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It is important to understand how and where pollution and other anthropogenic processes compromise the
ability of urban soil to serve as a component of the natural infrastructure. An extensive survey of the topsoil of
theGreater LondonArea (GLA) in theUnitedKingdomhas recently been completed by a non-probability system-
atic sampling scheme.We studieddata on lead content from this survey.Weexamined anoverall hypothesis that
land use, as recorded at the time of sampling, is an important source of the variation of soil lead content, and we
examined specific orthogonal contrasts to test particular hypotheses about land use effects. The assumption that
the residuals from land use effects are independent random variables cannot be sustained because of the
non-probability sampling. For this reasonmodel-based analyseswere used to test the hypotheses. One particular
contrast, between the lead content in the soil of domestic gardens and that in the soil under parkland or recre-
ational land, was modelled as a spatially dependent random variable, predicted optimally by cokriging.
We found that land use is an important source of variation in lead content of topsoil. Industrial sites had the
largest mean lead content, followed by domestic gardens. Detailed contrasts between land uses are reported.
For example, the lead content in soil of parkland did not differ significantly from that of recreational land, but
the soil in these two land uses, considered together, had significantly less lead than did the soil of domestic
gardens. Local cokriging predictions of this contrast varied substantially, and were larger in outer parts of the
GLA, particularly in the south west.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1. Introduction

Traditionally soil survey and inventory has been focussed in the
rural environment, to provide information for agricultural extension,
catchment management, etc. In the last 25 years or so there has been
increasing interest in the soil of urban environments (Bullock and
Gregory, 1991). It is recognized that these soils are influenced by
human activity to a unique extent (Craul, 1985) and that urban soil
quality canhave a direct influence onhumanhealth. In particular humans
are exposed to contaminants present in the soil both through inhalation
and ingestion (Mielke et al, 2007), and thismayhavedirect consequences
for health and wellbeing (Miranda et al., 2007).

This growing awareness of the importance of urban soils has
resulted in increasing activity to survey them. Johnson et al (2011)
provide accounts of geochemical surveys of urban soils in several
European cities, and urban sites have been introduced into the network
of long-term ecological research sites in the United States (Bain et al.,
2012). In 1992 the British Geological Survey (BGS) extended its geo-
chemical baseline survey of the environment, which includes soil sam-
pling, to include urban soils (Fordyce et al., 2005). Since then more
erms of the Creative Commons
tribution, and reproduction in
re credited.

blished by Elsevier B.V. All rights re
than 20major urban centres in the UK have been surveyed. The resulting
data have been used to study the spatial distribution of potentially haz-
ardous elements in soil, notably metals (e.g. Marchant et al., 2011;
Rawlins et al., 2005).

Lead in urban soil is of considerable interest. It is strongly influenced
by human activity, and diffuse lead pollution of the soil arises from in-
dustrial use of lead and from the past use of lead tetraethyl as an addi-
tive in petrol. In the past lead pipingwas extensively used for plumbing
and lead was a major constituent of paints. All these anthropogenic
sources of lead are particularly dense in the urban environment, and
so lead is commonly elevated both in urban soils (Clark et al, 2006)
and in periurban soils (Rawlins et al, 2012). Furthermore, lead is persis-
tent in soils and sediments because it is strongly bound by various soil
minerals (Maurice, 2009), so historical land usemay have a pronounced
‘signature’ in the contemporary content of soil lead. This lead is a threat
to human health. The resuspension of soil lead is an important source of
atmospheric lead, which may be inhaled and so absorbed (Laidlaw and
Filippelli, 2008). The ingestion of soil is another important pathway by
which soil lead can be absorbed, particularly by children (Guney et al.,
2010). Another pathway for the uptake of lead is possible if some
urban soils, such as domestic gardens, are used to grow vegetables for
human consumption (Davies et al, 1979).

It is therefore important to understand the origins and distribu-
tion of lead, as well as other metals, in the urban soil. In the present
paper we use data from a recent extensive survey of the topsoil across
the whole of London to examine specific orthogonal hypotheses about
served.
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how land use, recorded at the time of sampling, accounts for variations
in total soil lead content. This requires a model-based analysis because
the survey, like many others carried out to provide geochemical base-
line data, was not conducted by probability sampling. Such an analysis
provides estimates of mean effects (such as the difference in lead
content between two particular land uses) but these effects may vary
spatially in ways that give insight into the nature of the land use effect.
We therefore examine how a particular land use effect on soil lead con-
tent varies spatially across the Greater London Area using an optimal
cokriging estimator.

2. Materials and Methods

2.1. The London Earth survey

From 2005 to 2009 BGS undertook soil sampling in the Greater
London Authority (GLA) area which comprises the City of London and
the London Boroughs (Knights and Scheib, 2010). Details of the survey
methodology are provided by Johnson (2005) but we summarize the
key points here.

Sampling was undertaken according to a non-probability system-
atic design. Each 1 × 1-km square of the British National Grid within
the GLA area was sampled, with a sample site in each of the four
500 × 500-m quadrants. The sample site was placed as close as pos-
sible to the centre of the quadrant avoiding any obvious sources of
point contamination such as spoil heaps. The surveying team identi-
fied the land use from a series of land use codes (see Table 1) at each
sample site. At each site a soil specimen was collected with an auger
at the centre and vertices of a 20 × 20-m square centred on the site.
The soil specimen was collected with an auger from depth 0 to 15 cm
after removal of any surface litter. The five specimens were then aggre-
gated to form a single bulk specimen for the site. At one sample site in
every 100 a duplicate aggregate specimen was formed from cores col-
lected at the centre and vertices of an adjacent 20 × 20-m square.

The aggregated material from each site was subsequently air-dried,
disaggregated and sieved through a nylon sieve to pass 2 mm and
sub-sampled by coning and quartering. A 50-g sub-sample was ground
in an agate planetary ball mill until 95% of the material was finer than
53 μm. Concentrations (totals) of 50major and trace elementswere de-
termined for each sample by wavelength dispersive X-ray fluorescence
(XRF) spectrometry. Data were obtained for a total of 6245 sites.

2.2. Exploratory data analysis

Summary statistics were computed for the data on lead content
and a transformation to logarithms was considered. The residuals of
lead content from land use class mean were also examined, both with
andwithout transformation of the original data. In general if the conven-
tional coefficient of skewness is out with the range [−1.0, 1.0] then a
Table 1
Land use classes and numbers of observations in each.

Class Number of observations

Arable 270
Commercial and residential 195
Domestic garden 1554
Industrial 64
Other 197
Park 828
Pasture 144
Recreational 657
Road verge 597
Rough grazing 346
Urban open space 1119
Woodland or forest 274
transformation is deemed necessary (Webster and Oliver, 2007). How-
ever, the conventional coefficient of skewness is very susceptible to out-
lying values, and decisions on transformation should be based on the
shape of the distribution of the underlying variable, separate from the ef-
fects of any outlying values. For this reason we used the octile skewness,
which is a robust measure of the asymmetry of the distribution of a var-
iable, insensitive to outliers (Brys et al., 2003). An equivalent rule of
thumb to that ofWebster andOliver (2007) for interpretation of the con-
ventional skewness coefficient is to consider transformations of a vari-
able if the octile skewness is not in the range [−0.2, 0.2] (Lark et al.,
2006). By basing decisions on transformation on the octile skewness
we aim to use transformations only when this is necessary to justify
the assumption that the data are drawn from an underlying normal ran-
dom variable, possibly with outliers present. Note that, because some of
the recorded lead concentrations were zero it was necessary to add a
small constant (0.1) to the data before the transformation.

2.3. Overall land use effects

2.3.1. The model, estimation and inference
Table 1 shows the land use classes that were considered in this study.

The objective was to examine the evidence for overall differences be-
tween the classeswith respect to lead content, and to considermore spe-
cific questions about contrasts between particular land uses or groups of
land uses.

One method to address such a question is the analysis of variance,
with the partition of the sum-of-squares for differences between p
land use classes into components that correspond to particular con-
trasts. That method cannot be used in this case because the analysis
of variance is based on the assumption that the residuals from land
use class means can be regarded as independent random variables.
That assumption is justified by the use of an appropriate probability
sampling design, such as simple random sampling or stratified random
sampling (de Gruijter et al., 2006). Such an assumption cannot bemade
with these data because the sample sites are selected according to a
systematic rule with no element of randomization. For this reason a
model-based analysis is necessary.We regard the n × 1 vector of obser-
vations z as a realization of a random function, Z which is described by
the linear mixed model

Z ¼ MTβþ ηþ ε; ð1Þ

where M is a n × p vector that indicates the land use class present at
each location so that the element in the ith column and jth row is 1.0
if the ith class occurs at the jth sample location, and is zero otherwise.
The p × 1 vector β contains the fixed effects coefficients which here
are mean values of the variable of interest within each land class. The
terms η and ε are, respectively, a spatially correlated and an indepen-
dently and identically distributed random variable. Ideally the compo-
nents of a linear mixed model are estimated by finding the residual
maximum likelihood (REML) estimates of the variance parameters of
the random variables, and then generalized least squares estimates of
the fixed effects coefficients (e.g. Lark and Cullis, 2004). However, this
is not practical with substantial data sets such as this one, with n =
6245, since the REML estimation requires repeated inversion of a
n × nmatrix, which is computationally demanding. Itwas therefore de-
cided to estimate the parameters of the random components from ordi-
nary least squares (OLS) residuals from the class means. REML is
generally preferred because estimates based on OLS residuals are
prone to bias because of estimation error of the class means. However,
in a large data set this estimation error, and so the resulting bias, will
be small.

For this reason we used an iterative generalized least squares pro-
cedure to fit the model (Webster and Oliver, 2007). The procedure is
outlined below.
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1. We found estimates of the land use class means by ordinary least
squares (OLS) and computed the residuals. Ifβˆ denotes the OLS es-
timates of the land use-class means then the vector y contains the
residuals

y ¼ z−MT β̂: ð2Þ

2. The variogramof the residual componentwas estimated from theOLS
residuals. We considered the standard estimator due to Matheron
(1962). Although a log-transformation might be selected to deal
with skewness of the underlying variable (Section 2.2) outliers may
still be present, so the robust estimators due to Cressie and Hawkins
(1980) and Dowd (1984) were also considered. Models were fitted
to each of the resulting sets of estimates by weighted least squares
implemented in the FVARIOGRAM procedure in GenStat (Payne, 2010),
one model was selected for each set of estimates on the basis of the
Akaike Information Criterion (AIC) (Webster and McBratney, 1989)
and then the selected model for each of the sets of estimates
was crossvalidated with the XVOK2D program in the GSLIB library
(Deutsch and Journel, 1992). A model was selected from among
those derived from the different estimators by computing from
each cross-validation the standardized squared prediction error:

θ xð Þ ¼
Ye xð Þ−y xð Þ

� �2

σ2
K xð Þ ð3Þ

where Ye xð Þ denotes the ordinary kriging estimate of the residual
at location x, y(x) is the actual residual and σK

2(x) is the ordinary
kriging variance. We followed Lark (2000) in selecting the model for
which the median value of θ(x) over all observations is closest to
the expected value of 0.455 for normally distributed kriging errors
with a valid variogram model.

3. The selected variogrammodel was then used to compute elements
of the covariance matrix of the combined random components in
Eq. (1), η + ε. We denote this matrix by C, and obtain any element
by

C i; jð Þ ¼ γ ∞ð Þ−γ xi−xj

� �
; ð4Þ

where γ(h) denotes the value of the selected variogram model for
distance h, note that by definition γ(0) = 0.

4. The generalized least squares (GLS) estimate of the fixed effects
coefficients in β were then obtained by

β̂ ¼ MTC−1M
� �−1

MTC−1y ð5Þ

The covariance matrix of the errors in the estimated class means in
β̂ is obtained by

V̂ ¼ MTC−1M
� �−1 ð6Þ

These expressions can be found in standard texts on linear model-
ling such as Dobson (1990).

5. We then return to step 1 of the procedure, but this time using the
GLS estimate of β̂ , obtained with Eq. (5), to compute the residuals
with Eq. (2). These steps are reiterated until the residuals show no
further change.

Once this procedure has converged the resulting estimates β̂ andV̂
provide estimates of the mean value within each land use class, and
the variance of that mean respectively. It should be noted that these
estimated means are model means, i.e. mean values for each land
use class within the specified model (de Gruijter et al., 2006). Direct
estimates of the spatial mean (i.e. the integral of lead content across
all sites within a particular class) could be obtained by appropriate
probability sampling, or by a model-based prediction if the extent
of any particular land use class in the classification used here were
known across the area. In the absence of such information the model
mean is an appropriate alternative on which to base inferences about
land use effects on this particular variable.

It is possible to examine a particular contrast, or a group of con-
trasts, between land use classes by computing an appropriate Wald
statistic (see Lark and Cullis, 2004). For example, to test the null hy-
pothesis that the first and second classes have identical mean values
one proposes a 1 × p contrast matrix, L1vs2:

L1 vs 2 ¼ 1−1 0 …0½ � ð7Þ

To test a null hypothesis that all classes have the same mean one
would propose a (p − 1) × p contrast matrix:

Lall ¼
1 −1 0 … 0
1 0 −1 … 0
: : : … :
1 0 0 … −1

2664
3775 ð8Þ

Two sets of contrast L1 and L2 are orthogonal (i.e. independent) if
and only if

L1L
T
2 ¼ 0: ð9Þ

The Wald statistic for some contrast matrix L is computed as

W ¼ Lβ̂
� �T

LV̂LT
� �

Lβ̂
� �

: ð10Þ

Under the null hypothesis W is distributed as χ2 with degrees of
freedom equal to the rank of L, which is 1 for a single contrast matrix
such as L1 vs 2 above and would be p-1 in the case of Lall.

2.3.2. Contrasts
The procedure for inference about contrasts outlined above is appro-

priate for contrasts identified prior to data analysis to test hypotheses of
scientific interest. It should not be used post-hoc to test contrasts sug-
gested by the data. We present below a set of contrasts identified prior
to data analysis, with the associated rationale. The first test is an overall
assessment of differences between land uses as a source of variation of
lead content in the soil. In the second test we consider the overall effect
of industrial land use. In contrasts 3–5 we consider some questions of
interest concerning soils under land uses characteristic of the urban en-
vironment. Finally (contrasts 6–9) we consider how far soils under agri-
cultural land use andwoodlandwithin the GLA contrast with soils under
characteristically urban land uses, and examine the effects of intensity of
management on the susceptibility of the soil to pollution.

1. Differences among all class means. First we test the initial (and rec-
ognizably implausible) null hypothesis that the mean lead concen-
tration is the same under all land use classes in London.

2. Difference between soil in land use class Industrial and all other land
uses. It is expected that industrial sites, in particular thosewith a long
legacy of industrial use, may have been more subject to point con-
tamination with lead than those under other land uses, but given
the importance of atmospheric deposition of lead, and the potential
for distribution over significant distances (McGrath and Loveland,
1992) it is of interest to assess how far industrial activity raises con-
centrations above the level of background contamination from dif-
fuse sources, which is likely to be large in the urban environment.

3. Difference between soil in land use class Parks and Recreational. These
two land uses constitute the principal areas of ‘urban green space’
under the classification, excepting woodland which we consider
below. The ecosystem services provided by urban green space in
the United Kingdom was recently assessed by the UK National
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Ecosystem Assessment (2011) concluded that the annual economic
value of urban green space was of the order of £30 billion, but also
recognized that the quality of urban green space is under threat.
In this contrast we assess whether these two categories of urban
green space appear to differ with respect to lead content. This is
possible since Parks, including the large Royal Parks in central and
south-west London generally are larger, less fragmented areas than
Recreational land.

4. Difference between Parks and Recreational (considered together) and
Domestic Gardens. It is known that domestic gardens have histori-
cally been susceptible to contamination with lead due to activities
such as the spreading of soot and coal ash on gardens, disposal of
household waste on garden bonfires and contamination by flakes
of lead-based paint (Thornton, 1991). In this contrast we examine
whether these potentially large point sources of lead contamination
impose a heavier lead burden on garden soils than is found in the soil
of Parks and Recreational ground.

5. Difference between Road verge and Urban open space. It may be
expected that soil of road verges ismost directly exposed to pollution
due to traffic, and there is some evidence for this (Chen et al., 2010).
Because much lead pollution attributable to traffic has been due
to emissions from engines using leaded petrol, it is possible that
short-range transport to the road verge is relatively unimportant and
these soils will not show significantly morelead than other soils in
the urban environment.

6. Difference between agricultural land (Arable, Pasture and Rough
Grazing) and all other non-industrial urban land uses other than
Industrial and Woodland or Forest. Although the GLA is overwhelm-
ingly urban, agricultural land is foundwithin it. In general agricultur-
al landmight be expected to be less susceptible than other land uses
to pollution by lead because it is generally distributed around the pe-
riphery of the GLA away from themost intense sources of lead pollu-
tion, but it is still susceptible to atmospheric deposition. Note that
land use Industrialwas not considered so that the contrast is orthog-
onal to contrast (2) above. SimilarlyWoodland or Forestwas excluded
so that a specific contrast, orthogonal to this one, could be examined
to compare Woodland or Forest alone with agricultural land.

7. Difference betweenWoodland or Forest and agricultural land (Arable,
Pasture and Rough Grazing). A priori one might expect that agricul-
tural land is more susceptible than Woodland or Forest to atmo-
spheric deposition of lead since some of this is intercepted in the
latter case by the overlying tree canopy. However, some of this
intercepted lead may be deposited on the soil due to leaf fall or
leaching of the canopy by rain. It is of interest to assess contamination
of woodland and forest soil in the urban environment. About 11% of
the area of urban environments in the United Kingdom is woodland,
and the particular value of urbanwoodland environments for human
health andwell-beingwas emphasized in the recentUnited Kingdom
National Ecosystem Assessment (Davies, 2011).

8. Difference between Arable and land under grazing (Pasture and
Rough Grazing considered together). Here we consider whether ara-
ble land differs from land under grazingwith respect to lead content.
Differencesmight be expected due tomore intensive traffic on arable
land, reduced cover during certain times of the year and historical
application of wastes including sewage sludges.

9. Difference between Pasture and Rough Grazing. Here we examine
whether land under Rough Grazing differs from more intensively-
managed land under Pasture with respect to lead content of the
soil.

2.4. Spatial variation of a land use contrast

The analyses described in section 2.3 above allow inferences to be
made about the mean lead concentration in soils of different land use
classes under the statistical model. However, it is possible that there
is substantial spatial variation in any particular contrast across the
GLA area reflecting some interaction of the land use effect with another
spatial variable. For example, the magnitude of a contrast that reflects
differences in land management, such as past application of wastes to
soil, might vary with soil properties which influence the mobilization
and leaching of applied contaminants in the soil (e.g. soil pH, soil tex-
ture). Bishop and Lark (2007) considered a similar case in agronomic
field experiments in which the assumption of constant effects across
variable regions may be implausible. They proposed a solution in
which the effect of a treatment is not regarded as a fixed effect but
rather as a random variable, for which point estimates or local regional
means can then be estimated by a kriging predictor. It is that approach
that we now consider.

In particular we consider the spatial variation of the fourth-listed
contrast in section 2.3.2. This is the contrast between Parks and Recre-
ational (considered together) and Domestic Gardens. The decision to
examine the spatial variation of this contrast was made after comple-
tion of the analysis to test specific contrasts between the model
means as described in section 2.3. This analysis showed that the
null hypothesis of no difference between Parks and Recreational
could not be rejected (contrast 3) but that the null hypothesis of no
difference between Parks and Recreational (considered together)
and Domestic Gardens could be rejected, with evidence for larger
lead concentrations in the soil of domestic gardens (see Table 3).
One may then consider whether the better soil quality (with respect
to lead content) in Parks and Recreational than in Domestic Gardens
is found everywhere in the GLA. This is important when weighing
the policy significance of this land use effect. Is the relatively better
soil quality in Parks and Recreational found in central London as well
as in the suburbs, for example?

Bishop and Lark (2007) report on the analysis of an agronomic
experiment, designed to answer the specific question about varia-
tion in treatment effects across an agricultural landscape. In the
present study the spatial distribution of the land uses across the
GLA is not under experimental control. Since the analysis that we
use is model-based, rather than making any assumptions based on
the sample design, this is not a fundamental problem. However,
Bishop and Lark (2007) could ensure that the treatments of interest
were distributed more or less uniformly across the study area so that
there were no regions where the uncertainty of local estimate of a con-
trast between treatments would be large because one or more treat-
ments of interest is underrepresented. However, as seen in Fig. 1, the
distribution of Parks and Recreational (considered together) andDomes-
tic Gardens as land uses across the GLA is reasonably uniform, although
there are someareas of central East Londonwhere domestic gardens are
sparse.

We now regard the lead content (after transformation to logarithms)
at location x,where the land use is Parks orRecreational as a random func-
tion of location, YPR(x). The corresponding random function for land use
Domestic Gardens is denoted YDG(x). In order to form a geostatistical pre-
diction of the difference between these two random functionswe require
a linear model of coregionalization (LMCR) (Journel and Huijbregts,
1978) to describe their spatial variation and covariation. Since, by defi-
nition, the land use at any one location, x, cannot belong to both sets of
categories there are no collocated data on both random variables, so
the usual way to estimate a LMCR based on estimates of the auto- and
cross-variogram functions (e.g. Webster and Oliver, 2007) cannot be
followed. Papritz and Flühler (1994) proposed that the pseudo-cross
variogram is used in these circumstances, and obtained an optimal
cokriging estimator to predict the contrast between the two variables
at any location. Papritz and Flühler (1994) suggested this approach for
data from soil monitoring where the two variables of interest are mea-
surements of the same soil property at different times. However, Bishop
and Lark (2007) used the approach to estimate contrasts between re-
sponses to different experimental treatments, and the procedure can
also be used for our problem of estimating the contrast between values
of a soil variable under two land uses.We also followed Bishop and Lark



Fig. 1. Sample points allocated to land use classes Domestic Garden and Park or Recrea-
tional considered together.
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(2007) by using robust estimators of the pseudo-cross variogram pro-
posed by Lark (2002). The procedure used in this study is set out below.

1. Data on log-transformed lead content in the soil of the ith sample
location in land use Domestic Garden and the jth sample location in
land use Park or Recreational are denoted by y(xiPR) and y(xjDG) re-
spectively. Exploratory analysis showed no evidence of anisotropy
(directional dependence) in these data, and so isotropic variograms
were estimated.

2. Auto-variograms for the two land uses and the pseudo cross-
variogram were estimated using the standard method of moments
estimator (MoM) (Papritz et al., 1993). As explained in Section 2.3,
any log-transformation of data is undertaken to deal with skewness
of the underlying distribution of a variable, and outliers may remain,
so two robust alternative estimators were considered, all of which
are described in full by Lark (2002). The robust estimators are
the square-root difference (SRD) estimator, which is equivalent to
Cressie and Hawkins's (1980) robust auto-variogram estimator;
and the median absolute difference (MAD) estimator, which is
equivalent to Dowd's (1984) robust auto-variogram estimator.

3. Authorized variogram model (Webster and Oliver, 2007) was
fitted to each set of auto-variogram estimates, by weighted least
squares using the FVARIOGRAM procedure in GenStat (Payne, 2010),
and a model was selected for each set of estimates on the basis of
the AIC. Each model was then cross-validated by ordinary kriging,
using the XVOK2D program in the GSLIB library (Deutsch and Journel,
1992) and the standardized squared prediction error, Eq. (3), was
computed in each case. One estimator — MoM, SRD or MAD — was
then selected after examining the median value of the standardized
squared prediction error from each cross-validation.

4. An LMCR was then fitted to the selected set of estimates of the
auto- and pseudo cross-variograms. This was done by weighted
least squares, following the procedure set out by Lark (2002). The
LMCR comprises a set of coregionalizationmatriceswhich are covari-
ance matrices for modelled components of the set of variables. Each
matrix has an associated authorized spatial correlation function
specified by one or more distance parameters. From the LMCR it is
therefore possible to compute the covariance or cross-covariance
for the random functions which are modeled in the LMCR.

5. Papritz and Flühler (1994) propose a cokriging predictor for the
difference between two random functions which is a special case
of the general cokriging predictor of a linear combination of two
random functions (Myers, 1983). In this case we formed block
cokriging estimates of the difference between lead content in soil
of Domestic Gardens and that of land in Parks or Recreational for
250 × 250-m square blocks. Block kriging was used for two reasons.
First, because most management or regulatory decisions (on suitable
land use or remediation) aremade for blocks of land. Second, the nug-
get variances in the LMCR are relatively large and, as Burgess and
Webster (1980) observed, block kriging for mapping emphasizes
the dominant pattern of variation over short-range discontinuities.
The estimate for a block denoted by B0 is given by:

YDG −̃YPRf g B0ð Þ ¼
Xu
i¼1

λDG
i y xDGi

� �
−
Xv
j¼1

λPR
j y xPRj

� �
; ð11Þ

where xi and xj denote the locations of, respectively, the ith out
of u neighbouring observations in land use class Domestic Garden
and the jth out of v neighbouring observations in land use classes
Parks or Recreational; λi

DG and λj
PR denote the corresponding

cokriging weights. These are found by solving the cokriging
equation:

Kλ ¼ b; ð12Þ

where

K ¼
Cu;u
DG −Cu;v 1u;1 0u;1

−Cv;u Cv;u
PR 0v;1 1v;1

11;u 01;v 0 0
01;u 11;v 0 0

26664
37775: ð13Þ

Here CDGu,u is a u × umatrix of the covariances of the lead content at
the u neighbouring observations in domestic gardens. These covari-
ances are obtained from the LMCR, as are the corresponding covariances
for the v observations in land use Parks or Recreationalwhich are in CPRv,v.
The matrices Cu,v and Cv,u contain the cross-covariances of the
neighbouring observations in the two classes; 1u,1 denotes a u × 1 ma-
trix with elements all equal to 1, and the remainingmatrices are denot-
ed by the same rule. The vector λ in Eq. (15) is defined as:

λT ¼ λDG
1 ;λDG

2 ;…;λDG
u ;λPR

1 ;λPR
2 ;…;λPR

v ;−ψ1;−ψ2

h i
; ð14Þ

where ψ1 and ψ2 are Lagrange multipliers. The vector b in Eq. (15) is
defined as:

bT ¼
h
CDG B0; x

DG
1

� �
−CDG;PR B0; x

DG
1

� �
;…;CDG B0; x

DG
u

� �
−CDG;PR B0; x

DG
u

� �
;CDG B0; x

PR
1

� �
−CDG;PR B0; x

PR
1

� �
;…;CPR B0; x

PR
u

� �
−CDG;PR B0; x

PR
u

� �
;1;1�; ð15Þ

where CDG B0; x
DG
i

� �
denotes the mean covariance between lead con-

tent (Domestic Garden random function) at location xiDG and locations
within blockB0 obtained from the LMCR, CPR xB0 ;PR

j

� �
similarly denotes

the mean covariance between lead content (Park and Recreational
random function) at location xjPR and locations within block B0. The
term CDG;PR B0; x

PR
j

� �
denotes the mean cross-covariance between loca-

tion xjPR) and block B0. The mean values of point-to-block covariances
were obtained numerically (Webster and Oliver, 2007).

The prediction error variance of the cokriging prediction of the
contrast (i.e. the mean square error of the prediction) is

σ2
K ¼ −λTbþ CDG B0;B0ð Þ þ CDG B0;B0ð Þ−2CDG;PR; B0;B0ð Þ ð16Þ

where the term CDG B0;B0ð Þ denotes the mean within-block value of
the covariance for lead content in the soil of Domestic Gardens and
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Table 3
Median standardized squared prediction error for cross-validation of variogram
models fitted to estimates obtained by alternative estimators applied to residuals for
log lead concentration from land use means. These are presented for the residuals
from the ordinary-least-squares land use means (iteration 1) and then for the residuals
from the generalized least squares land-use means (iteration 2), the latter obtained
using the selected variogram model (fitted to estimates obtained with the estimator
of Dowd) for the OLS residuals.

Median standardized squared prediction error

Iteration Variogram estimator

Matheron Cressie–Hawkins Dowd

1 0.356 0.435 0.465
2 0.352 0.414 0.460
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CDG B0;B0ð Þ similarly for Parks and Recreational. The mean within-block
cross-covariance is denoted by CDG;PR B0;B0ð Þ. These values were
obtained numerically from the respective terms in the LMCR (Webster
and Oliver, 2007).

3. Results

Summary statistics for lead content are presented in Table 2. Note
that, on the original scales of measurement, both the concentration
data and the residuals from the OLS land use class means are strongly
positively skewed. The log-transformed data and the residuals from
the land use class means for the log-transformed data are symmetri-
cally distributed with small coefficients of skewness and octile skew-
ness values. For this reason subsequent analyses were performed
with the log-transformed data.

Table 3 shows cross-validation results for the different variogram
estimators for the first iteration of the fitting of the linear mixed
model for land use effects, Eq. (1). Iteration 1 is cross-validation of the
models fitted to estimates from the OLS residuals. The models fitted to
estimates obtained with Dowd's (1984) estimator (shown by the solid
discs in Fig. 2) was selected on the basis of the median standardized
squared prediction error, and used to obtain a covariance matrix for a
refitting of the model by GLS. Iteration 2 is cross-validation of the
models fitted to estimates from these GLS residuals, again the model
fitted to the estimates obtained with Dowd's (1984) estimator (open
circles in Fig. 2) was selected. There was no further change in residuals
(the crosses in Fig. 2 are the estimates of the variogram from the resid-
uals of a third iteration), so the variogrammodel obtained in the second
iteration, based on Dowd's (1984) estimator, was selected.

Table 4 shows themodel estimates of the land use classmeans for log
lead concentration, with the associated variances. Back-transformation
of the class means, under an assumption of log-normality, was done
first by simple exponentiation (which gives an estimate of the class me-
dian on the original scale) and with the unbiased estimate for the class
mean, which, for the kth class is Zk:

Zk ¼ exp Y k þ
σ2

k

2

( )
; ð17Þ

where Yk is the class mean on the log scale and σk
2 is the variance of the

class mean. Prediction intervals for the class mean on the original scale
were obtained by

exp Y k � 1:96� σkð Þ� �
: ð18Þ

These results are shown in Fig. 3.
Table 5 presents results for the a priori contrasts set out in

section 2.3. Note that the null hypothesis of no difference among
the class means can be rejected decisively (contrast 1). This indicates
that local land use is an important source of variation in soil lead con-
tent. It is also notable that soils in industrial use have significantly
larger lead concentrations than do other soils (contrast 2); Table 2
and Fig. 3 show that the mean concentration in the soils under indus-
trial use is the largest of all the class means.
Table 2
Summary statistics of data on lead content of soils of the GLA.

Pb
mg kg−1

log Pb
loge mg kg−1

Pb log Pb

Residual from land use class

mg kg−1 loge mg kg−1

Mean 296.62 5.26 0 0
Median 184.14 5.22 −75.74 −0.07
Skewness 5.2 0.16 5.42 0.12
Oc Skew 0.51 0.04 0.31 0.1
SD 381.02 0.9 366.91 0.8
Contrast 3 shows that the null hypothesis of no difference between
the model mean concentration in soils under Parks and Recreational
cannot be rejected. However, the lead concentration in the soils of Do-
mestic Garden is substantially larger than under Parks and Recreational
considered together. Note that Domestic Garden has the second-largest
model mean lead content after Industrial.

There is no strong evidence against the null hypothesis that Road
Verge has a larger lead content than does Urban Open Space, P = 0.067
(contrast 5).

There is strong evidence (contrast 6) that all land in agricultural
use has smaller lead concentrations than do the other classes, excluding
Woodland or Forest and Industrial; (contrast 6), and the agricultural land
has a significantly largermean than doesWoodland or Forest (contrast 7),
which (Table 4, Fig. 3) has the smallest mean lead content. There is no
evidence for a difference between Arable and land under grazing
(contrast 8), nor that the lead concentration is different under Pasture
and Rough Grazing (contrast 9). (It is accepted that one factor contribut-
ing to the lack of a significant difference between Pasture and Rough
Grazingmay be the difficulty of distinguishing these two land uses con-
sistently in the field.)

Table 6 shows results for cross-validation of the auto-variogram
models fitted to estimates from different estimators for the lead content
in classes Domestic Garden and Park or Recreational. In both cases the
0
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0 5000 10000 15000 20000 25000
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Fig. 2. Empirical variograms for variation of lead contentwithin land use classes. The solid
discs are for the OLS residuals, the open circles for the second iteration (GLS residuals) and
the cross for the third iteration. Fitted models are shown for the OLS residuals and the
third iteration.
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Table 4
Model estimates of land use class mean log lead concentration, with associated variances.

Land use Mean
mg kg−1

Variance
loge mg kg−1

Arable 4.63 0.041
Commercial and residential 5.08 0.042
Domestic garden 5.28 0.040
Industrial 5.42 0.046
Other 5.08 0.041
Park 4.73 0.040
Pasture 4.69 0.042
Recreational 4.79 0.040
Road verge 5.15 0.040
Rough grazing 4.73 0.040
Urban open space 5.09 0.040
Woodland or forest 4.46 0.041

Table 5
Results for tests on contrasts between land uses with respect to mean log lead concen-
tration in the soil.

Contrast Wald
statistic

Pa

1 Difference among all classes 880.5 ≪0.001
2 Industrialb vs all other classes 43.8 ≪0.001
3 Parks vs Recreational 2.3 0.131
4 Parks or Recreational vs Domestic Gardenb 508.1 ≪0.001
5 Road verge vs Urban open space 3.4 0.067
6 Arable or Pasture or Rough Grazing vs other classesb 106.0 ≪0.001

(excluding Woodland or Forest and Industrial
7 Arableb or Pastureb or Rough Grazingb vs Woodland or

Forest
22.6 ≪0.001

8 Arable vs Pasture or Rough Grazing 2.2 0.139
9 Pasture vs Rough Grazing 0.44 0.508

a P-value for the null hypothesis that the compared means are equal.
b Class(es) with the larger mean concentration where there is a significant difference.

Table 6
Median standardized squared prediction error for cross-validation of auto-variogram
models for log lead concentration in soils of land use classes Domestic Garden and
Park or Recreational.

Median standardized squared prediction error

Land use Estimator

MoM SRD MAD

Domestic Gardens 0.387 0.443 0.495
Park or Recreational 0.355 0.482 0.588
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results for the SRD estimator gave results closest to the expected value
for a sound variogrammodel with normal kriging errors. This estimator
was therefore selected, and the fitted linear model of coregionalization
is shown in Fig. 4.

Fig. 5 shows the cokriged estimates of lead concentration for soils
in the two land use classes considered. Note that in all cases these are
the best linear unbiased predictions of lead concentration at a location
conditional on the land use at that location, which is not known every-
where but only at sample sites. The maps in Figs. 5–7 therefore show
continuous variation, not discrete step changes. These maps show, par-
ticularly for Domestic Gardens a marked increase in lead concentration
in central parts of the GLA relative to the margins. Fig. 6 shows the cor-
responding estimates of the difference between the lead concentrations
(log-scale) in Domestic Gardens and Park and Recreational considered
together. Note that the difference is positive (Domestic Garden is larger)
almost everywhere, but that the contrast is largest over a region in
south-west London, and also some smaller parts of the north and east.
To indicate the uncertainty of the local predictions of this contrast,
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Fig. 3. Lead concentration by land use class in the original scales of measurement. The
horizontal bars are 95% confidence intervals for the model mean. The crosses are esti-
mates of the model median and the solid disks unbiased estimates of the model mean.
Fig. 7 shows the predictions standardized by the kriging standard
error — the square root of the kriging variance in Eq. (16). The scale
shows, in effect, where the 95% confidence interval of the prediction ex-
cludes zero (smallest and largest of the four intervals) and where the
prediction is negative but the limits include zero, and where it is posi-
tive, but includes zero. Note that this Figure should not be interpreted
as showing an overall region where the mean contrast is significantly
larger than zero, it shows, rather, point confidence intervals.
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Fig. 4. Empirical estimates of the auto-variogram and pseudo cross-variogram (by the
SRD estimator) for lead content of the soils in land use classes Domestic Garden and Park
or Recreational considered together. The solid and dashed lines show the fitted linear
model of coregionalization.
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Fig. 5. Cokriged estimates of lead concentration (log scale) under land use classes Domestic Garden and Park or Recreational considered together.
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4. Discussion

It is not surprising that land use is an important source of variation
in the lead concentration in the soil of London. However, the overall
test was worth performing for two reasons. First, the recorded land
use is what the sampling teams observed and recorded. It takes no ac-
count of past land use,whichmay be complex in theurban environment
(Rawlins et al., 2005). Land use effects may be obscured, for example,
where previous open space has been developed, or, conversely, former
industrial sites have been converted to recreational use. Second, it is
known (McGrath and Loveland, 1992) that atmospheric deposition of
lead has been very important, particularly historically before the ban
on lead additives to fuel. Since this is a diffuse process it might be
expected to obscure local land use effects to some degree.

Although few sampled sites are under industrial land use (Table 1),
these results (contrast 2) show that local pollution as a result of industrial
activity can lead to large lead concentrations in urban soils. It is also nota-
ble that lead concentration in domestic gardens is large, on average. This
is consistentwith previous studies. Thornton et al. (1990) report a survey
on lead content in soils of residential areas across the UK. Lead concentra-
tion in domestic garden soils was consistently larger than in gardened
soils in public parks, and this elevation was largest for old dwellings.
The reasons why this may be expected were noted in section 2.3. The
first source is the burning of domestic waste and spreading of ash
(Thornton, 1991). The second is the use of lead-based paints which
can be a very significant source of soil contamination when old paint-
work is sanded or scraped (Mielke et al., 2001). These factors are now
historical: the burning of domestic waste and spreading of ash is no
longer widely practiced in cities due to universal provision of waste
collection by local authorities and bans on bonfires and incineration in
smoke-free zones. Similarly, lead compounds have been banned in
paint in the United Kingdom since 1992 — Environmental Protection
(Controls on Injurious Substances) Regulations (1992). None the less,
it remains important for local authorities, policy makers and others to
be aware of this legacy of pollution. In particular, given the recent em-
phasis on the ecosystem services delivered by urban green spaces
(Davies, 2011) it is relevant to note (contrast 4) that the quality of
soils in parks and recreational areas is, in general, higher (at least with
respect to lead pollution) than that of domestic gardens across the
GLA. Similarly we note that, despite the importance of deposition of
atmospheric lead — which may explain why roadside verges are not
significantly enhanced relative to urban open space (contrast 5) —
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Fig. 6. Cokriged estimate of the difference between log lead concentration under land
use classes: Domestic Garden–Park or Recreational considered together.
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agricultural land within the GLA contains significantly less lead than
other land uses (contrast 6), and woodland and forest in the GLA (con-
trast 7) contains significantly less lead again than the agricultural land.

While various studies on urban soils have presented concentra-
tions of lead (Johnson et al., 2011), few have done so on the basis of
Fig. 7. Cokriged estimate of the difference between log lead concentration under land
use classes standardized by the kriging standard error.
a land use classification, and where they do it is not always clear that
the land use classes are directly comparable to those used in the London
Earth survey. There are two studieswhich,with this latter reservation, it
is interesting to comparewith the results in this paper. In a survey of the
soils of Dublin (Republic of Ireland) Glennon et al. (2012) determined
lead concentrations by inductively coupled plasma atomic emission
spectroscopy (ICP-AES). These results are not directly comparable with
theXRF determinations reported here.Median concentrations in topsoil
for landunder Heavy Industry, Residential use,ManagedOpen Land and
UnmanagedOpen Landwere, respectively 174 mg kg −1, 70 mg kg −1,
80 mg kg −1 and 50 mg kg −1. There are all smaller concentrations
than for comparable land uses in the GLA, and it is interesting to
note that the concentration for Residential land falls between that
for the two Open Land categories. Birke et al. (2011) report results
from a survey in Berlin (Germany) where concentrations were de-
termined by XRF. Median concentrations for Industrial sites, Dense
Residential sites, Agricultural land and Woodland were 87 mg kg −1,
109 mg kg −1, 25 mg kg −1, and 26 mg kg −1 respectively. Again,
these are smaller than comparable values for the GLA, but it is interest-
ing to note the large concentrations associated with dense residential
areas.

These inferences are about the overall model means for soils in the
GLA. The geostatistical investigation described in Section 2.4, shows
that there may be substantial spatial variation about the overall
mean. In particular, for both groups of land uses investigated, the lead
content of the soils of central London are clearly larger than the content
of soils in outer London. The contrast betweenDomestic Garden and Park
andRecreational considered together is also spatially variable. Thediffer-
ence is largest over a region of South-West London, as well as some
more isolated regions in the North and North-East. It is notable that
the South-West region includes two large Royal Parks (Bushy Park and
RichmondPark) aswell asWimbledon Common. It is likely that the con-
trast with Domestic Garden is particularly large here because of the large
area of these parks, whichmeans thatmuch of the soil is at a greater dis-
tance from the road network and other sources than would be the case
for soils in smaller parks and recreational grounds elsewhere. There is a
large Royal Park in central London (HydePark,with BritishNational Grid
coordinates close to 525000, 180000) but the contrast with Domestic
Gardens is not large here, perhaps reflecting the fact that all soils in cen-
tral London are or have been subject to large deposition rates of lead re-
gardless of land use. This information on the spatial variation of
contrasts may be relevant to local authorities and policymakers. It high-
lights that landuse effects are not uniform, and that thequality of soils in
Parkland and other urban green space may reflect other spatially vari-
able factors which may interact with land use.

This study illustrates how appropriate spatial statistical analysis
allows sound inferences to be drawn fromdata in an urban geochemical
survey. The original datawere collected by non-probability sampling, so
a conventional analysis of variance, with assumptions of independence,
would not be valid. However, a model-based analysis is possible, as il-
lustrated here. Furthermore, the systematic sampling design facilitates
the geostatistical mapping of variables such as the land use contrast in-
vestigated here. This methodology may be useful for addressing other
questions about the soils of London and other urban centres with simi-
lar data.

5. Conclusions

The soils of London show variation in their lead content. Land use,
as recorded at the time of sampling, is a significant source of variation
in this variable, and notable effects are the relative enrichment of
sites in industrial use and domestic gardens. Agricultural soils in the
GLA have smaller lead content than most other land uses, but more
lead than woodland or forest soils which have the smallest overall
mean. Land use effects are spatially variable, and the contrast between
domestic gardens, and soils of parks and recreational land, while
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significant overall, is larger in some parts of London than elsewhere.
This study has shown how a model-based analysis of a structured set
of hypotheses permits sound inference and insight into factors control-
ling quality of urban soils.
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