302 305 308 311 314

Figure 16.
vs. Day for

270

180

90

o

-90

-180

Day

Sonic VWS/MWS
2nd Deployment

Sonic Heading

-270 _......... Vert WS/MWS

and Direction

0.3

0.2

0.1

0.0

-360 ·0.1
326 329 332 335 338 341 344 34r

Day

-~ CD
>

-~ .,
>

..
c

."
Cl) --0

~

UI
E
~

Cl
I:

."
III
ID
:c

."

" --o
~

UI
E
~

-21-

Figure 17. Calculated Wind Direction (to)
and r .m.s. heading vs. Day for 1st Deployment

200 720

630

100 540

450

0 360

270

-100 180

90

-200 0
293 296 299 302 305 308 311 314

Day

Figure 18. Calculated Wind Direction (to)
and r.m.s. heading vs. Day for 2nd Deployment

200 720

630

100 540

450

o liEl!~iiI&!,--_____ ~ 360

270

-100 180

90

-200 0
J26 329 332 335 338 341 344 34r

0-
~

I:
0
:;:;
0
Cl)
~

c
."
I:

~

I:
o -o

" ~
is

Heading rms

Corr WO (to)

.....
-22-

Figure 14 shows the difference between the relative wind directions as measured by the Sonic
and Young sensors during the second deployment; Sonic Direction is also shown for reference.
This shows the errors in the Young directions where direction passed through the 3600 /00

discontinuity, due to the lack of quadrant direction averaging in the Muitimet wind direction
processing.

From the ratio of Vertical WS (yWS) to MWS, a measure of Sonic sensor vertical axis alignment

can be achieved. Double axis plots ofVWSIMWS and Sonic Direction (figures IS, 16) showed

an average VWSIMWS of approximately 0.02 (corresponding to about 10 error in alignment),

with some correlation of the two variables. The correlation was particularly noticeable for the

second deployment data, when larger deviations from buoy alignment with the wind direcion

occurred. This suggests that the sensor axis was about SO from vertical in the buoy East-West
plane; this could have occurred due to a static or wind-induced list of the buoy, the sensor

alignment on the mast was unlikely to have been more than about 10 from vertical.

Summary of Data Produced

Raw Data Files

The raw PCMClA Flash Card data are in three binary files

FORMSWAL.IMG Directory and 1st deployment to day 306.2500

FORMSWAL.2MG remainder of 1st deployment and most of 2nd

FORMSWAL.3MG end of 2nd deployment (not useful due to low batteries)

The fourth file, FORMSWAL.4MG, was not retained as the data all lies within the first three files

CricketGraph Data

1st Deployment CG final Day 293.0000 - Day 314.0313

2nd Deployment CG final Day 325.5521 - Day 338.7083

Data Time Stamping

The Multimet Real Time Clock, being a battery backed up hardware clock unaffected by

interrupt conflicts and being known to have a history of good stability, was the best on-board
clock. It was checked on day 356 after the final recovery and found to have lost 197 seconds

over the 31 days since it was previously set up on day 325.

Timing checks of the Multimet Real Time Clock and of the Sonic Processor system clock
relative to the Formatter clock are included in the Meteosat data (+'IMET and +TSON); these
have +ve signiffast relative to the Formatter.

I

• -23-

During the first deployment, the initial values of +TMET and +TSON on day 293 were 0 and + I

minutes and, just prior to the capsize on day 313, the final values were +2 and + I minutes.

Assuming a linear drift of the Multimet clock, it would have been 121 seconds slow on day 313.

From this one can deduce that, On day 313, the Formatter clock was 4 (± I) minutes slow and

the Sonic Processor clock was 3 (± I) minutes slow.

During the second deployment, the initial values of +TMET and +TSON on day 325 were 0 and

+ I minutes and on day 338, prior to battery failure, the values were + I and -5406 minutes; the

latter figure resulted from the progressive clock jumps due to the RTCN application.

Assuming a linear drift of the Multimet clock, it would have been 53 seconds slow on day 338.

From this one can deduce that, on day 338, the Formatter clock was 2 minutes slow. This

demonstrates consistency in the Formatter drift rates of approximately -12 (± 3) seconds/day

for the first deployment and -9 (± 2) seconds/day for the second deployment.

In producing the tabular (CricketGraph) data file for the first deployment, the time stamps

given in 'Day' were simply derived from the Sonic message time stamps which were, in turn,

derived from the FASTCOM RAMdisk file data header, i.e. the Sonic data acquisition start time

from the Sonic Processor system clock. Thus one could apply a linear time correction varying

from +1 minute to +3 minutes over the period day 293 to day 313; this has not been applied, as

it was considered barely significant.

In producing the tabular (CricketGraph) data file for the second deployment, the time stamps

given in 'Day' were derived from a combination of the Sonic message time stamps and the

Formatter clock time stamps. The result of this is that there may be occasional time errors of

up to ± 5 minutes in individual records but, overall, the time correction, if applied, should be

from + I minute to +2 minutes over the period day 325 to day 338; again this has not been

applied, as it was considered barely significant.

Acknowledgements

The SWALES data set was the result of the concerted efforts of many, including the IOSDL

Centre for Ocean Technology Development members of the Met Team, the IOSDL Moorings

Team and the }RC members of the Met Team. The experimental work was funded by the

MAFF Flood and Coastal Defence Division under commission FD0603; analysis of the data will
be under commission FD060 I.

References

I. Clayson, C.H. 1994, Sonic Buoy Formatter Handbook, IOSDL Internal Document

2. Clayson, C.H. and Pascal, RW. 1994, SW ALES Sonic Buoy - Sonic Anemometer Spectral and
Raw Data Report, IOSDL Internal Document

I
I
I

-24-

JlPPENDIX A SOFl'W.AJ.U: LISTINGS

A.l.II.RGSONFILE

REM QuickBasic program to decode ARGOS Dispose File data
REM copied from Telnet into engineering data
REM
REM Use program SORT RECS to further process into final data
REM
REM Author CHCDate 21-09-1993

DIMb$(8)
DIMw(32)
DIM day"Io(S), hrs%(S), mins%(S), mdays%(12)
DIM psd(S) , mws(S)
DIM fita(S) ,va(S)

ON ERROR GOTO Handler 'for opening new output file

REM load days of month array (used to find Julian day)
FORn% = I TO 12:READ mdays%(n%):NEXT
DATA 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30

lNPUT'Enter filename for input data:";f$
OPEN f$ FOR INPUT AS # I
Outfile:
cflag%= 0
lNPUT'Enter filename for output data:";g$
10 FILES g$, resuits in error if not existing already, handled by Handler
IF cflag% = 0 THEN

INPUT 'This file exists. Append data";r$
IF (r$ = "n') OR (r$ = "N") THEN GOTO Outfile

END IF
OPEN g$ FOR APPEND AS #2

REM process the whole file
WHILE NOT EOF(I)
REM First check for start line and correct PTf
Readheader:
IF EOF{l) THEN END
LINE lNPUT#1, h$
IF (LEFT$(h.$, 11) <> '00296 OS060") THEN GOTO Readheader

CLS
PRINT "PIT: ";MID$(h.$, 7, S);

REM start line will be over 30 chars if it contains a fix
IF LEN(h.$) < 30 THEN fixflag% = 0 ELSE fixflag% = I

REM there will be nlines%-I of data, 8 lines per frame
nlines% = VAL(MID$(h.$, 14, 2»:nframes% = (nlines% - 1)/8
PRINT 11 Lines:";nlines%;" Frames:";nframes%

IF fixflag% = I THEN
fixtime$= MID$(h.$, 24, 19)
lat$=MID$(h.$, 4S, 6):long$=MID$(h.$, S3, 7)
PRINT "Fix dateltime "; fixtime$

PRINT "Latitude:"; lat$; " Longditude:"; long$
END IF'

-25-

REM now get the data, decoding each frame individually into 5 records
REM note that acqtime$ is the time of reception of an individual frame

FOR frame% = I TO nframes%
FORm%= I T08

lNPUT#1, b$(m%)
IF'm% = I THEN acqtime$= MID$(b$(m%), I, 19):PRINT acqtime$

FORn%= I T04
REM 1st line is decimal, others are hex
IF' (m% > I) THEN

b$(m%) = RIGHT$(b$(m%), 41)
p% = 1+ 13*(n%-I):n$=MID$(b$(m%), p%, 2)
nl % = ASC(LEIT$(n$,l))
IF'(nl% < 58)THENnl% = nl%- 48ELSEnl% = nl% - 55
n2% = ASC(RIGHT$(n$, I))
IF' (n2% < 58) THEN n2% = n2% - 48 ELSE n2% = n2% - 55
w(4 * (m%- I) +n%) = 16 *nl% + n2%

ELSE
b$(m%) = RIGHT$(b$(m%), 42)
p% = 1+ 13*(n% - 1):n$=MID$(b$(m%), p%, 3)
w(4 * (m%-I) +n%) =VAL(n$)

END IF'
NEXTn%

NEXTm%

REM w(l) to w(32) now contain the 32 bytes of the frame
REM first calculate the acqujsition date/time information
ayear% = VAL(LEFT$(acqtime$, 4))
aday"/o = VAL(MID$(acqtime$, 9, 2))
amonth% = VAL(MID$(acqtime$, 6, 2))
ahr% = VAL(MID$(acqtime$, 12, 2))
amin% = VAL(MID$(acqtime$, 15,2))
asec"/o = VAL(MID$(acqtime$, 18, 2))
ahr = ahr% + amin%/60 + asec%/3600

jday"/o = 0
FOR n% = I TO amonth%

jday% = jday"/o + mdays%(n%)
IF' (n% = 3) AND (INT(ayear%/4) = 0) THEN jday"/o = jday"/o + I

NEXT
jday"/o = jday"/o + aday"/o

PRINT "Acqujsition Day:"; jday"/o;" Time in hrs:";
PRINT USING "##.###"; ahr

REM nOw decode the frame into the 5 records of
REM starttime (hrs%,mins%), PSD, MWS, FiCA, V_MWS, N2
REM inserting 999 type values where parity errors are detected

FORrec% = I TO 5
n%=6*rec%
word& = w(n% - 5) 'word& is the quarter-hours since midnight
bits% = 8: GOSUB Paritycheck
IF' word& < 99 THEN

hrs%(rec"/o) = INT(word&l4)
mins%(rec%) = 15*(word& - 4*hrs%(rec%))

ELSE
hrs%(rec%) = 99:mins%(rec%) = 99

END IF'

-26-

word& = w(n% - 4)*4 + (w(n% - 3) AND 192)/64 'PSD
bits% = 10: GOSUB Paritycheck
IF' word& < 9999 THEN

psd(rec%) = .01 *word& - 6
ELSE

psd(rec%) = -9.99
END IF'

word& = (w(n% - 3) AND 63)*16 + (w(n% - 2) AND 240)/16 'MWS
bits% = 10: GOSUB Paritycheck
IF' word& < 9999 THEN

mws(rec%) = .1 *word&
ELSE

mws(rec%) = 99.9
END IF'

word& = (w(n% - 2)AND 15)*64 + (w(n% - l)AND 252)/4 'FTCA
bits% = 10: GOSUB Paritycheck
IF' word& < 9999 THEN

fita(rec%) = .01 *word& - 6
ELSE

fita(rec%) = -9.99
END IF'

word& = (w(n% - 1) AND 3)*256 + w(n%) 'V_NNVS
bits% = 10: GOSUB Paritycheck
IF' word& < 9999 THEN

vm(rec%) = .02*(word& - 256)
ELSE

vm(rec"lo) = +9.99
END IF'

NEXTrec%

word& = w(31) * 256 + w(32) '16 bit word for N2 values
bits% = 16: GOSUB Paritycheck
IF' (word& < 99999&) THEN

n% = 4096
FORrec% = 1 TO 5

n2(rec%) = INT(word& / n%) AND 7
n%=n%/8

NEXT
ELSE

FORrec% = 1 TO 5
n2(rec%) = 9

NEXT
END IF'

PRINT "DAYHH:MM +P.SD NNV.S +F.lT +V.NNVN'

REM impute the data day number from the acq day and the record time
FORrec% = 1 TO 5

rhr = hrs%(rec"lo) + mins%(rec%)/60
IF' ABS(ahr - rhr) > 6 THEN

day%(rec%) = jday% - 1
IF'day%(rec%) = 0 THEN day%(rec%) = 365

ELSE
day%(rec%) = jday%

END IF'

REM print to screen in format DAY HH:MM +PSD NNV.S +F.IT + V.NNV N
REM julian day, hours and minutes of data start time + parameters
REM PSD NNVS PiCA, Vert _NNVS and N2

1--"" --"-"-""­
-----------:---~-----"--------.----

I
I ,

~

-I
f

~
-
--
~
~
~
I

~
_i
t:",

REM
REM print data to output file in format
REM

-27-

lDA. YREC<T>lDA.YACQ<T>LA.'IITU<T>LON.GDIT<T>+P.SD<T>MW.S<T>+F.IT<T>+V.MW
<T>N<CR>

REM where <T> is a TAB character and <CR> is Carriage Return

PRINT USING "### ";day"lo(rec%);
PRINT USING "##:";hrs%(rec%);
PRINT USING"## ";rnins%(rec%);

IF (hrs%(rec%) < 99) AND (rnins%(rec%) < 99) THEN
PRINT #2, USING "###.####";day"lo(rec%) + hrs%(rec%)/24 + rnins%(rec%)/1440;

ELSE
PRINT#2,"999.9999";

END IF
PRINT#2,CHR$(9);

IF (fudlag% = 1) THEN
PRINT #2, USING "###.####";jday"1o + ahr%/24 +amin%/1440 + asec%/86400&;
PRINT#2,CHR$(9);
PRINT #2, lat$;CHR$(9);Jong$;CHR$(9);

ELSE
PRINT #2,'999.9999";CHR$(9);"99.999";CHR$(9);'999.999";CHR$(9);

END IF

PRINT USING '+#.## ';psd(rec%);
PRINT #2, USING '+#.##';psd(rec%);
PRINT#2,CHR$(9);

PRINT USING '##.# '; mws(rec%);
PRINT #2, USING '##.#';mws(rec%);
PRINT#2,CHR$(9);

PRINT USING "+#.## ';fita(rec%);
PRINT #2, USING "+#.##";fita(rec%);
PRINT#2,CHR$(9);

PRINT USING "+#.## ";vm(rec%);
PRINT #2, USING '+#.##";vm(rec%);
PRINT#2,CHR$(9);

PRINT USING '#"; n2(rec%)
PRINT #2, USING "#"; n2(rec%)

NEXTrec%
NEXTframe%
WEND

CLOSE#1
CLOSE#2
END

REM Subroutines
Paritycheck:

REM checks for even parity
p%=O:b&= 1
FOR bit% = 1 TO bits%

IF (word& AND b&) '!HEN p% = p% XOR 1
b&=b&*2

NEXT

IFp%=OTHEN
word& = word&AND (2 A (bits% - 1) - 1)

11

il

ELSEIF bits% = 8 THEN
word&= 99

ELSEIF bits% = 10 THEN
word&= 9999

END IF

-28-

IF p% = 0 AND bits% = 16 THEN word& = 99999&
REM at present error in n2 parity bit

REI'URN

Handler:
IF (ERL= 10) AND (ERR = 53) THEN

OPEN g$ FOR OUTPUT AS #2
cflag"1o = I
CLOSE#2

END IF
RESUME NEXT

.lL2 SORT REes

REM QuickBasic Program SORT RECS
REM - this sorts Sonic Buoy ARGOS data (which has already been
REM decoded from DS format by the program ARGSONFILE)
REM into chronological order and selects the best
REM Oowest weighted error) message if duplicates exist.
REM
REM Produces a file suitable for import into CricketGraph
REM
REM Author CHC Date 23-09-1993

REM Can process a file contaioning up to 1000 messages
DIM day(1000), flag"Io(1000),indx%(1000)

ON ERROR GOTO Handler 'for opening new output file

INPUT ''Enter name of file to be sorted:";i$
OPEN i$ FOR INPUT AS # I
Outfile:
cflag"1o = 0
INPUT 'Enter filename for output data:";g$
10 FILES g$, results in error if not existing already, handled by Handler
IF cflag"1o = 0 THEN

INPUT "This file exists. Append data";r$
IF (r$ = 'n') OR (r$ = 'N") THEN GOTO Outfile

END IF
OPEN g$ FOR APPEND AS #2

FOR n% = I TO 1000:flag"IoO%) = O:NEXT

REM First find the number of messages, lin%,
REM and allot a weighted error flag"IoO to each message
1%= I
WHILE NOT EOF(I)

Getline:
LINE INPUT#1, h$
IF LEFT$(h$,8) = '999.9999" THEN

dayO%) =VAL(LEIT$(h$,8»
flag"IoO%)=15: 1%=1%+ I
GOTO Getline

END IF
dayO%)=VAL{LEFT$(h$,8»

-29-

IF MID$(h$, 10,1) = "9" THEN flag"/o(1%) = flag"/o(1%) + 1 'no fix
IF MID$(h$,35, 1) = "9" THEN flag"/o(1%) = flag"/o(1%) + 4 'no psd
IF MID$(h$,41 ,1) = "9" THEN flag"/o(1%) = flag"/o(1%) + 4 'no mws
IFMID$(h$,46,1) = "9' THEN flag"/o(1%) = flag"/o(1%) + 3 'no fiLa
IF MID$(h$,52, 1) = "9" THEN flag"/o(1%) = flag"/o(1%) + 2 'no v_mws
IF MID$(h$,57,1) = '9' THEN flag"/o(1%) = flag"/o(1%) + 1 'no n2
1%=1%+1

WEND
CLOSE#1

n% = 1% - 1: lin%=n%
PRINT "File contains ";lin%;" lines of data"

REM Now sort into chronological order by producing an index table
REM Method from Press, Flannery et al. 'The Art of Scientific Computing"
FOR j% = 1 TO n%:indx%G%) = j%:NEXT
IF(n%= 1) THEN END
1%=n%/2+ 1
ir%=n%

WHILE (ir% > 1)
IF (1% > 1) THEN

1%=1%-1
indxt% = indx%(1%)
q = day(indxt%)

ELSE
indxt% = indx%(ir%)
q = day(indxt%)
indx%(ir%) = indx%(I)
ir% = ir%-1
IF (ir% = 1) THENindx%(l) = indxt%

END IF
i% = 1%:j% = 2*1%
WHILE G% <= ir%)

IF G% < ir%) AND (day(indx%G%» < day(indx%G%+ 1))) THEN j% = j%+ 1
IF (q < day(indx%G%») THEN

indx%(i%) = indx%G%)
i%=j%
j%=j%+i%

ELSE
j%=ir%+ 1

END IF
WEND

indx%(i%) = indxt%
WEND

REM Now use the index table to identify groups messages having
REM the same dayltime and to select the one in each group with
REM the lowest weighted error flag
REM This message is then written to the output file in the
REM correct format for use in CriclretGraph, etc.

OPEN f$ AS # I LEN=5S
FIELD#I, SAS day$,1 AS t$,SAS aqd$, I AS t$,6 AS lat$,1 AS t$,7 AS longS, 1 AS t$,5AS psd$,1
AS t$,4 AS mws$, 1 AS t$,5 AS fita$, 1 AS t$,5 AS vmws$, 1 AS t$, I AS n2$, I AS cr$
lastday$ = 00: stfiag"/o = 0
FORn%= 1 TOlin%

dayn = day(indx%(n%»
IF (n% = 1) THEN

lastday = dayn
nl%=n%

ELSE
IF (dayn <> lastday) THEN

n2%=n%-1
best% = 100

-30-

PRINT n% - nl %;" duplicate(s)"
mRp%= nl%TO n2%

IF' flag"/O(indx%(p%)) < best% THEN
best% = flag"/O(indx%(p%))
bestp%=p%

END IF'
NEXT
GE:I'#l, indx%(bestp%)
PRINT day$;" ";aqd$;" ";lat$;1I ";long$;1I ";psd$;" I';mws$;" ";fita$;" ";vrnWS$;" ";n2$
PRINT#2,

day$;CHR$(9);aqd$;CHR$(9);lat$;CHR$(9);10ng$;CHR$(9);psd$;CHR$(9);mws$;CHR$(9);fita$;C
HR$(9);vmws$;CHR$(9);n2$

lastday = dayn
nl%=n%

END IF'
END IF'
lastday$ = dayS

NEXTn%
CLOSE#l
CLOSE#2

END

Handler:
IF' (ERL = 10) AND (ERR = 53) THEN

OPEN g$ FOR OUI'PUI' AS #2
cfiag"/o = 1
CLOSE#2

END IF'
RESUME NEXT

11..3 ME'l'EO SORT

REM QuickBasic program METEOSORT
REM - sorts Meteosat Sonic Buoy data
REM in a day folder and produces an error file

REM Use the error file to show errors
REM then edit them and re-ruIi this prog

REM 07-10-93
REMCHC

ON ERROR GOTO Handler

DIM 1$(4)
DIM var(4,22)
DIM flag"/o(5)

REM open output file (Sorted)
INPUT "Enter day number Gulian) to be analysed";d$
1$ = "WooigB-CHC:CHC-mac:Swales:meteo-" + d$ + ":Sorted"
g$ = 'WooigS-CHC:CHC-mac:Swales:meteo-" + d$ + ":Errors"
OPEN 1$ mR OUI'PUI' AS #2
OPEN g$ mR OUI'PUI' AS #3

REM process all the files in the folder "meteo-" + d$
mRhh% = OTO 23

hh$ = STR$(hh%)

-31-

IF (hh% < 10) THENMID$(hh$,I,I) = '0" ELSE hh$ = RIGHI'$(hh$,2)
f$ = 'WooigS-CHC:CHC-mac:Swales:meteo-" + d$ + ':'+ hh$
OPEN f$ FOR INPUT AS # I

REM get the ESA header line
LINE INPUT # I, h$
IF (LEFT$(h$,4) = "\M /") THEN

h$ = LEFT$(h$,40) , the useful part of the ESA header
PRlNTh$
jday"/o = VAL(MlD$(h$, 24, 3»: hr% = VAL(MID$(h$, 28, 2»

ELSE
jday"/o = 999:hr% = 99

END IF

REM get the 10S header lines (BOI, etc.)
Id%=O
FOR 1% = I T03

LlNE INPUT# I, h$
PRlNTh$
IF (INSTR(h$, .,') > 0) THEN Id% = 1%:1% = 3

NEXT
IF (VAL(h$) = jday"/o) THEN

PRlNT "Header Format OK"
ELSE

PRlNT "Header Format Faultyl"
PRlNT#3, hh%; "Header Format Faulty'

END IF
IF Qd% > 0) THEN

PRlNT ''Missing line, re-reading 1st ';Id%
PRlNT#3, hh%; "Missing line(s)"
CLOSE#I
OPEN f$ FOR INPUT AS #1
FOR 1% = I TOld%

LINE INPUT # I, h$
NEXT

END IF

REM the next 4 lines should be quarter-hourly data
try% =0
FORqbr%= I T04

var(qbr%,I) = jday"/o + br% /241: var(qbr%,2) = br%
LINE INPUT#I, I$(qbr%)
IF (INSTRQ$(qbr%), ',,) = 0) AND (try"/o < 4) THEN

qbr% = O:try"/o = try"/o + I
PRlNT 'Excess/faulty header line'

GOTORetry
END IF
PRlNTI$(qbr%)
surn%=O
FOR ch% = I TO 59

IF (MlDQ(qbr%), ch%, I) = ',j THEN surn% = surn% + I
NEXT

IF (surn% = 12) THEN
flag%(qbr%) = 0: cpos% = 0
FORpar% = I TO 13

CALL CheckNext(qbr%, par%)
NEXT
REMPRlNT

ELSE
PRlNT ''Line too corrupted to analyse'
PRlNT#3, hh%; • Line ";qbr%; , corrupted"

flag"/o(qb:r"/o) = -9999
END IF'
var(qb:r"/o,21) = flag"A.(qhr%)
Retry:

NEXTqhr%

REM now get the housekeeping data line
LINE INPUT#1, hskeep$
PRINT hskeep$
flag"/o(5) = 0: cpos% = 0
FORpar%= 1 T05

CALL CheckHskeep(par%)
NEXT

-32-

REM finally save to CricketGraph format output file
FOR qb:r"A. = 1 TO 4

var(qb:r"/o,22) = tlag"/o(5)
FOR par% = 1 TO 22

PRINT#2, var(qb:r"/o, par%);CHR$(9);
NEXT
PRINT#2,IIH

REM continue with next input file
NEXT

CLOSE #1

Missing:
NEXThh%

CLOSE#2
CLOSE#3
END

SUB CheckNext(1%, par%) STATIC
SHARED 1$0, varO, cpos%, flag"/oO

1$(1%) = 1$(1%) + CHR$(10)
IF' (par% = 13) THEN t$ = CHR$(lO) ELSE t$ = ","

parlen% = 4:den% = 10
IF' (par% = 1) THENparlen% = 2:den% = 4
IF' (par% = 3) OR (par% = 12) OR (par% = 13) THEN parlen% = 3
IF' (par% = 2) OR (par% = 7) THEN den% = 100
IF' (par% = 13) THEN den% = 1
cposl % = INSTR(cpos% + 1,1$(1%), t$)

, REM PRINT cposl %;11 ";
IF' ((cposl% - cpos%) = (parlen% + 1)) THEN

var(1%, par% + 2) = VAL(MlD$(1$(1%), cpos% + 1, parlen%)) I den%
ELSE

var(l%, par% + 2) = VAL(STRING$(parlen%, "9"))
flag"/o(1%) = flag"/o(1%) + 2"(par% - 1)

END IF'
cpos% = cposl %

END SUB

SUB CheckHskeep(par%) STATIC
SHARED hskeep$, var(), cpos%, flag"/o

hskeep$ = hskeep$ + CHR$(lO)
IF' (par% = 5) THENt$ = CHR$(10) ELSE t$ = .,"

parlen% = 3:den% = 1
IF' (par% = 1) THEN den% = 10

I;

11

-33-

IF (par% = 4) OR (par"/o = 5) TIfEN parlen% = 5
cposl% = INSTR(cpos% + I, hskeep$, t$)
REM PRINT cposl %;' ';
IF «cposl% - cpos%) = (parlen% + I)) TIfEN

FOR 1% = I T04
var(l%, par"/o + IS) = VAL(MID$(hskeep$, cpos% + I, parlen%)) 1 den%

NEXT
ELSE

FOR 1% = I T04
var(l%, par"/o + 15) = VAL(STRlNG$(parlen%, "9"))

NEXT
flag%(5) = flag%(5) + 2A(par"/o - I)

END IF
cpos% = cposl %

END SUB

Handler:
Number = ERR
IF (Number = 53) TIfEN

IF (RIGHT$(f$, I) <> 'd') TIfEN
PRINT "Hour '; hh$; , not found"
PRINT#3,"Hour ";hh$; 11 not found!!
CLOSE #1
RESUME Missing

ELSE
PRINT 'Cannot open output file"
CLOSE #2
END

END IF
ELSE

PRINT "Error '; Number
INPUT "Press Enter to exit";r$
CLOSE#I
CLOSE#2
CLOSE#3
END

END IF

.L44MT01M.C

1* Source Code of 4MTO IM.C
for converting a 4 Mbyte flashcard file c:\thincard\test
(produced by reading card on thincard drive with batch file T.BAT)
to 4 separate I Mbyte files in current directory *1

#include<stdio.h>
#include<stdlib.h>
#include<conio.h>

mainQ
{

FILE * fin;
FILE *fout;

intc;

longn;

if ((fin = fopen(,c:\\thincard\\test", "rb")) != NULL)
{

-34-

if ((fout = fopen('~esUmg", ''wb+'')) != NULL)
(
printf("Converting 1st Mbyteln");

else

for (n = 0; n < 1048576L; n++) 1* copy 1st meg to testfile *1
(
c = fgetc(fin);

(

}

fputc(c, fout);
}

printf("I'ransfer OKln'');
}

(
printf(''Failed to open OIP Fileln");
}

fclose(fout) ;
printf("Press a key to continueln');
getchO;
1* copy 2nd meg to test.2mg *1

if ((fout = fopen('~est.2mg", ''wb+'')) != NULL)
(
printf("Converting 2nd Mbyteln");
for (n = 0; n < 1048576L; n++)

else

(
c = fgetc(fin);
fputc(c, fout);
}

printf("I'ransfer OKln");
}

(
printf("Failed to open OIP Fileln");
}

fclose(fout) ;
printf(,'Press a key to continueln");
getchO;

1* copy 3rd meg to test.3mg *1

if «fout = fopen0est.3mg", "wb+")) != NULL)
(
printf("Converting 3rd Mbyteln");
for (n = 0; n < 1048576L; n++)

else

(
c = fgetc(fin);
fputc(c, fout);
}

printf("I'ransfer OKln");
}

(
printf(''Failed to open OIP Fileln');
}

fclose(fout);
printf('Press a key to continueln");
getch();

1* copy 4th meg to test.4mg *1

if ((fout = fopen("test.4mg", "wb+'')) != NULL)
{

r:

t
1
1

I

else

printf("Converting 4th Mbyteln,,};
for (n = 0; n < 1048576L; n++)

(
c = fgetc(/in);
fputc(c, fout);
}

printfCTransfer aKIn");
}

{
printf("Failed to open alP Fileln"};
}

fclose(fout);

}
else

(
printf{"Failed to open IIP Fileln");
}

retumO;
}

A.S FORMDECODE

REM QuickBasic Program FORMDECODE

-35-

REM for decocfing the ARGaS database binary parts
REM of a Formatter file
REM CHC 24-01-94

DIM W(32), qtrs%(5),PSD(5),MWS(5),FlTA(5),VM(5)
OPEN 'Wooig8-CHC:CHC-mac:Swales:FORMSWAL.M2" AS # 1 LEN = 416
OPEN 'WooigB-CHC:CHC-mac:Swales:decoded2" FOR OUTPUT AS #2
F1ELD#1, 128 AS arg$, 288ASmet$
GET#1,l .
db%=1
WHILE NOT EOF(1)

PRlNTdb%
GET# 1 ,db%:db%=db%+ 1

REM next bit taken from argsonfile
FOR frame% = 1 TO 4

FORm% = 1 TO 32
W(m%) = ASC(MlD$(arg$,32*(frame%-1) + m%,1»

NEXTm%

REM w(1) to w(32) now contain the 32 bytes of the frame

REM now decode the frame into the 5 records of
REM starttime (quarters), PSD, MWS, FiCA, V_MWS, N2
REM inserting 999 type values where parity errors are detected

FORREC% = 1 TO 5
n%=6*REC%
word& = W(n% - 5) 'word& is the quarter-hours since midnight
bits% = 8: GOSUB Paritycheck
IFword& < 99 THEN

qtrs%(REC%) = word&
ELSE

qtrs%(REC%) = 99

-36-

END IF'

word& = W(n% - 4)*4 + (W(n% - 3) AND 192)/64 'PSD
bits% = 10: GOSUB Paritycheck
IF' word& < 9999 THEN

PSD(REC%) = .01 *word& - 6
ELSE

PSD(REC%) = -9.99
END IF'

word& = (W(n% - 3) AND 63)*16 + (W(n% - 2) AND 240)/16 'MWS
bits% = 10: GOSUB Paritycheck
IF' word& < 9999 THEN

MWS(REC%) = .1*word&
ELSE

MWS(REC%) = 99.9
END IF'

word& = (W(n% - 2)AND 15)*64 + (W(n% - l)AND 252)/4 'FIT_A
bits% = 10: GOSUB Paritycheck
IF'word& < 9999 THEN

FITA(REC%) = .01 *word& - 6
ELSE

FITA(REC%) = -9.99
END IF'

word& = (W(n% - 1) AND 3)*256 + W(n%) 'V_MWS
bits% = 10: GOSUB Paritycheck
IF'word& < 9999 THEN

VM(REC%) = .02*(word& - 256)
ELSE

VM(REC%) = +9.99
END IF'

NEXT REC"1o

word& = W(31) * 256 + W(32) '16 bit word for N2 values
bits% = 16: GOSUB Paritycheck
IF' (word& < 99999&) THEN

n% = 4096
FORREC%= 1 TOS

n2(REC%) = INT(word& 1 n%) AND 7
n%=n%/8

NEXT
ELSE

FORREC% = 1 TO 5
n2(REC%) = 9

NEXT
END IF'
FORREC% = 1 TO 5

PRINT
#2.qtrs%(REC%);·.·;PSD(REC%);·.·;MWS(REC%); ... ·;FITA(REC%);·.·;VM(REC%);· ... ;n2(REC%)

NEXT

NEXT frame%
PRINT#2.met$

WEND
CLOSE #1

END

REM Subroutines

I
I
I
I

~
f

I

I
I

11

11

Paritycheck:
REM checks for even parity
p%=O:b&= I
FOR bit"/o = I TO bits%

-37-

IF (word& AND b&) THEN p% = p% XOR I
b&=b&*2

NEXT

IFp%=OTHEN
word& = word&AND (2A(bits% - I) - I)

ELSEIF bits% = 8 THEN
word&= 99

ELSEIF bits% = 10 THEN
word&= 9999

END IF
IF p% = 0 AND bits% = 16 THEN word& = 99999&
REM at present error in n2 parity bit

RE:I'URN

A.6S0NDmN

REM QuickBasic Program SONDIRN.BAS
REM to calculate sonic wind direction from vectors
REM using tabular data file as input
REM 180 deg added to directions to match Young
REM chc 15/2/94

OPEN 'WooigB-CHC:CHC-mac:Swales:Formatter: 1st deployment: 1st deployment CG copy"
FOR INPUT AS #1
OPEN 'Wooig8-CHC:CHC-mac:Swales:Formatter: 1st deployment: 1st deployment CG mod"
FOR OUTPUT AS #2
REM Day PSD MWS (m/s) North WS (m/s) East WS (m/s) Vert WS (m/s) Fit-A ATI

AT2
REM STI ST2 YoungWS (m/s) Young Direction Battery Voltage Heading

Headingrrns
REM Tmet Tson ATI-AT2 STI-ST2

1%=0: radtodeg= 180/3.14159
WHlLENOTEOF(I)

INPUT#1,day$,psd$,mws$,north$,east$,vert$,fita$,atl$,at2$
INPUT# I ,st I $,st2$, yws$,yd$,bat$,hdg$,hrrns$
INPUT#1,tmet$,tson$,atd$,std$
1%=1%+ I
REM PRINT day$,psd$,mws$,east$, north$,vert$;" ";
PRINT 1%, day$

e = VAL(east$): n = VAL(north$)
REM: PRINT e, n;":u;

IF (n <> 0) THEN
th = radtodeg * ATN(e 1 n)

ELSE
IF (e > 0) THENth= 270ELSEth = 90
PRINT#2,th

END IF

IFn>OTHEN
th=th+ 180
PRINT#2,th

END IF

lFe < OANDn< o THEN
th=th
PRINT#2,th

END IF
lFe> OANDn< o THEN

th=360+th
PRINT#2, th

END IF
REMPRINTth
REM INPIIT r$

WEND

CLOSE#l
CLOSE#2

-38-

I
~
I ,

I
l

~
I
I
I
I
I

-39-

APPENDIX B DATA FORMATS

Appendix B.l Raw Data Files

The first 256 kbytes of FORMSWAL.IMG consist of consecutive dITectory entries; these are

each 32 bytes in length, starting from location 0, with the following fonnat:

where

vjjjhhmmbffilnnv2JJJv I v3v400000

v is a marker character

jjj is the Fonnatter cleck Julian Day number (0 - 365)

hh is the Fonnatter clock hours (0 - 23)

mm is the Fonnatter clock minutes (0 - 59)

b is the FiashCard Start Block (0 - 63)

ffis the FiashCard Offset (0 - 65535)

II is the record length (0 - 65535)

nu is the record number (0 - 65535)

v2 is the SonicMWS expressed as div«int) (10 * sonic_mws + 0.5), 512).rem

JJJ is Sonic Processor message Julian Day number

vI is the PSD expressed as div«int) (100 * (6 + psd) - 0.5), 512).rem

v3 is the FiCa expressed as div«int) (100 * (6 + fica) - 0.5), 512).rem

v4 is the Vertical WE expressed as dive (int) (50 * vert_mean + 256.5), 512) .rem

00000 are five null characters.

The remaining 768 kbytes of FORMSWAL.IMG, starting at location 262144, consist of

consecutive ARGOS and Meteosat messages (128 and 288 bytes, respectively)

An example of the ARGOS message contents is given below as 4 frames of 32 bytes in hex

ASCll fonnat.

A36CEOEFI4E890E5409E98E71169COC6ACE812E340AE4CE893628096AOE8F7FF

145A207DECED95DF809E2EF19661409E40E817E340AE66EFI8E5AO~9C7FF

9965EOB67AEF9A69EODEC8E4IBE820B690ED9CEA80CF02E9lD6740CEB2EAC7FF

IE6760BECAEF9F6B60DEABEBA06B60DEE2E92 I 6D60E7 I 2F222EAAODEDEFI C7FF

The 32 bytes of a frame are in a highly packed fonnat, which contains five quarter-hourly sets

of values ofPSD, MWS, Fit A and Vertical MWS; thus a satellite pass will nonnally acquire all

four frames, i.e. twenty quarter-hourly sets, or 5 hours of data.

-40-

We shall denote the five quarter-hourly sets in a frame by suffices a - e

Each quarter-hourly set of data in a message contains:

o

PSD

time of data acquisition period start in quarter-hours since midnight

(this has the range 0 to 95, which can be expressed as a 7 bit binary number

bits 00 (lsb) to 06 (rnsb), with an added even parity bit PO)

log I O(Power Spectral Density * fA 5/3

(this is converted to a 9 bit binary value OOOh to IFFh,

bits PSDO (lsb) to PSD8 (msb), with added parity bit PPSD,

by taking the remainder of [(100 * (6 + PSD) - 0.5) divided by 512].

This gives a nominal range of -6.00 to -0.89, for OOOh to IFFh,

although secondary ranges, such as -0.88 to +4.23, exist)

MWS Mean Wind Speed

(this is converted to a 9 bit binary value OOOh to IFFh,

bits MWSO (lsb) to MWS8 (msb), with added parity bit PMWS,

by taking the remainder of [(10 * MWS + 0.5) divided by 512]

This gives the nominal range of 0.0 to 51.1 m/s, for OOOh to IFFh,

although secondary ranges, such as 51.2 to 102.3, exist)

Coefficient 'a', for linear regression fit ofPSD vs 10glO(frequency)

over the frequency range 2 - 4Hz, PSD = a + b.loglO(frequency)

(this is converted to a 9 bit binary value OOOh to IFFh,

bits FiCAO (lsb) toFiCAS (rnsb), with added parity bit PFiCA, as for PSD)

Vertical Mean Wind Speed

(this is converted to a 9 bit binary value OOOh to IFFh,

bits V_MO (lsb) to V)M8 (msb), with added parity bit PV_M,

by taking the remainder of [(50 * V_M + 256.5) divided by 512]

This gives a nominal range of-5.12 to +5.11, forOOOh to IFFh,

although secondary ranges, such as +5.12 to + 15.34, exist)

A quarter-hourly set of the above parameters amounts to 48 bits (6 bytes), so that 5 sets

amount to 30 bytes, bytes 1 to 30, leaving 2 bytes in the frame free for additional data. These

two bytes are used to convey the number of Multimet messages successfully used in the

averaging process over the Sonic acquisition period, N2. However, since N2 has the range 0

to 10 (4 bit binary), we can not fit five x 4 bits into 2 bytes and we have to subtract 3 from the

N2 values, setting negative values to O. i.e. the resulting (N2-3) range is 0 to 7 (3 bit binary),

leaving one bit free for an even parity check for the two bytes.

Bytes 31 and 32 are packed with the (N2-3) values as follows:

,

~ It

I.'.'i •.. · .•• I

~
~i I.

··f

~. ,
11 +;

'.~ I
~t ...•.•••.. ,
... ~

j~ .. '.' I t

I

I

I
i,

,
I
I
I

-41-

The data format is summarised in tabular form below, shOwing each byte as one line with the

most significant bit to the left, from byte 1 to byte32:

An example of the Meteosat message contents (288 bytes) is given below:

BOl<CR><LF>

51005<CR><LF>

256<CR><LF>

32,-170,013,-001,+001,-005,-159,+ 126,+ 125,+ 117,+ 120,009,010<CR><1F>

33,-162,014,+002,+005,-003,-147,+ 132,+ 128,+ 118,+ 121,QI0,009<CR><LF>

34,-173,013,+000,+001,-003,-160,+ 136,+ 134,+ 119,+ 122,010,01O<CR><LF>

35,-164,014,-005,-003,-005,-146,+ 137,+ 136,+ 120,+ 123,011,011 <CR><LF>

231,122,000,-0000, +000 1 < CR> <LF> <CR><LF>

The format of this message is quite simple; the first three lines are, respectively, the buoy ID,

the niminallatitude (510 North) and 10ngditude (0050 West) and the Julian Day number (256).

-42-

The next four lines include a combination of Sonic and Multimet data in the format:

QQ,+PSD,MWS,N_M,E_M,V_M,FtA,ATI,AT2,STI,ST2,YWI,YDI

where QQ = Quarter-hours since midnight (range 00 - 96)

+PSD = 100 * loglO(power Spectral Density * fA 5/3

MWS = 10 * (Mean Wmd Speed in mls)

N_M = 10 * (North Mean component of Wind Speed in mls)

E_M = 10 * (East Mean component ofWmd Speed in mls)

V_M = 10 * (Vertical Mean component ofWindSpeedinmls)

FtA = 100 * Coefficient 'a', for linear regression fit ofPSD vs logIO(frequency)

(over the frequency range 2 - 4Hz, PSD = a + b.logIO(frequency))

ATI = 10 * (Mean Air Temperature from sensor I in oc)

AT2 = 10 * (Mean Air Temperature from sensor 2 in oC)

STI = 10 * (Mean Sea Temperature from sensor I in oc)

STI = 10 * (Mean Sea Temperature from sensor 2 in oc)

YWI = 10* (MeanYoungAQI WindSpeedinmls)

YDI = MeanYoungAQI Wind Direction in degrees.

The final line includes housekeeping data in the format:

where

BBB,HHH,HSD,+TMET,+TSON

BBB = 10 * Mean BatteryVoltageon the 24Vbus

HHH = Mean Buoy Heading in degrees magnetic

HSD = Standard Deviation of Heading in degrees

+TMET = Time difference between Multimet and Formatter Real Time Clocks

(+ve for Multimet clock ahead ofFormatter clock)

+TSON = Time difference between Sonic and Formatter Real Time Clocks

(+ve for Sonic clock ahead ofFormatter clock)

