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Abstract. A recent ocean modelling study indicates that pos-

sible changes in circulation may bring warm deep-ocean wa-

ter into direct contact with the grounding lines of the Filch-

ner–Ronne ice streams, suggesting the potential for future

ice losses from this sector equivalent to ∼0.3 m of sea-

level rise. Significant advancements have been made in our

knowledge of both the basal topography and ice velocity in

the Weddell Sea sector, and the ability to accurately model

marine ice sheet dynamics, thus enabling an assessment to

be made of the relative sensitivities of the diverse collec-

tion of ice streams feeding the Filchner–Ronne Ice Shelf.

Here we use the BISICLES ice sheet model, which employs

adaptive-mesh refinement to resolve grounding line dynam-

ics, to carry out such an assessment. The impact of realistic

perturbations to the surface and sub-shelf mass balance forc-

ing fields from our 2000-year “reference” model run indicate

that both the Institute and Möller ice streams are highly sen-

sitive to changes in basal melting either near to their respec-

tive grounding lines, or in the region of the ice rises within

the Filchner–Ronne Ice Shelf. These same perturbations have

little impact, however, on the Rutford, Carlson or Foundation

ice streams, while the Evans Ice Stream is found to enter a

phase of unstable retreat only after melt at its grounding line

has increased by 50 % of likely present-day values.

1 Introduction

A recent geophysical survey (see e.g. Ross et al., 2012)

has highlighted the potential for a marine ice sheet instabil-

ity (e.g. Mercer, 1978) at both the Institute and Möller ice

streams in the Weddell Sea sector of West Antarctica. Near to

the grounding lines of these ice streams, the bed topography

has been observed to deepen significantly inland (a config-

uration often called a reverse slope), and also to be smooth,

with few potential pinning points (Ross et al., 2012). While

these ice streams currently show no signs of the dynamic-

thinning behaviour that has been observed in the Amundsen

Sea region (Payne et al., 2004; Joughin et al., 2010; Pritchard

et al., 2012), ocean modelling studies suggest that changes

to current circulation patterns may result in greater melting

at the base of the Filchner–Ronne Ice Shelf (Hellmer et al.,

2012). Such changes have the potential to affect the tributary

ice streams and therefore the parent ice mass. In this paper

we employ an ice sheet model to investigate the possibility

that thinning of the Filchner–Ronne Ice Shelf, and the con-

sequent reduction of buttressing at the grounding lines of its

tributary ice streams, could lead to the loss of grounded ice

(cf. the Larsen B Ice Shelf collapse; Scambos et al., 2004).

Analysis of the new basal topography from airborne radio-

echo sounding has revealed the significance of a subglacial

basin (recently named the Robin Subglacial Basin) which
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Figure 1. Catchments of the Filchner–Ronne Ice Shelf tributaries,

shown overlain on the Bedmap2 bed topography (colour scale) used

in this study. Ice velocity from Rignot et al. (2011) is indicated by

grey contours at 50 m a−1 intervals.

has a depth of around 1600 m b.s.l. at a distance less than

100 km upstream from the grounding lines of both the In-

stitute and Möller ice streams (Ross et al., 2012). These

ice streams currently discharge into the ice shelf on either

side of the Bungenstock Ice Rise, where the bed elevation is

around 1150 m b.s.l. (Fig. 1). The reverse bed slopes along

both glacier trunks are therefore comparable to that beneath

Thwaites Glacier. The ice stream surface gradients, how-

ever, are much shallower on the tongues of the Institute and

Möller ice streams than they are in the Amundsen Sea, thus

implying that the bed in this area is able to support sig-

nificantly lower driving stresses (Joughin et al., 2006; Ross

et al., 2012). Radio-echo sounding also suggests that the bed

of the Robin Subglacial Basin is covered with marine sedi-

ments, deposited during past retreat phases associated with

periods of warmer climate. Several linear, glacially eroded

basal troughs are found upstream of the basin, each of which

ends in a raised bar indicative of a former ice sheet mar-

gin ∼ 200 km upstream from the present-day grounding line

(Ross et al., 2014). These interpretations, along with evi-

dence from sea floor sediment analyses (Naish et al., 2009)

and ice sheet modelling of multiple glacial cycles (Pollard

and DeConto, 2009), support the idea that the West Antarctic

Ice Sheet has, under warmer past climates, been confined to

a stable position occupying the highlands upstream from the

currently glaciated basin beneath the trunks of the Institute

and Möller ice streams. Future climate warming, therefore,

may risk a return of the ice sheet to this configuration.

Several modelling studies (e.g. Payne et al., 2004; Dupont

and Alley, 2005; Joughin et al., 2010) and a growing body of

observational evidence (Pritchard et al., 2012) suggest that

the thinning of ice shelves, and the consequent decrease in

buttressing at the mouths of fast-flowing ice streams, is the

main cause of the observed dynamic thinning identified in the

Amundsen Sea Embayment region of West Antarctica. The

high basal melt rates observed beneath the Pine Island Ice

Shelf are thought to be due to the incursion of warm Circum-

polar Deep Water along channels which cross-cut the con-

tinental shelf (Jacobs et al., 1996). In the Weddell Sea sec-

tor, High-Salinity Shelf Water (HSSW) is currently respon-

sible for melting at the grounding lines of the ice streams

feeding the Filchner–Ronne Ice Shelf. This water mass is

cooler than the Circumpolar Deep Water but it is still warm

enough to cause melt rates of between 0.1 and 2.5 m a−1 near

to the grounding line of Rutford Ice Stream (Jenkins et al.,

2006). Recent predictions of ocean circulation models indi-

cate, however, that relatively modest future climate warming

might result in changes to circulation patterns in the Southern

Ocean that would allow warmer deep-ocean water to pene-

trate across the continental shelf in this area (Hellmer et al.,

2012). If this were to happen then melt rates at the grounding

lines of the Filchner–Ronne tributaries would be expected

to increase by an order of magnitude (Hellmer et al., 2012),

towards values currently found only in the Amundsen Sea

sector (Rignot and Jacobs, 2002).

The Institute and Möller ice streams are separated by the

slow-flowing Bungenstock Ice Rise; both ice streams have

a “grounding zone” around 10 km wide where the grounded

ice plain is floated for a period either side of high tide (Brunt

et al., 2011). The steep reverse bed slopes, coupled with the

low basal roughness (and therefore few pinning points) of

both the Institute and Möller ice streams, suggest intuitively

that even a small increase in melt at the grounding line, or

a decrease in buttressing due to thinning of the ice shelf,

may lead to a speed-up and thinning of the already lightly

grounded ice plains, resulting in flotation and possibly unsta-

ble retreat of the grounding line.

Theoretical work has concluded that an idealised marine

ice sheet that does not vary in the direction transverse to ice

flow will be inherently unstable when the grounding line rests

on a reverse bed slope (Schoof, 2007). When the problem is

extended to realistic cases with two horizontal dimensions,

however, drag from the channel sides as well as the buttress-

ing effect of ice shelves is found to have a stabilising effect on

grounding line dynamics even on a reverse bed slope (Dupont

and Alley, 2005; Goldberg et al., 2009; Gudmundsson et al.,

2012; Gudmundsson, 2013). Geophysical evidence also sug-

gests that the stability of palaeo-ice-stream grounding line

locations on reverse slopes has been dependent on the chan-

nel width available, with constrained channels slowing re-

treat substantially (Jamieson et al., 2012).

In addition to changes in ocean warming and circula-

tion, anthropogenic climate change is also expected to cause
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changes to precipitation patterns and, in Antarctica, warmer

air temperatures are likely to mean an increase in surface

snow accumulation (e.g. Uotila et al., 2007; Winkelmann

et al., 2012), which could mitigate some melt-driven retreat.

The aim of this paper is to assess the sensitivity of the various

Filchner–Ronne Ice Shelf tributary ice streams to sub-shelf

melt/freeze-rate and surface accumulation perturbations of

the order of those predicted to occur within the next few hun-

dred years given certain scenarios (e.g. Hellmer et al., 2012).

The model is run over a period of 2000 years in order to

investigate the full response of the ice sheet to the perturba-

tions, whilst balancing the assumptions made when setting

up the domain and boundary conditions and the computa-

tional time of the model. The variations in geometry, basal

topography, catchment area, grounding line melt rate and lo-

cation with respect to ice rises within the ice shelf suggest

that the responses of the different ice streams in this sector

may differ substantially. In this paper we aim to make an as-

sessment of those differences and of their causes.

2 The BISICLES ice sheet model

2.1 Model description

We use the BISICLES ice sheet model, a detailed description

of which is given in Cornford et al. (2013). BISICLES is a

finite-volume model which applies a two-dimensional force

balance approximation approach to the solution of the Stokes

free-surface problem with the addition of a vertically inte-

grated stress component derived from the model of Schoof

and Hindmarsh (2010) following

∇ · [φhµ̄(2ε̇+ 2tr(ε̇)I)]+ τ b = ρigh∇s, (1)

where φ is a stiffening or “damage” factor, h is the ice thick-

ness, µ̄ is the vertically averaged viscosity, ε̇ is the horizontal

rate-of-strain tensor, I is the identity tensor, τ b is the basal

traction, ρi is the density of ice, g is acceleration due to grav-

ity and s is the ice surface. The horizontal rate-of-strain ten-

sor is given by

ε̇ =
1

2

[
∇u+ (∇u)T

]
, (2)

where u is the horizontal ice velocity. The vertically inte-

grated effective viscosity (φhµ̄) is computed from the verti-

cally varying effective viscosity µ:

φhµ̄(x,y)= φ

s∫
s−h

µ(x,y,z)dz, (3)

where µ includes a contribution from vertical shear and sat-

isfies

2µA(T )(4µ2ε̇2
+ |ρig(s− z)∇s|

2)(n−1)/2
= 1, (4)

where n is the flow rate exponent (n= 3) and A is the ice-

flow rheological parameter. A is calculated as a function of

ice temperature (T ) using the relation formulated by Hooke

(1981):

A(T )= A0 exp

(
3f

[Tr− T ]k
−
Q

RT

)
, (5)

where A0 = 0.093 Pa−3 a−1, Q/R = 9.48× 103 K, f =

0.53 Kk , k = 1.17 and Tr = 273.39 K; in addition, a 3-D in-

ternal temperature field produced by Pattyn (2010) is used

for T .

While the effective viscosity calculation incorporates ver-

tically integrated stresses, the component of mass flux due to

vertical shearing has to be neglected due to its effect of sig-

nificantly reducing the maximum stable time step. The result-

ing model still outperforms the shelfy-stream approximation,

however, when compared to full Stokes solutions of ground-

ing line problems (Pattyn et al., 2013; Cornford et al., 2013).

Resistance to basal sliding is governed by a linear viscous

friction law, so the basal traction is

τ b =

{
−Cu if

ρi

ρw
h >−b

0 otherwise
, (6)

where C(x,y) is a basal friction coefficient, ρw is the density

of sea water and b(x,y) is the bedrock elevation. An inverse

problem is solved to find spatially varying fields of both C

and φ, as discussed in Sect. 2.3.

The model uses a block-structured adaptive mesh refine-

ment method to allow for a higher grid resolution to be ap-

plied near to the grounding line than for the rest of the ice

sheet. In all of the experiments presented here, the BISICLES

mesh evolves during the simulations so that the finest resolu-

tion is maintained at grounding lines where the ice velocity is

greater than 100 m a−1, even though the grounding line loca-

tion may sweep across a significant proportion of the model

domain (see inset of Fig. 2d for example). The time step is

chosen to satisfy the CFL (Courant–Friedrichs–Levy) condi-

tion.

2.2 Input data and set-up

Basal topography and initial ice thickness are taken from the

Bedmap2 compilation (Fretwell et al., 2013). This includes

all the data collected in the study area by Ross et al. (2012)

as well as several other recent improvements to the ice thick-

ness data coverage in the Weddell Sea area (see Fretwell

et al., 2013). A correction for firn depth was applied to the ice

thickness so that flotation could be calculated with a single

density for ice (van den Broeke, 2008). The ice surface was

then modified by means of a smoothing routine which fits a

cubic spline curve to surface points at 20 km spacing. This

was necessary, as detail in the Bedmap2 surface topography

(specifically surface undulations of the order of ∼20 m verti-

cal and ∼5 km horizontal that are present throughout the re-

gion) had the effect of disrupting the continuity of ice streams
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produced in the model. The inverse modelling approach to

deriving basal boundary conditions from the ice sheet geom-

etry, ice temperatures and satellite measurements of ice ve-

locity (described in Sect. 2.3) is sensitive to the surface gra-

dient of the ice sheet. A mismatch in the detail of surface and

basal topographies caused the model to erroneously infer the

presence of basal sticky spots, which resulted in discontinu-

ous ice streams. After smoothing of the ice surface, the bed

topography (and hence ice thickness) was adjusted with the

method of Le Brocq et al. (2010) to ensure that the grounding

line location was within one 1 km grid cell of the Antarctic

Surface Accumulation and Ice Discharge (ASAID) project

grounding line (Bindschadler et al., 2011).

The model domain was chosen to include the entire catch-

ments of the Evans, Carlson, Rutford, Institute, Möller and

Foundation ice streams as well as the lower parts of the Sup-

port Force and Recovery catchments (Fig. 1). For the time

periods relevant to this study (up to 2000 years), we assume

that the upper parts of the Support Force catchment (where

velocities are < 20 m a−1) can be considered as static ice.

In the Recovery Ice Stream, however, ice flow faster than

100 m a−1 extends further inland than the model domain. Its

behaviour may therefore not be accurately represented in the

model.

The surface mass balance field used in the model is taken

from Arthern et al. (2006). Within the model domain this

prescribes a roughly uniform south–north accumulation in-

crease from ∼ 0.1 to ∼ 0.5 m a−1. No explicit calving model

is used; instead, the calving front of the Filchner–Ronne Ice

Shelf is fixed at the location given in the Bedmap2 data set,

and all ice crossing this line is assumed to be lost to calving.

2.3 Inverse modelling of basal parameters

In order to reproduce the present-day ice sheet satisfacto-

rily it is necessary to provide spatially variable fields of the

rate factor A and of the sliding coefficient C. Ice viscosity

is dependent on Glen’s rate factor A, which can be calcu-

lated as a function of ice temperature with the Hooke (1981)

relation. We choose, however, to include an additional mul-

tiplier φ to represent damage to the fabric of the ice that has

the effect of decreasing the effective viscosity, particularly

near to shear margins. As field measurements of C and A

(or φ) are not available, we follow the control method ap-

proach of MacAyeal (1993) to determine their values, subject

to the model equations and the present-day ice sheet geom-

etry (Fretwell et al., 2013), temperature (Pattyn, 2010) and

surface velocity (Rignot et al., 2011).

We optimise the fit between modelled ice velocities and

satellite surface velocity observations (Fig. 2c) with the up-

per and lower ice surface topographies fixed. We use a

gradient-based optimisation method (non-linear conjugate

gradient method) to iteratively minimise an objective cost

function quantifying the difference between observed and

modelled velocities. The basic optimisation problem is un-

derdetermined, because there are two unknown fields but just

a single field of observations, and prone to produce large

fluctuations in C and φ in response to noise in the obser-

vations. Tikhonov regularization penalty functions for each

of the variables are also included to enforce a solution where

both C and φ are smoothly varying

Ice outside the catchment of the Filchner–Ronne Ice Shelf

was given zero velocity, zero surface accumulation and a

very sticky bed in order to provide an unchanging bound-

ary condition at the ice divide. As an initial guess we set φ

equal to 1 everywhere and C equal to 100 Pa m−1a within ice

streams, increasing as an exponential function of measured

velocity where the ice-flow velocity is less than 100 m a−1.

The L2-norm misfit (integral of squares) was improved by

a factor of 10 after 16 iterations. A further 16 iterations pro-

duces an improvement by only a factor of 1.5. Figure 2 shows

the results of the control problem after 16 iterations. The

trunks of all ice streams and many of their tributaries are

characterised by low values of C. Away from the ice shelf,

values of φ less than 1 (reduced viscosity) are mainly found

around shear margins, while stiffer ice is found upstream and

in slower tributaries.

2.4 Sub-shelf mass balance parametrisation

When allowing the ice thickness to evolve using the veloc-

ity derived from the control method, the flux divergence is

initially large. This is likely to be due to artefacts of inter-

polation and other sources of error in the ice sheet geome-

try. As a result, a 50-year model run was performed with the

grounding line location and ice shelf thickness held constant

to allow for the ice sheet surface geometry to relax. From the

last time step of this run, the flux divergence within the ice

shelf is retained, and from it a two-part parametrisation of the

sub-ice-shelf basal mass balance is developed following the

method described by Gong et al. (2014). Two spatially con-

tinuous fields are produced that each cover the entire model

domain, one for application near to the grounding line (MGL)

and the other, the ambient field (MA), relevant to floating ice

away from the grounding line. MGL and MA are determined

by considering the flux divergence in regions close to and far

from the initial grounding line respectively, smoothed to re-

move short-wavelength features, and then extrapolated into

the surrounding regions.

This extrapolation allows for the basal melt field to adapt

to the change in grounding line location by effectively trans-

ferring the grounding line melt rate to the new ground-

ing line location. The two fields are then combined us-

ing a weighting parameter to transition smoothly at each

new time step (over a distance of approximately 35 km

on the floating side of the grounding line) so that the

maximum melting follows the grounding line as satellite

measurements indicate (Rignot and Jacobs, 2002). At time

t = 0 years in the forward model runs, the combined sub-

shelf mass balance field (Fig. 3a) shows a similar pattern
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to the results of Joughin and Padman (2003) (Fig. 3b), but

with slightly greater melting near ice stream grounding

lines and less freeze-on in the centre of the ice shelf.

This basal melt rate combined with surface accumulation

from Arthern et al. (2006) should result in an approximately

steady-state ice sheet with a similar configuration to that of

the present day. These input fields then form the basis of our

reference experiment to which perturbations can be made.

3 Forward model runs

3.1 Model grid refinement

The meshes employed all have a coarsest resolution of 4 km,

but the finest resolution, imposed at the grounding line, is

chosen with care. We investigated the appropriate resolution

to use for the grounding line by conducting a series of exper-

iments with increasing levels of refinement. A single level

of grid refinement reduces the cell size from 1x to 1x/2

(where 1x is the initial grid size before refinement) for at

a distance of at least 41x upstream and downstream of any

grounding line within specifically defined parts of the do-

main. The distance 41x was found to be sufficient in earlier

studies (Cornford et al., 2013). Two levels of refinement adds

a further eight-deep layer of cells that are half as large again

to either side of the grounding line, and so on. To reduce

computation time, the parts of the domain in which grid re-

finement may occur are limited to the current grounding line

areas and potential retreat paths of the Evans, Carlson, Rut-

ford, Institute, Möller and Foundation ice streams, as well

as, within these areas, to cells where ice flow is faster than

100 m a−1.

Using the surface and basal mass balance inputs de-

scribed in Sect. 2, we ran forward simulations for 200 years

with levels of refinement increasing from 0 (minimum cell

size= 4 km) to 5 (minimum cell size= 125 m). Initial and fi-

nal grounding line positions for each simulation are shown in

Fig. 4 for each of the main ice streams in the model domain.

At t = 200 years the grounding lines of the Evans, Carlson,

Rutford and Foundation ice streams have all advanced by be-

tween 40 and 100 km to reach the widening of their fjords

where they meet the bay containing the bulk of the Filch-

ner–Ronne Ice Shelf. The Institute Ice Stream has advanced

by between 5 and 20 km out into an unconstrained region

of the Filchner–Ronne Bay, while the grounding line of the

Möller Ice Stream has remained stationary. The difference in

the resulting grounding line position with further refinement

decreases as the resolution improves. As the time taken to

perform a simulation increases exponentially with the num-

ber of levels of refinement, it is necessary to select an opti-

mum compromise.

Previous modelling studies have found that, where the

transfer to frictionless sliding is gradual, a grid size of less

than 1 km is necessary in order to model movement of the

grounding line accurately (e.g. Vieli and Payne, 2005; Pattyn

et al., 2006; Durand et al., 2009; Gladstone et al., 2010). In

the MISMIP3D intercomparison project (Pattyn et al., 2013),

a BISICLES simulation with a maximum resolution of 400 m

was found to have a similar grounding line sensitivity and

response time to a high-resolution full Stokes solution (al-

though this was for the more difficult test of a sharp ground-

ing line transition). That result was corroborated by tests of

the BISICLES model on Pine Island Glacier in the Amund-

sen Sea, where a first-order rate of convergence of grounding

line position was found for simulations with a finest cell res-

olution ≤ 500 m (Cornford et al., 2013).

Taking into account the results of this previous work, we

chose to use three levels of refinement above the base 4 km

mesh, giving a maximum resolution at the grounding line of

500 m. Our results in Fig. 4 show that further refinement con-

tinues to increase the sensitivity of the grounding line loca-

tion, but only by small and decreasing amounts which come

at significant cost in terms of the simulation runtime.

3.2 The reference experiment

In order to investigate the long-term stability of the Filch-

ner–Ronne tributary ice streams, the reference experiment,

with three levels of refinement, was run forward for a to-

tal of 2000 years. Figure 5 provides a summary of this ex-

periment. Figure 5a shows the total net change in ice thick-

ness and grounding line location over 2000 years of constant

conditions and Fig. 5b shows the time series of cumulative

volume-above-flotation change, broken down by drainage

basin catchment for the main ice streams.

Significant variations in the behaviour of the ice streams

become evident during the course of this experiment. In

the case of the Evans, Carlson, Rutford and Foundation ice

streams, relatively little change occurs between t = 200 and

t = 2000 years. The grounding lines advance slightly and sta-

bilise, while the inland parts of the catchments and the newly

grounded areas thicken. The Institute Ice Stream loses vol-

ume above flotation continuously from around t = 200 years

onward, reaching a rate of ∼4 km3 a−1 by t = 500 years and

accelerating to ∼8 km3 a−1 by the end of the run. This be-

haviour suggests that it is not in equilibrium with the forc-

ing fields. The Möller Ice Stream loses volume above flota-

tion at a steady rate of ∼ 1− 2 km3 a−1. By t = 2000 years,

the grounding lines of the both the Institute and Möller ice

streams have retreated by up to 100 km.

Our reference run is intended merely as an approximation.

It represents the conditions necessary to maintain a stable

ice sheet with a configuration as close to that of the present

day as possible. In common with other ice sheet modelling

studies (e.g. Seroussi et al., 2011; Larour et al., 2012) we

find that, even after control method matching of the ice sur-

face velocity to InSAR measurements, the model is unable to

match the observed ice fluxes at those ice streams which flow

through well-defined narrow channels (Fig. 2c and d). Over
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the length of the control run, the result is that thickening oc-

curs near to the grounding lines of the Rutford, Evans, Carl-

son Inlet and Foundation ice streams in particular (Fig. 5a).

The difficulty in maintaining a steady state is due to the high

amplitude and frequency variations that are required in the

sub-ice-shelf basal mass balance to balance the flux diver-

gence. The flux divergence field produced by the control-

problem-derived ice velocity and geometry observations is

noisy due to artefacts of interpolation and other sources of

error in the ice sheet geometry. The high amplitude and fre-

quency variations in the sub-ice-shelf basal mass balance

field are unrealistic and hence need to be smoothed out, lead-

ing to the ice sheet not maintaining a steady state. This prob-

lem inhibits our ability to make predictions and means that

the results of the reference experiment cannot be viewed as

a future prediction for a scenario of constant climate. The

reference run should therefore be viewed solely as a neutral

starting point from which to assess the relative sensitivity of

the ice streams to change, and not as a prediction.
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Figure 6. Left-hand side (a, c, e, g) panels are plan-view maps showing changes in ice thickness (colour scale) and grounding line position

(grey: start; black: end) over 2000-year model runs. Right-hand side (b, d, f, h) panels are plots of cumulative volume above flotation change

against time for each of the ice stream catchments for the same experiment. In each experiment the sub-shelf accumulation/melt-rate field

has been multiplied by a factor ψ : (a and b) ψ = 0.75, (c and d) ψ = 1.25, (e and f) ψ = 1.5, and (g and h) ψ = 1.8. The colour scale for

the volume changes in (a), (c), (e) and (g) is the same as for Fig. 5a, and the code for plot lines in (b), (d), (f) and (h) is given in Fig. 5b.
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3.3 Perturbations to sub-shelf melting

In order to investigate the sensitivity of the various ice

streams to changes in sub-ice-shelf mass balance, we chose

to apply a linear multiplier ψ to the basal accumula-

tion/ablation field for floating ice (shown in Fig. 3a). Using a

positive linear multiplier (ψ > 1.0) has the effect of increas-

ing the magnitude of both net ablation in melting areas and

net accumulation in areas where there is freeze-on, while a

multiplier 0<ψ < 1.0 will have the opposite effect. We pre-

fer this approach to a uniform shift (addition or subtraction)

from the basal mass balance field as it is likely to be more re-

alistic. The resulting changes should in fact be crudely anal-

ogous to an increase or decrease in the rate of thermohaline

convection beneath the ice shelf where more energetic circu-

lation within the cavity increases the rate of seaward mass

transfer, and vice versa (Jacobs et al., 1992).

Aside from the application of a multiplying factor to the

basal mass balance for floating ice, all other conditions were

identical to the reference experiment described in the previ-

ous section. Figure 6 shows equivalent results to those for

the reference experiment given in Fig. 5 for four experiments

with different sub-shelf mass balance factors. In Fig. 6a and b

a near-steady-state ice sheet is obtained after 2000 years with

ψ = 0.75. Although significant ice thickness increase occurs

in the Evans and Rutford ice streams, grounding lines do not

advance substantially further than in the reference experi-

ment. Similarly stable ice sheet configurations with moderate

increases in ice thickness and minor grounding line move-

ments can be obtained using 0.5<ψ < 0.9.

Figure 6c–h show results of incremental changes to ψ .

Even small increases cause a corresponding acceleration of

retreat for both the Institute and Möller ice streams. Once re-

treat has begun in this sector it continues unabated through-

out all of our model runs. The rate of basal melting at the

grounding line can therefore be shown to affect the rate of re-

treat only and not the ultimate position at which the ice sheet

re-stabilises. In contrast to this, the Rutford Ice Stream and

Carlson Inlet Glacier are particularly insensitive in our ex-

periments, remaining fixed at their advanced grounding line

positions even under quite substantial increases in the melt

rates at their fronts.

If the Institute and Möller ice streams seem to be intrin-

sically unstable for ψ > 1.0, and the Rutford and Carlson

ice streams are unaffected by increases in basal melt rates

at their grounding lines, then the Evans Ice Stream demon-

strates a threshold behaviour (Fig. 7). Initially showing very

little sensitivity to sub-shelf melt rate, the ice stream retains

an advanced grounding line up to a value ofψ = 1.25 (equiv-

alent to a melt rate near its grounding line of 8 m a−1). At this

point a threshold appears to be reached and any further in-

crease in melting results in a rapid and catastrophic collapse

(Fig. 6g and h).

3.4 Perturbations to surface mass balance

Very little surface melting occurs on the major Antarctic ice

sheets even at sea level. Consequently the surface mass bal-

ance is uniformly positive (excluding some blue-ice areas in

East Antarctica) and, at least at the model scale, smoothly

varying (Arthern et al., 2006). To investigate the sensitivity

of the Filchner–Ronne ice streams to changes in surface ac-

cumulation, we therefore found it most convenient to apply

a uniform shift (ω) to the base level used in the reference

experiment.

As described in Sect. 2.2, the surface mass balance for the

reference experiment increases from ∼ 0.10 to ∼ 0.50 m a−1

in a roughly south–north direction. Ligtenberg et al. (2013)

and Agosta et al. (2013) describe predictions for future accu-

mulation increases up to the year 2200 that, when averaged

over the entire Antarctic Ice Sheet (including ice shelves),

are equivalent to ∼0.01 m w.e. for the (IPCC) E1 scenario,

and ∼0.04 m w.e. for the A1B scenario. We use these results

as a guide to realistic values of ω so that we can investigate

the sensitivity of our model accordingly.

A positive shift in surface accumulation accompanied by

no change in sub-shelf melting has the predictable effect of

increasing the ice thickness in those ice streams that were

stable at their advanced grounding line locations under the

reference scenario. An increase in surface accumulation by

only a small amount is sufficient to stabilise the Institute Ice

Stream, while the Möller Ice Stream does not fully stabilise

at its current grounding line location unless surface accumu-

lation is increased by at least 0.05 m w.e. a−1.

At ψ = 1.5 and with present-day accumulation (ω =

0.0 m w.e. a−1) there is very substantial and relatively rapid

retreat in the Weddell Sea sector (Fig. 6 e and f). An in-

crease of 0.01 m w.e. a−1 in surface accumulation has a fairly

minimal impact on this result (Fig. 8a and b). Increasing the

accumulation shift to ω = 0.025 m w.e. a−1 (Fig. 8c and d)

or 0.05 m w.e. a−1 (Fig. 8e and f) does have a progressively

stronger effect towards reducing the amount of retreat of the

Institute and Möller ice streams within the model time frame,

but is not sufficient to fully mitigate the effects of the increase

in grounding line melt. Figure 8f demonstrates an interesting

situation where the Weddell Sea sector of the ice sheet, taken

as a whole, experiences significant growth over the modelled

period (due to the increased accumulation) while both the In-

stitute and Möller ice streams are in continuous retreat. Thus

we find a situation where particular basins, due to their ge-

ometrical configuration, can experience an unstable retreat

even when they form part of a growing ice sheet.

3.5 Grounding line melting vs. “ambient” shelf melting

With our parametrisation of sub-shelf mass balance (de-

scribed in Sect. 2.4) it is straightforward to apply different

multiplying factors to the area near the grounding line (ψgl)

and to the area away from the grounding line, or ambient
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melt rate at the ice stream grounding line at t = 0 years.

region (ψam). This is of interest because it allows us to in-

vestigate the relative importance of direct melting of the ice

streams at/near their grounding lines vs. more general thin-

ning of the shelf and consequent loss of buttressing and back

pressure on ice stream flow.

Figure 9 demonstrates that a multiplying factor has mini-

mal impact when applied to the ambient part of the sub-shelf

mass balance only, and that the ice stream responses noted in

the earlier parts of this paper are due to increases in melting

in the vicinity of the grounding line. There are two reasons

why this should be the case: (1) much of the “ambient” part

of the ice shelf has a positive or near-zero mass balance in the

reference field, and (2) melt in the region of the islands within

the ice shelf, which may be important for buttressing (such as

the Korff and Henry ice rises and the Doake Ice Rumples; see

Fig. 1), is subject to the grounding line multiplier, rather than

the ambient factor. In order to effectively investigate the im-

pact of an increase in sub-shelf melting away from ice stream

grounding lines, a change to the approach was required.

Firstly, all grounded parts of the Filchner–Ronne Ice

Shelf were manually identified in the model domain and the

grounding lines associated with the ice rises removed from

the calculation of the sub-shelf mass balance. In the new sub-

shelf melt field the “grounding line” element is only applied

near to the grounding line of the main ice sheet and not to the

ice rises.

The result of a 2000-year experiment run with this new

sub-shelf melt field is that the Institute Ice Stream advances

out into the bay to connect with the Korff, Henry and Doake

grounded areas. This occurs because the sub-shelf mass bal-

ance in the vicinity of the ice rises is now overly positive,

causing their grounded areas to increase and aiding the ad-

vance of the Institute Ice Stream. The Möller Ice Stream

also advances slightly, while the behaviour of the other ice

streams is largely unchanged from the reference run (Fig. 10a

and b). The next step was to apply a uniform shift (χam) to the

ambient component of the sub-shelf mass balance in order to

investigate the effect on the various ice streams of remov-

ing the buttressing due to the grounded ice rises. A shift of

χam =−0.5 m w.e. significantly restrains the advance of the

Institute Ice Stream and results in the model reaching an ap-

proximate equilibrium (Fig. 10e and f). A larger increase in

melting (e.g. χam =−0.75 m w.e.) is necessary to unground

the Doake and Henry ice rises, which then rapidly leads to a

substantial grounding line retreat in the Institute and Möller

sector (Fig. 10g and h). These experiments have a component

of direct melting at the grounding lines of the ice streams that

is identical to the reference run; hence we can attribute the

respective changes observed in the model to the “far-field”

effects of melt rates in the central ice shelf and particularly

around the ice rises.

4 Discussion

The results of the first part of this paper, where changes to the

magnitude but not the pattern of sub-shelf mass balance were

investigated, are summarised in Fig. 7. From this it is clear

that the ice streams discharging into the Filchner–Ronne Ice

Shelf can be divided into three groups: (1) those that respond

very slowly and require large changes to the forcing fields

to produce any retreat; (2) those quick to respond to changes

in melt at their grounding lines; and (3) those which respond

very quickly to a melt increase, but only after a threshold has

been passed.

In the first group are the Rutford Ice Stream, Carlson In-

let and Foundation Ice Stream. The Rutford, Carlson, Foun-

dation and also Evans ice streams exhibit the common be-

haviour that their grounding lines all advance to the end

of their respective fjords during the early part of all for-

ward model runs. In the case of the Carlson, Foundation and

Evans ice streams, the water-column depth within the float-

ing portions of the fjords which become grounded is very low
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Figure 8. Ice thickness changes and grounding line locations along with time series plots of cumulative volume above flotation change by

basin. In all plots the basal mass balance multiplier ψ = 1.5, but ω varies: (a and b) ω = 0.01 m w.e.; (c and d) ω = 0.025 m w.e.; (e and

f) ω = 0.05 m w.e and (g and h) ω = 0.075 m w.e.
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(< 50 m throughout, and in many places< 10 m). As a result

they ground very easily in the model and, once grounded on

bed topographic high points near to their trough mouths, they

are very stable in the model. Rutford Ice Stream is the excep-

tion in this instance as the water column below the floating

ice in its fjord is around 500 m deep (Johnson and Smith,

1997; Fretwell et al., 2013). The Rutford Fjord, however, is

the longest, narrowest and deepest of all the Filchner–Ronne

tributaries and the glacier is well constrained within steep

rock walls on both margins. The buttressing this provides

may explain its apparent stability in the model despite the

reverse bed slope throughout much of its length.

The Institute and Möller ice streams comprise the sec-

ond group, the configurations of which appear to place them

currently near to a critical threshold between advance and

unstable retreat. A small increase in their relatively modest

grounding line melt rates (e.g. ψ ≥ 1.0; Fig. 7), or the partial

removal of buttressing due to flotation of the Filchner–Ronne

ice rises (Fig. 10g and h), is sufficient to initiate retreat of

the grounding line in the model. Once this has begun, nei-

ther ice stream finds a new equilibrium grounding line po-

sition within the period of our model runs, irrespective of

the size of the perturbation. A marked difference between

the Institute and Möller ice streams and the other, more sta-

ble tributaries of the Filchner–Ronne Ice Shelf is their ab-

sence of a constraining fjord. The horizontal boundaries be-

tween the Institute and Möller ice streams and slow-flowing

ice are grounded well below sea level rather than on sub-

stantial bedrock topography (e.g. the Bungenstock Ice Rise).

The consequent lack of buttressing due to lateral drag at their

margins may explain their sensitivity to changing conditions

at the base of the ice shelf.

The Evans Ice Stream has one of the smaller catchments

of the Filchner–Ronne tributaries but, due to its higher rate

of surface accumulation, discharges the largest volume of

ice (∼36 Gt yr−1; Joughin and Bamber, 2005). It is unique

in our model domain for its rapid response to increases in

basal melting that occurs only once a melt-rate threshold has

been passed (Fig. 7). The Evans Ice Stream does flow within

a fjord, and has a particularly well defined set of tributaries

(Rignot et al., 2011). At the mouth of its trough, however,

the ice stream is better constrained on its true right bank (by

the Haag Nunataks) than by the subdued topography on the

Antarctic Peninsula side (Fig. 1), and this may go some way

to explaining its behaviour midway between stability and

sensitivity.

All of the ice streams discussed in this paper have a reverse

bed slope with an average gradient of 0.004–0.009 sloping

inland for a distance of 100–200 km from the grounding line

and without topographic highs to provide potential pinning

points. The differences in their response to either an increase

in melt at their grounding lines or to a reduction in buttressing

due to ice rises is therefore unlikely to be explained by vari-

ations in basal topography within the trough. Trough width

has previously been shown to have a close link to ice stream

stability. Even under conditions of a continuous reverse bed

slope a narrowing of the available width for the ice stream

can, through increase in lateral drag, have a stabilising effect

during retreat (Jamieson et al., 2012).

Our results also suggest that a substantial increase in sur-

face accumulation would be necessary to counteract a moder-

ate increase in grounding line melt rate. This is especially so

because the impact of increasing surface accumulation in our

sensitivity experiments is fairly uniform, whereas the impact

of sub-shelf melt increases is unevenly distributed, due to

the differing responses of the ice streams as described above

(Fig. 8).

5 Conclusions

We applied the BISICLES ice sheet model to the catchments

of the ice streams feeding the Filchner–Ronne Ice Shelf in

West Antarctica. We used the most up-to-date measurements

of ice thickness, flow velocity, temperatures and accumula-
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Figure 10. Results of modelling experiments where the grounding lines of ice rises within the Filchner–Ronne Ice Shelf have been iso-

lated and the ambient melt field applied. The ambient field has then been shifted by (a and b) 0.0 m w.e., (c and d) −0.25 m w.e., (e and

f) −0.50 m w.e. and (g and h) −0.50 m w.e. in order to test the effect on the ice streams of the removal of the buttressing these ice rises

provide to the ice shelf.
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tion rates to produce surface and sub-ice-shelf mass balance

fields which maintain, as closely as possible, a steady state

when applied to the present-day Antarctic Ice Sheet config-

uration. Perturbations to these reference-run forcing fields

were then made in order to assess the relative sensitivities

of the different ice streams to changes in sub-shelf melt near

the grounding lines, basal mass balance on the shelf away

from the grounding lines and surface accumulation.

Model results suggest that the Institute and Möller ice

streams are currently situated very close to a threshold criti-

cal for rapid retreat. In our study area they are uniquely sen-

sitive to both increased melting at their respective grounding

lines and to elevated melting in the region of the ice rises in

the Filchner–Ronne Ice Shelf. Once retreat begins for these

ice streams, the model fails to find a new equilibrium po-

sition for the grounding line and the ice streams continue to

lose mass throughout the 2000-year period of the model runs.

In contrast, the Rutford, Carlson and Foundation ice

streams appear to be quite resistant to either retreat or signifi-

cant advance even with fairly substantial perturbations to the

surface and sub-shelf mass balances. The Evans Ice Stream

is unique in this sector in that unstable retreat will occur only

after a threshold grounding line melt rate has been passed.

Model results indicate that this threshold is quite high, likely

requiring a 50 % increase in the present-day grounding line

melt rate to initiate retreat.

The different responses of the various ice streams can-

not be explained entirely by features of the basal topography

within their troughs. Fjord width and the effect of buttressing

at lateral margins and at ice rises also affect the responses

of ice streams to external forcing. In order to further improve

our understanding of the behaviour of major ice streams feed-

ing into the Filchner–Ronne Ice Shelf (outside of the Institute

and Möller ice streams), further geophysical observations are

required to properly characterise the nature of the topography

near the grounding lines.

These factors should also be taken into account when

assessing the relative vulnerability of other Antarctic ice

streams to climate-change-induced retreat. For example, the

Siple Coast ice streams feeding into the Ross Ice Shelf are

not constrained by fjord topography, so they may act in a sim-

ilar way to the Institute and Möller ice streams. However, as

many factors are involved in controlling ice stream response,

such as the slope of the bed topography and the presence of

ice rises in the ice shelves, numerical modelling of the sort

demonstrated in this paper is required.
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